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Abstract 

The use of microRNAs as biomarkers has been proposed for many diseases including the diagnosis of 

melanoma. Although hundreds of microRNAs have been identified as differentially expressed in 

melanomas as compared to benign melanocytic lesions, limited consensus has been achieved across 

studies, constraining the effective use of these potentially useful markers.  In this study we quantified 

microRNAs by next-generation sequencing from melanomas and their adjacent benign precursor nevi. 

We applied a machine learning-based pipeline to identify a microRNA signature that separated 

melanomas from nevi and was unaffected by confounding variables, such as patient age and tumor cell 

content. By employing the ratios of microRNAs that were either enriched or depleted in melanoma 

compared to nevi as a normalization strategy, the classifier performed similarly across multiple published 

microRNA datasets, obtained by microarray, small RNA sequencing, or RT-qPCR. Validation on 

separate cohorts of melanomas and nevi correctly classified lesions with 83% sensitivity and 71-83% 

specificity, independent of variation in tumor cell content of the sample or patient age. 
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Introduction 

Misdiagnosis of cutaneous melanoma is among the most significant contributors to medical malpractice 

lawsuits in the United States (Wallace et al. 2013). The advanced stages of melanoma are associated with 

five-year survival rates less than 20% and have been responsible for over 10,000 deaths in the U.S. each 

year (Gershenwald et al. 2017; https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-

statistics.html). Although the disease is curable when detected and treated early, the process of 

differentiating between malignant lesions and the more prevalent benign lesions is challenging. The 

definitive diagnosis of concerning lesions is achieved through histopathologic assessment of a biopsy 

specimen, but a considerable rate of discordance even among expert pathologists has been established 

(Heenan et al. 1984; Boiko et al. 1994; Corona et al. 1996; Farmer et al. 1996; Brochez et al. 2002; Shoo 

et al. 2010; Gaudi et al. 2013; Niebling et al. 2014; Elmore et al. 2017; Elder et al. 2018).  Although 

accuracy improved following implementation of more defined diagnostic criteria, a large-scale study 

published by Elmore and colleagues in 2017 reported interobserver discordance rates as high as 57-75% 

and intraobserver discordance rates at 37-65% (Elmore et al. 2017).  Together, these observations 

highlight the complexity and subjectivity of histopathologic assessment and emphasize the need for 

objective methods for distinguishing malignant from benign lesions to augment current practices.  

 

Molecular biomarkers can provide robust, objective and quantitative measurements of disease state 

(Rodríguez-Cerdeira et al.; Leachman et al. 2017; Buchbinder and Flaherty 2016). One class of candidate 

biomarkers is small non-coding microRNAs (miRNAs). Discovered twenty-five years ago (Lee et al. 

1993), miRNAs stabilize transcriptional programs (Ebert and Sharp 2012; Judson et al. 2013) and their 

expression can distinguish cell state transitions during mammalian development and in disease 

progression (Parchem et al. 2014; Reddy 2015). Combined with a smaller size, reduced complexity, and 

superior stability over mRNA transcripts, miRNAs are appreciated as potentially valuable candidate 

biomarkers for many conditions and diseases (Jung et al. 2010; Sheinerman and Umansky 2013). 

However, despite abundant studies focused on a breadth of diseases, few miRNA biomarkers have 
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emerged in the clinical setting (Pogribny 2018). One reason these promising candidate biomarkers have 

yet to reach their potential is the frequent lack of reproducibility between differential expression studies 

(Mumford et al. 2018; Nair et al. 2012; Raya et al. 2012; Witwer and Halushka 2016). Discrepancies in 

differential expression signatures across comparable studies have been attributed to sample heterogeneity, 

platform-specific biases in miRNA detection, and an absence of standardized normalization strategies 

(Mumford et al. 2018; Raya et al. 2012; Witwer and Halushka 2016).  

 

Exemplifying these complications are studies that have explored the use of miRNAs as biomarkers for 

melanoma (reviewed in (Jarry et al. 2014; Jayawardana et al. 2016; Margue et al. 2013; Raya et al. 

2012)). Independent studies using various platforms (microarray, RT-qPCR array, RNA-seq) to compare 

miRNA profiles between benign melanocytic lesions and melanomas have resulted in more than 500 

different miRNAs identified as significantly differentially expressed (summarized in Tables S1 & S2) (Xu 

et al. 2012; Jukic et al. 2010; Sand et al. 2013; Komina et al. 2016; Kozubek et al. 2013; Hanniford et al. 

