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Abstract

Grid cells constitute a crucial component of the “GPS” in the mammalian brain. Recent 

experiments revealed that grid cell activity is anchored to environmental boundaries. More 

specifically, these results revealed a slight yet consistent offset of 8 degrees relative to boundaries 

of a square environment. The causes and possible functional roles of this orientation are still 

unclear. Here we propose that this phenomenon maximizes the spatial information conveyed by 

grid cells. Computer simulations of the grid cell network reveal that the universal grid 

orientation at 8 degrees optimizes spatial coding specifically in the presence of noise. Our model 

also predicts the minimum number of grid cells in each module. In addition, analytical results 

and a dynamical reinforcement learning model reveal the mechanism underlying the noise-

induced orientation preference at 8 degrees. Together, these results suggest that the 

experimentally observed common orientation of grid cells serves to maximize spatial information 

in the presence of noise.
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Introduction

The past decade has witnessed substantial progress in our understanding of the internal positioning 

system (“GPS”) in the mammalian brain. Specifically, place cells in the CA1 region of the 

hippocampus convey unique information about spatial position [1-2], while grid cells implement a 

universal coordinate system that provides information about spatial distances [3]. In addition, a number 

of other functionally dedicated cells were found to play a role in creating the neural representation of 

space, such as border cells [4-5], head direction cells [6], and speed cells [7]. Among all the known 

types of cells that constitute the brain’s GPS, grid cells have received particular attention due to their 

abundant number, their determining role in generating an inner metric for navigation [8-10], and their 

close relationship to Alzheimer’s disease [11-12].

A large number of experiments in animals and humans have demonstrated that grid cells exhibit 

multiple hexagonally arranged firing fields that tile the entire space (Fig 1A). Because of the efficient 

geometrical organization of the firing fields, activity of a small number of grid cells is sufficient to 

provide a nearly full coverage [3, 13-14]. In addition to the hexagonal geometry of the firing patterns, 

Author summary

Spatial navigation depends on several specialized cell types including place and grid cells. Grid cells 

have multiple firing fields that are arranged in a regular hexagonal pattern. The axes of this pattern 

are anchored to environmental boundaries at a universal angle of 8°. Here, we combine computer 

simulations of the grid cell network with analytical derivations and a reinforcement learning model 

to explain the functional relevance of this universal grid cell orientation. We show that spatial 

information provided by grid cells is maximized at the experimentally observed grid orientation 

within a broad parameter range. This relationship occurs only in the presence of noise. The model 

allows for several experimentally testable predictions including the number of grid cells.
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experiments revealed two additional striking features: First, grid cells can be assigned to 4-5 discrete 

modules that are each defined by a common spatial scale and orientation but different phases [3, 15] 

(Fig 1B). Second, the spatial scale increases geometrically across modules [15], with a fixed 

geometrical ratio of around 1.4-1.7. Several computational models have been developed to explain the 

firing patterns of grid cells. Attractor network and oscillatory interference models were proposed to 

explain the hexagonal geometry [16-17], and models considering the maximization of spatial 

information were introduced to understand the geometrical ratio of spatial scales [18-20]. These studies 

demonstrated that spatial locations can be decoded from the population activity of grid cells from each 

modules, and that the hexagonal firing patterns and geometric scale ratios maximize spatial information 

content. Overall, these results offer a possible explanation for the evolutionary significance of the 

functional properties of grid cells.

Fig 1. Spatial firing fields of grid cells. (A) Typical firing fields of a single grid cell in an experiment, where the 

firing locations are marked in green dots superimposed on the trajectory (gray) of a rat (data from 

http://www.ntnu.edu/kavli/research/grid-cell-data). (B) Schematic illustration of the hexagonal firing pattern (dark 

green color), which is defined by the orientation angle  of the grid (red arrow), the module scale  (black arrow), and 𝜃 𝜆

the spatial phase . The firing field of another grid cell (light green) within the same module shares the common 𝒄1

orientation and scale, but has a different phase . (C) Simulated firing fields with  degrees and an ideal 𝒄2 𝜃 = 0

symmetric hexagonal array (black circle) in a square environment. (D) Simulated firing fields matching experimental 

results. Orientation  deviates from  degrees and there is an elliptic distortion of the firing pattern.𝜃 0

Although the hexagonal geometry and the modular structure generated by grid cells have been 

reasonably well understood, an equally fundamental issue that remains elusive is the orientation of the 

hexagons. Specifically, are the hexagonal grids anchored to an external reference frame – and if so, 

which mechanisms account for anchoring, and which purpose does it serve? Intuitively, since the 

hexagonal scale can vary from module to module and may adapt to the environment [21-22], one might 

speculate that the orientation of different modules would be different. However, recent experiments 

revealed the striking phenomenon that, in a square environment with closed boundaries, a specific 
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orientation of the hexagonal firing grids emerges [23-25], which is universal across different grid cells, 

modules and subjects. The common orientation anchored to the square borders may be associated with 

evolutionary significance and stem from natural selection. In fact, in three independent experiments, 

the measured orientation angles were found to be quite close: they are clustered at 7.4 degrees [23], 8.8 

degrees [24] and 8.2 degrees [25], respectively. This specific orientation is accompanied by a distortion 

of the hexagonal grid (e.g., comparing Fig 1C with Fig 1D), which was attributed to shearing forces 

resulting from an interaction with the domain borders [23]. Yet, an explicit explanation of the 

biological significance of the specific orientation is lacking, and the mechanism underlying the 

universal orientation at around 8 degrees is unknown [26-27]. Addressing these questions will likely 

yield important insights into how grid cells interact with border cells in order to adapt to the 

environment [28-29], and more generally will advance our understanding of the function of grid cells 

for spatial coding [30].