2015; Latchana et al. 2017; Chen et al. 2011). However, only seven of these miRNAs showed 

reproducible expression differences in at least half of the cohorts, and none were identified in every study 

(summarized in Figure S1). Several of the most reproducibly identified miRNAs – miR-211-5p, miR-

125b-5p, and miR-21-5p – have been validated as differentially expressed in benign and malignant 

pigmented lesions using in situ hybridization, suggesting some miRNAs could function as biomarkers 

(Babapoor et al. 2016; Wandler et al. 2017). However, differential expression of these same miRNAs was 

not observed in 10-30% of cohorts. Further investigations into the causes of these inconsistencies, and 

potential solutions, are needed.  

 

In this study, we sought to determine whether a miRNA signature can reliably distinguish malignant from 

benign melanocytic lesions across both published and independently generated datasets. Machine 

learning-based classification can help distinguish predictive features from confounding variables, 

provided the model is trained on an appropriately controlled and annotated dataset (Guyon and Elisseeff 
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2003).  We generated such a dataset and employed methods of machine learning to both identify the most 

common confounding variables influencing quantification of miRNA expression from FFPE samples and 

to generate a refined miRNA signature that correlated uniquely with diagnosis.  

 

Results 

 

Variation in tumor cell content of FFPE samples confounds miRNA expression analyses 

To identify covariates that could confound differential miRNA expression analyses, we took advantage of 

a cohort of primary melanomas with intact adjacent benign nevi, from which they arose (Shain et al. 

2018) (Fig. 1a). The different progression stages for each sample were diagnostically classified by a panel 

of at least five dermatopathologists and micro-dissected and genotyped for over five hundred cancer-

related genes. Phylogenic trees of the somatic mutations identified in the respective tumor areas were 

constructed and confirmed the common clonal origin for the different progression stages of each patient.  

We estimated the tumor cell content (referred to here as tumor cellularity) using allele frequencies and 

magnitudes of copy number changes  as previously described (Shain et al. 2018). Consequently, the 

dataset was annotated with both clinical features (e.g. patient age, sex, anatomical location of the lesion) 

as well as genomic information (e.g. mutation burden, copy number variation, tumor cellularity) for each 

matched pair of nevus and melanoma regions (Fig. 1b and Table S3).  

 

To investigate the influence of each genomic and clinical feature on the miRNA expression pattern, we 

conducted miRNA sequencing on fifteen of the regions from seven cases (Table S3).  In order to first 

identify potential systemic confounding features, we first employed co-expression analyses for 

identification of networks of miRNAs sharing similar expression patterns across all regions and identified 

three co-expression networks (Fig. S2a, Table S4) that were effectively separated via Linear Discriminate 

Analysis (LDA) (Fig. 1c) (Langfelder and Horvath 2008). Each network consists of miRNAs with read 

counts that are positively correlated across all samples, regardless of level of expression. We next sought 

to determine whether the expression patterns of these networks correlated with any of the clinical or 
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genomic annotations of the samples, including not only diagnosis but also potentially confounding 

features, such as patient age. We summarized the miRNA expression matrix for each network by its first 

principal component and compared these to the sample covariates (Fig. 1d, Fig. S2b-c). Two of the 

networks (Network 1 and Network 3) were significantly correlated with a diagnosis of melanoma and 
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Figure 1:Tumor cellularity and age confound miRNA profiling of melanoma samples A) A cohort of melanomas with

intact adjacent precursor nevus were identified and micro-dissected. B) List of features obtained for each micro-dissect-

ed region either from targeted exon sequencing (genetic features) or the pathology requisition form (clinical features).

Red font indicates potentially confounding features. Green font indicates target feature (diagnosis) or genetic features

highly correlated with target feature. C) miRNA co-expression networks. Scatter plot of all expressed miRNAs separat-

ed by LDA trained on the three networks.The three coexpression networks are indicated by the color of the points (blue,

orange, and green). D) Correlations of PC1 of each miRNA network expression matrix with clinical and genetic features

from (B) with p-values calculated from the corresponding correlation coefficient. E) Percent of miRNAs identified as

differentially expressed between nevi and melanoma in seven published studies that overlap with Network 2. Published

studies are identified by the first letter of the first authors’ last names (Table S1).
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were not influenced by tumor cellularity or any other clinical feature. Network 1 was also correlated with 

mutation burden and copy number variation, both measurements of genome damage that increase during 

progression from nevus to melanoma (Shain et al. 2015).  

 

In contrast to the two melanoma-associated networks, Network 2 was positively correlated with tumor 

cellularity and, to a lesser extent, patient age. This observation suggests that although miRNAs within 

Network 2 were differentially expressed in melanoma and nevus samples, variation in their observed 

abundance may reflect the extent of contamination with non-tumor cells rather than different progression 

stages. Consistent with this interpretation, we observed that miRNAs known to be expressed in cultured 

primary human keratinocytes were enriched in Network 2 as would be expected if keratinocytes were a 

significant fraction of contaminating non-tumor cells (Fig. 1d, Fig. S2c). Conversely, miRNAs known to 

be expressed in cultured primary human melanocytes were enriched in Network 3 consistent with changes 

in Network 3 reflecting melanocyte biology. Together, these data suggest that miRNA profiling datasets 

derived from micro-dissected FFPE samples can contain sufficient levels of contaminating non-tumor 

cells to influence the overall miRNA expression profile. Contamination by non-tumor cells is expected to 

vary among samples dependent on their size, histologic type (predominantly junctional versus 

intradermal), and preparation (e.g. precision of microdissection). If not controlled for, variation in tumor 

cellularity is expected to degrade the reproducibility of signatures across studies. Indeed, miRNAs from 

Network 2 constituted up to thirty percent of the miRNAs in expression signatures reported from the 

seven previously reported datasets (Fig. 1e). This result highlights the need for alternative analytical 

methods for identifying miRNA signatures predictive of melanoma diagnosis from FFPE derived 

samples.  

 

Classification of nevus from melanoma samples with miRNA ratios 

To identify miRNAs that best distinguish malignant from benign melanocytic lesions, we utilized feature 

selection (FS). FS is a method of machine learning that is frequently used to simplify predictive models 
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and to avoid analytical pitfalls such as the phenomena of over-fitting and the ‘curse of dimensionality’ 

(He and Yu 2010; Saeys et al. 2007). In the context of biology, FS methods can be applied to gene 

expression datasets to identify sets of features (in this case, miRNAs) that are more often biologically 

relevant and ultimately improve classification performance (Abeel et al. 2010).  There are common FS 

methods, such as univariate statistical test filtering (e.g. FDR, t-test) and feature rank wrappers (e.g. 

backward selection) that will identify individual features that are independently relevant, but they miss 

features that are only relevant in the context of complex networks (Mnich and Rudnicki 2017; Wenric and 

Shemirani 2018). An alternative strategy is the all-relevant features (ARF) selection approach that 

involves multiple iterations of feature ranking and can determine both weak and strong relevant features 

(Kursa and Rudnicki 2010).  An ARF method called Boruta (Fig. S3) has been shown to provide 

improved performance in a variety of datasets including gene array data and environmental science data 

(Li et al. 2016; Kursa 2014). 

 

We employed Boruta to obtain an initial list of those miRNAs that were most important for 

discriminating the benign and malignant regions from our cohort across 1000 random forest iterations 

(Fig. 2a). All miRNAs with more than five total reads were considered, resulting in 341 unique features. 

For each miRNA, a second artificial feature was generated through randomized re-distribution of the read 

counts across samples (Fig. S3).  These ‘shadow features’ provided an equal number of negative control 

features for which to compare each experimental feature. We conducted Boruta with the combined 682 

experimental and negative control features, ranking the importance of each feature for the accurate 

classification of nevus samples from melanoma samples with each iteration. We identified 38 miRNAs 

that ranked higher than the maximum-performing shadow feature with a p-value of less than 0.001 (Fig 

S4). To enable comparison with published studies we also required that the expression levels of each 

miRNA were assessed in all published datasets (Table S2). The final list of feature-selected miRNAs 

contained two miRNAs with increased expression (miR-31-5p, miR-21-5p) and four miRNAs (miR-211- 
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Figure 2:The development of a miRNA ratio-trained model that classifies melanocytic lesions A) Work-

flow of miRNA-Seq classifier development and testing. B)Top miRNAs for classifying nevi from melano-

mas using Boruta feature selection. Each feature-selected miRNA has a significantly higher importance

value than the random shadow max feature (X) and shadow mean feature (M) (Fig. S3).The top six

miRNAs are shown (full list in Fig. S4). C) Normalized miRNA-Seq counts from micro-dissected FFPE

samples. Counts from melanoma regions (purple) and nevus regions (blue) are shown. Boxes indicate

mean, first and third quartiles. miRNAs designated as melanoma-enriched or melanoma-depleted are

designated by light purple and light blue backgrounds, respectively. D) ROC curves for cross-platform

testing of MiRTM using the combined set of publicly available datasets.Threshold determined from the

discovery sequencing set and optimal threshold are shown in as red and blue points respectively with

corresponding sensitivity and specificity annotated for each. E) Precision-Recall curve for testing of the

combined set using MiRTM.
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5p, miR-125a-5p, miR-125b-5p, miR-100-5p) with decreased expression in melanomas (Fig. 2c). These 

miRNAs are referred to as melanoma-enriched and melanoma-depleted miRNAs, respectively. 

 

 The use of transcript ratios has been previously demonstrated to strengthen the prediction accuracy 

through simplification of features (Avissar et al. 2009; Reddy et al. 2015). We developed a diagnostic 

score using all ratios of melanoma-enriched miRNAs to melanoma-depleted miRNAs (Fig. 2a). This 

approach controls for variations in lesion composition (e.g. the relative amount of malignant and benign 

tissue) when micro-dissection boundaries are not known and differences in tumor cellularity when genetic 

data are not available. This approach also normalizes for the fraction of miRNAs of melanocytic origin 

(as opposed to the totality of miRNAs), amplifies the signal from malignant cells by normalizing 

melanoma-enriched miRNAs to melanoma-depleted miRNAs, and permits cross-platform comparisons 

without the need for cross-platform normalization. We divided each of the two melanoma-enriched 

miRNAs by each of the four melanoma-depleted miRNAs, producing eight miRNA ratios (miR-31-5p/ 

miR-211-5p, miR-31-5p/ miR-125a-5p, miR-31-5p/ miR-125b-5p, miR-31-5p/ miR-100-5p, miR-21-5p/ 

miR-211-5p, miR-21-5p/ miR-125a-5p, miR-21-5p/ miR-125b-5p, and miR-21-5p/ miR-100-5p). These 

eight ratios were used to train a random forest classifier. The final miRNA Ratio Trained Model 

(MiRTM) resulted in an area under receiver operating characteristic curves (AUC) of 1.0 for the 

discovery set of 7 samples containing 15 matched melanoma and nevus regions.  

 

Validation of the MiRTM on previously published datasets 

To test the accuracy of the MiRTM on independent datasets we obtained and combined the raw data from 

five previously published miRNA profiling studies (Figs. S1, Table S1; Sand, Xu, Chen, Komina & 

Jukic). These studies contained both microarray and RT-qPCR datasets. Regardless of the platform, the 

eight miRNA expression ratios were used as input for the model trained on the sequencing data. The 

MiRTM resulted in an AUC of ROC of 0.92 (Fig. 2d) and an AUC of Precision-Recall of 0.95 (Fig. 2e). 

We set two thresholds to calculate sensitivity and specificity. First, we used the optimal threshold as 
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defined by our sequencing cohort (0.5), which resulted in a sensitivity of 0.83 and a specificity of 0.83 

(Fig. 2d, red point). As this validation cohort was constructed using different technical platforms for 

miRNA profiling, we also calculated sensitivity and specificity using the optimal threshold for the ROC 

curve as 0.94 and 0.83 respectively (Fig. 2d, blue point).  

 

To further examine the reproducibility of our model, we ran MiRTM on each individual previously 

published dataset. Across all datasets, the MiRTM resulted in an AUC of 0.8 or higher, with an average of 

0.922 (Fig. S5a). Optimal sensitivity remained above 0.9 across each dataset (Fig. S5b). With the 

exception of one dataset, optimal specificity was above 0.8 (Fig. S5b).  Interestingly, that dataset (Fig. S5, 

X) contained the highest level of the miRNA network we identified as associated with tumor cellularity 

(Fig. 1e, X).)  

 

Validation of the MiRTM on randomly selected cases 

Discovery phase cohorts are often selected for unambiguous and homogenous cases. To further validate 

our model on a greater diversity of cases, we randomly retrieved 82 biopsied melanocytic lesions - 41 

neoplasms diagnosed as nevi and 41 diagnosed as melanoma - from the archives of the UCSF 

Dermatopathology Section. All diagnoses were reviewed and confirmed by an independent 

dermatopathologist. This cohort contained a greater range of tumor cellularity and subtypes of 

melanocytic neoplasms than the discovery cohort (Table 1, Table S5). Instead of micro-dissection, entire 

FFPE sections were scraped to obtain bulk RNA. The abundance of the six miRNAs was assessed by RT-

qPCR (Fig. 3a). We converted Ct values to expression ratios using the linear transformation (2^ -Ct) and 

ran MiRTM. The resultant AUC of ROC for our unfiltered cohort (UC) was 0.92 (Fig. 3b). The AUC of 

the Precision-Recall curve was 0.911 (Fig. 3c). To classify the lesions into benign and malignant, we 

again considered two thresholds. Using the threshold defined by our sequencing cohort (0.5) the model 
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achieved sensitivity of 0.83 and specificity of 0.71 (Fig. 3b red point). The optimal sensitivity and 

specificity of this ROC curve were 0.81 and 0.90 (Fig. 3b blue point).  

 

As the MiRTM demonstrated a lower sensitivity for the more diverse second validation cohort compared 

to the previously published cohorts, we examined whether the model was affected by tumor cellularity 

and patient age. When we compared the MiRTM score to the tumor cellularity in each sample as assessed 

by a dermatopathologist, we found no correlation (Fig. 4a), suggesting that the MiRTM score was 

unaffected by this variable. Similarly, we found no correlation between MiRTM score and age (Fig. S6). 

To investigate whether other features might influence the MiRTM score, we calculated the correlations 

between fourteen clinical features and the 

Features Melanoma

n(%)

Nevus

n(%)

Totals 41 (100) 41 (100)

Age

<30 0 (0) 6 (15)

30-60 21 (51) 28 (68)

>60 20 (49) 6 (15)

Stage

pT1a/b 35 (85) -

pT2a/b 3 (7) -

pT3-4 a/b 2 (5) -

Melanoma

Subtype

SSM 33 (80) -

Nodular 4 (10) -

NoS 3 (7) -

Nevus

Subtypes

Congenital - 15 (37)

Compound - 32 (78)

Lentiginous - 26 (63)

Dysplastic - 7(17)

Percent

Tumor Cell

<40 13 (32) 21 (51)

40-70 19 (46) 15 (37)

>70 13 (32) 5 (12)

Inflammation Yes 28 (68) 5 (12)

Table 1: Sample information for unfiltered cohort

Percent
Melanoma

<80

80-100

100

-

-

-
vs Nevus

3 (7)

10 (24)

28 (69)
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MiRTM score (Fig. 4b-c, Table S5). In the melanoma samples, we observed the expected correlations 

between clinical features such as age and solar elastosis as a proxy for mutation burden (Fig. 4b). 

However, we observed no significant correlations with the MiRTM score that suggested any of the 

features other than diagnosis could influence the score. For example, changes in the thickness or size of 

the lesion did not affect the MiRTM score. Similarly, in the nevus samples, most features did not 

influence the score, including the presence of dysplastic features (Fig. 4c). However, exclusively among 

the benign lesions, the MiRTM score was positively correlated with inflammation (Fig. 4c-d). Together, 

these data demonstrate that while the MiRTM score is robust against heterogeneity in lesion size, tumor 
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cellularity, and presence of dysplastic features, the presence of inflammatory cells might result in false 

positive calls.   
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Numerous studies have analyzed miRNA expression at different stages of melanoma progression, 

collectively identifying over 500 miRNAs enriched in nevi or melanomas (Babapoor et al. 2017; Kozubek 

et al. 2013; Hanniford et al. 2015; Jukic et al. 2010; Satzger et al. 2012; Sand et al. 2013; Xu et al. 2012; 

Komina et al. 2016; Chen et al. 2011; Latchana et al. 2017). Our analyses have refined this expansive list 

to six miRNAs that reproducibly distinguish nevi from melanoma across independent datasets and 

profiling platforms. We identified this signature by controlling two important variables, interobserver 

variability of diagnosis and variability in tumor cellularity. To address the first variable, we utilized a 

discovery cohort for which the diagnosis accuracy was established by requiring the median concordance 

among five to eight different dermatopathologists and supporting genetic features, eliminating the 

possibility of training the model with misdiagnosed cases. Secondly, melanomas and nevi were matched 

as pairs representing different progression stages of the same neoplastic clone, eliminating variability by 

comparing different lesions from different patients. Thirdly, we identified and excluded miRNAs from the 

signature, whose expression is influenced by tumor cellularity, thereby removing a covariate that has 

confounded previous analyses. When tested on six datasets assembled by independent groups, a model 

trained on expression ratios of the refined signature classified benign from malignant melanocytic lesions 

with an average AUC of ROC above 0.91.  

 

Our strategy required a meticulously assembled and annotated initial cohort of lesions and next generation 

small RNA sequencing. Although this approach permitted us to identify confounding covariates, the cost 

and effort to obtain each case also constrained the size of the training cohort to only fifteen samples. One 

fundamental feature of machine learning is that increased training improves accuracy. Thus, the current 

performance of the model represents the lower bound of the potential accuracy that could be obtained 

with a larger training of similar cases. Despite the limited size of the training set, the sensitivity and 

specificity of the MiRTM for validation sets thresholded on the discovery cohort was 0.83 and 0.71-0.83. 

This performance of the MiRTM is comparable to other molecular tests for distinguishing benign 

melanocytic nevi from melanoma, including chromosomal analysis by fluorescence in situ hybridization 
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(sensitivity 0.72-1.00, specificity 0.90-1.00) (Gerami et al. 2010; Ferrara and De Vanna 2016) and 

myPath Melanoma gene expression profiling (sensitivity 0.63-0.90, specificity 0.88-0.93)(Clarke et al. 

2017; Minca et al. 2016). The MiRTM does not perform as well as chromosomal analysis by array 

comparative genomic hybridization (aCGH, sensitivity 0.92-0.96, specificity 0.87-1.00)(Bastian et al. 

2003; Wang et al. 2013). However, assessment by the MiRTM requires only a single section of FFPE 

material, does not require microdissection and RT-qPCR is a quick and affordable assay making this 

approach a candidate for lesions where tissue availability is limited.  

 

It is important to note that our discovery set and validation sets were obtained using diverse platforms of 

miRNA profiling. Indeed, the threshold for optimal thresholds for both validation sets (microarray and 

RT-qPCR) were slightly different than the optimal threshold for the discovery set (small RNA 

sequencing). Although the over-all crossplatform performance demonstrates the robustness of the model, 

future studies aimed at clinical development of this model should consider training and validating the 

model on a single platform.  

 

The only measured feature that correlated with the MiRTM score overall was diagnosis. However, in the 

benign samples of the validation set, we observed that inflammation can result in false-positive calls. 

Indeed, some of the miRNAs (miR-125b, miR-31, miR-21) have been associated with inflammation in 

psoriasis (Hawkes et al. 2016).  However, inflammation was not correlated with the MiRTM score over 

all samples in the cohort suggesting the feature-selected miRNAs are not exclusively an inflammation 

signature. Further training on a larger cohort selected for differential inflammation status could 

substantially reduce the number of false positives.  

 

Of the six miRNAs of our signature, three (miR-211-5p, miR-21-5p, and miR-125b-5p) (Fig. S1a) have 

been linked to  melanoma, have been previously validated by in situ hybridization (Babapoor et al. 2016; 

Latchana et al. 2016), and have been functionally assessed in melanoma cell lines. MiR-21 is an 
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established oncomir and regulates genes involved in increased proliferation and invasion (Satzger et al. 

2012). It is upregulated in many cancers including melanoma and its expression correlates with 

progression from nevi to primary melanomas and then to metastatic melanomas (Satzger et al. 2012; Jiang 

et al. 2012).  Conversely, miR-125b is often downregulated in cancers, including advanced melanomas, 

where its loss results in increased expression of cJUN and MLK3 (Zhang et al. 2014; Kappelmann et al. 

2013). MiR-211 is among the most well-established functional miRNAs in melanocytes and is 

downstream of the important melanocyte lineage transcription factor MITF (Mazar et al. 2010). It is often 

downregulated during melanoma progression and has been linked to invasion through regulation of 

BRN2, NFAT5 and TGFβR2 (Levy et al. 2010; Boyle et al. 2011). The other miRNAs in the signature are 

less well characterized in melanocytes. As another miR-125 family member, miR-125a is expected to 

target a similar set of genes as miR-125b, but has been mostly described in other cancers. MiR-31 is 

upregulated in some cancers, but its role as an obligate oncomir is controversial as it is transcribed from a 

commonly deleted or methylated genomic region in many cancers (Valastyan and Weinberg 2010; 

Asangani et al. 2012). Similarly, miR-100 has also been described as both a tumor suppressor and an 

oncomir depending on the context (Li et al. 2015). Regardless of their precise functional role in the 

context of melanocytic neoplasia, our analyses demonstrate that the relative expression ratios of these six 

miRNAs can assist in distinguishing benign melanocytic nevi from malignant melanoma in FFPE 

samples.   

 

Methods 

Meta-analysis  

For meta-analyses summarized in Fig. S1, we used all datasets in public databases that contained miRNA 

profiling for both primary melanoma and nevus samples for comparison to our knowledge (Table S1) 

(GSE19229, GSE36236, GSE24996, GSE62372, GSE35579, GSE34460, and E-MTAB-4915). The top 

differentially expressed miRNAs for each dataset were determined using an FDR cutoff of 0.05 using 

either Limma (microarray and TaqMan array data (Ritchie et al. 2015)) or DeSeq2 (miRNA-seq data 
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(Love et al. 2014)). To determine overlap (Fig. S1a), only those miRNAs for which probes were included 

in every detection platform were considered (Table S2). Overlap was plotted using the UpsetR package in 

R (Conway et al. 2017).  

 

Clinical specimens and histopathologic assessment 

A training cohort of melanomas with an intact adjacent benign nevus constituted the discovery cohort for 

this study. Fifteen different areas (8 malignant and 7 benign) from seven cases were selected based upon 

which samples from a larger published cohort that was previously genetically assessed (Shain et al. 2018) 

had leftover material. All cases had previously been retrieved from the UCSF Dermatopathology archive 

as formalin-fixed paraffin-embedded (FFPE) tissue blocks. Histopathologically distinct areas had been 

independently evaluated by a panel of 5-8 dermatopathologists for staging (Shain et al. 2018). Distinct 

tumor areas were manually micro-dissected with a scalpel under a dissection scope from unstained tissue 

sections following the guidance of a pathologist in order to limit stromal cell contamination. Previously, 

genetic DNA had been isolated from four 10µM sections using Qiagen DNA FFPE Tissue Kit (Cat# 

56404) (Shain et al. 2018). For this study, four additional 20uM sections were dissected and total RNA 

was isolated using the RecoverALL Total Nucleic Acid Isolation Kit for FFPE (Ambion).    

An independent validation cohort was generated by retrieving obtaining 82 diagnosed melanomas (41 

cases) or nevi (41 cases) from UCSF Dermatopathology. Cases were reevaluated by a separate 

dermatopathologist to confirm diagnosis and obtain histopathological features, but were not excluded for 

any reason.  For RNA isolation of the test cohort, one 20 µM section was scraped off the slide and 

processed in its entirety without micro-dissection and total RNA was isolated using the RecoverALL 

Total Nucleic Acid Isolation Kit for FFPE (Ambion). 

 

MicroRNA-seq and analysis 

MicroRNA sequencing libraries were constructed with the TailorMix Small RNA Library Preparation Kit 

(SeqMatic, CA) using total RNA extracted from FFPE samples.  Sequencing was performed on the 
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Illumina HiSeq2500 platform at single-end 50bp. After adaptor sequences were removed, reads were 

aligned to a human reference (hg37) with Bowtie (Langmead et al. 2009) and then small RNA reference 

groups (miRBase21) were counted. Data were submitted to dbGaP (phs001550.v2.p1). Differential 

expression analysis was performed from feature counts using DeSeq2 (Love et al. 2014) with p-values 

adjusted for multiple testing with the Benjamin-Hochberg method (p-adj). 

 

Co-expression Analysis 

Co-expression analysis was restricted to 805 miRNAs with at least one read in at least two samples. Three 

co-expression networks were identified in R using a four-step approach as previously described (Lui et al. 

2014) and a minimum 10-member seed and 0.85 correlation threshold. First, pairwise biweight 

midcorrelation coefficients (cor) were calculated for all possible pairs of miRNAs for all samples. 

Second, miRNAs were clustered using the flashClust implementation of a hierarchical clustering 

procedure with complete linkage and 1 – cor as a distance measure (Langfelder and Horvath 2008). The 

resulting dendrogram was cut at a static height of ~0.48, corresponding to the top 10% of pairwise 

correlations for the entire dataset. Third, all clusters consisting of at least 10 members were identified and 

summarized by their eigengene (i.e. the first principal component obtained via singular value 

decomposition of the standardized miRNA expression matrix corresponding to each initial cluster) 

(Horvath and Dong 2008). Fourth, highly similar networks were merged if the Pearson correlation 

coefficients of their eigengenes exceeded 0.85. This procedure was performed iteratively such that the 

pair of networks with the highest correlation > 0.85 was merged, followed by recalculation of all 

eigengenes, followed by recalculation of all correlations, until no pairs of networks exceeded the 

threshold. Following these steps, three co-expression networks were identified. The strength of 

association (kME) between each miRNA and each network was determined by calculating the Pearson 

correlation between its expression pattern over all samples with each eigengene (Horvath and Dong 2008) 

(Table S4).   
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Linear Discriminant Analysis 

To assess and visualize the degree to which the three different miRNA groups can be distinguished based 

on their expression in our samples, we constructed a classifier that predicts the miRNA network. We used 

Linear Discriminant Analysis to project the expression of miRNAs in each sample into a two-dimensional 

linear subspace that optimally separates the different miRNA categories. We subsequently trained a 

support vector machine with the linear kernel to distinguish between the miRNA categories. An area 

under the ROC curve for distinguishing blue, green and orange categories (Fig. 1c) in a testing set was 

0.97, 0.94, and 0.95, respectively. 

 

Gene set enrichment analysis 

GSEA was conducted using the three co-expressed miRNA networks as gene sets against public miRNA 

expression datasets (GSE16368) comparing either primary human melanocytes (GSM817251 

GSM1127159, GSM1127164) to keratinocytes (GSM817253, GSM1127111, GSM1127113) or primary 

human melanocytes to fibroblasts (GSM817252, GSM1127116). Positive enrichment of each case 

corresponded to melanocyte-enriched and negative corresponded to either fibroblast- or keratinocyte-

enriched. 

 

Genomic Analysis 

The targeted exon sequencing datasets for each sample of the training cohort were accessed from dbGaP 

(phs001550.v1.p1). Read alignment, mutational analysis, and copy number analysis was performed as 

previously described (Shain et al. 2015; Talevich et al. 2016). Briefly, sequences were aligned using 

Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) with mutational analysis and processing 

performed using Picard and Genome Analysis Toolkit. Copy number information was obtained with the 

use of CNVkit. Tumor cell content (tumor cellularity) was calculated bioinformatically using multiple 

methods when possible, including median mutant allele frequency (MAF) of somatic mutations, MAF of 
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the driver mutation, allelic imbalance over germline and others as previously described (Shain et al. 

2018). 

 

Classifier analyses 

A feature subset was selected using the Boruta R package (Kursa and Rudnicki 2010) to determine a 

minimal set of miRNAs for classifier predictive accuracy from the FFPE miRNA-seq data set. Briefly, for 

each feature (miRNA) present in the RNA-seq data set, a control “shadow-feature” (shadow miR) of 

comparable expression and variance was generated through random re-assignment of the read counts to 

different samples (Fig. S3). The combined feature set (miRNAs and shadow miRs) was used to train a 

random forest classifier and the importance of each feature for the accuracy of the model was determined. 

This process was repeated in 1000 iterations, with miRNAs excluded from each ensuing round once they 

were significantly less important than the maximum important shadow miR. Thus, the remaining list of 

miRNAs at the conclusion of the analyses represents only those miRNAs that out-performed an equal 

number of randomized controls by a statistically significant margin. This initial miRNA list was then 

further refined by removing miRNAs that were below a minimum expression threshold and/or were not 

detected across all outside test sets to obtain a final list of 6 miRNAs (miR-211-5p, miR-125a-5p, 125b-

5p, miR-100-5p, miR-31-5p and miR-21-5p). Using log fold-change information from differential 

expression analysis, each miRNA was associated as melanoma-enriched (ME) or melanoma-depleted / 

nevus-associated (MD) and miRNA ratios were created from each combination of the 2 ME miRNA 

(miR-31-5p and miR-21-5p) and 4 MD miRNA (miR-211-5p, miR-125a-5p, 125b-5p, miR-100-5p).  A 

random forest classifier was then built using this transformed minimal signature set and tested by 5-fold 

repeated cross-validation over 100 repeats to create a final miRNA ratio trained model (MiRTM). The 

MiRTM was used to classify the datasets described in the meta-analysis where sufficient data were 

available to obtain sensitivities, specificities, and overall performance by AUC through a ROC curve for 

each set (Fig. S5) or combined as a group (Fig. 2d-e). The Dadras and Hernando datasets were omitted 

from the analysis due to insufficient sample sizes (Dadras contained 2 nevus samples), or too many 
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missing features and large sample imbalance (Hernando contained a nevus/mel ratio of 0.1 and many 

features removed in processing) (Kozubek et al. 2013; Hanniford et al. 2015). Similarly, MiRTM was 

used to classify each case in our validation set with sensitivities and specificities determined using either 

an optimal threshold based on the Youden index or the sequencing determined threshold 0.5 (Fig. 3b). 

Overall performance was visualized by the area under a ROC or precision recall curve respectively (Fig. 

3b-c).      

 

miRNA qPCR assay 

Total RNA was converted into cDNA using the TaqMan Advanced miRNA cDNA Synthesis Kit 

(Thermo Fisher A28007) following the manufacturer recommended protocols. Quantitative PCR for 

specific miRNA detection was conducted with TaqMan Advanced miRNA Assays (Thermo Fisher) using 

the TaqMan Fast Advanced Master Mix (Thermo Fisher 4444557) and analyzed on the Applied 

Biosystems 7900HT instrument following recommended protocols. 

 

Statistical Analysis 

Statistical significance was set to 0.05 with p-values adjusted for multiple testing with the Benjamin-

Hochberg method. Pearson correlation coefficients were obtained between all continuous features with 

the equivalent point biserial correlation coefficient for binary variables. Correlation matrices were plotted 

with the corrplot R Package and correlation plots with the ggpubr R package with 95% confidence 

intervals calculated for the curves. Sensitivities and specificities were calculated from classification 

models built using the caret R package. ROC curves were generated using the pROC R package. 

Confidence intervals (CI) were calculated from the 95% CI of 2000 bootstrap replicates for sensitivity 

and specificity or the ‘Delong’ method for AUCs using pROC R package. The precision-recall plot was 

generated using the precrec R package. All data was processed in R (3.3.2) 

Data Access 
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The sequrncing data was submitted to the NCBI database of Genotypes and Phenotypes (dbGaP) 

accession number phs001550.v2.p1. 
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