In this paper, we propose a spatial coding scheme based on the population activities of grid cells 

pertaining to different modules, and hypothesize that the universal and stable orientation at 8 degrees 

maximizes the amount of spatial information conveyed by grid cells. Combining an encoding model, 

theoretical analyses and a reinforcement learning model, we provide converging evidence that an 

orientation of 8 degrees maximizes the amount of spatial information conveyed by grid cells in the 

presence of noise. Additionally, our computer model allows for empirical testable predictions on the 

minimal number of grid cells required for an optimal encoding scheme. 

Results

The hexagonal firing pattern of a single grid cell, as exemplified by each of the seven dark green circles 

in Fig 1B, can be defined by the orientation, the scale, and the spatial phase of the firing field. 

Experiments with rats revealed that grid cells are organized into 4 or 5 functional modules, within 
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which the firing fields of the cells share the same scale and orientation but differ in spatial phases, as 

shown in Fig 1B. The scale increases geometrically between the discrete modules. In general, a single 

module is insufficient to provide unambiguous information about spatial locations but the population 

activities of grid cells from all modules can represent spatial locations at a high resolution [20]. 

Previous models suggested that, in a circular environment, the hexagonal array and geometric 

progression of scale is optimal with respect to efficient spatial coding [19]. In contrast, the underlying 

mechanisms and functional roles of a grid cell’s orientation has not yet been fully understood. 

Interestingly, recent experiments revealed a universal orientation of the firing fields of about 8 degrees 

with respect to the borders of a square environment [23-25]. In addition, displacement of borders 

induce changes in orientation, and these are accompanied by distortions of the hexagonal firing grid. 

Both effects can be conceived of as resulting from shearing forces from the borders [23]. In order to 

understand the role of grid orientation quantitatively, we develop a spatial encoding model without any 

adjustable parameters.

We hypothesize that the universal orientation optimize spatial encoding. In particular, we note that 

the ubiquity of grid cells in mammals [31-34] suggests certain evolutionary advantages of their 

properties. Likewise, the specific orientation with respect to borders may also be evolutionarily 

significant for optimizing the information content of spatial representation. To reveal quantitatively 

how the population activities of grid cells across different modules support behavior in the positioning 

and self-localization tasks, we study spatial encoding via population activities.

Spatial representation of the grid cells system 

The spatial representation via grid cells is modeled as follows. Assume there are 4 modules with spatial 

scales , for k =1,2,3,4, and a fixed geometrical ratio r of the scales between two adjacent modules:  𝜆(𝑘)

. Each module consists of a regular, topographically ordered 𝜆(2)/𝜆(1) = 𝜆(3)/𝜆(2) = 𝜆(4)/𝜆(3) = 𝑟 > 1
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population of M cells [20, 35]. The firing fields of M cells tile periodically in an environment. Since we 

still lack exact experimental evidence for the number of cells M, we will study the effect of varying M 

on the spatial information and the orientation of grid patterns. For an arbitrary grid cell i from a module 

k , let  be the smallest angle between one of the six symmetric axes of the hexagonal firing pattern and 𝜃

four borders. The ideal spatial firing rate  at an arbitrary location x can be conveniently   ℱ(𝐱,𝑖,𝑘,𝜃)

represented by a bell-shaped, spatially periodic function on a hexagonal lattice [20] (see Methods). The 

spatial distribution of  is illustrated in Fig 1C. This establishes a mathematical description of the ℱ

spatial firing fields of all grid cells and allows investigating how spatial locations in an environment are 

encoded based on their firing patterns. Because the firing fields of a single cell repeat across 

environments, the activity of that cell does not provide an unambiguous representation of self-location. 

However, the conjunction of cells across 4 modules can be unambiguous [20].

Based on the firing rate , the firing intensity  of cell  at a given location  can be ℱ 𝐼(𝐱,𝑖,𝑘,𝜃) 𝑖 𝐱

measured within a time interval : 𝜏

                                                       (1) 𝐼(𝐱,𝑖,𝑘,𝜃) = 𝜏ℱ(𝐱,𝑖,𝑘,𝜃).

Because of several intrinsic sources of neuronal noise, such as stochastic channel openings, thermal 

noise and noise due to synaptic background activity [36-37], the firing intensity  is not 𝐼(𝐱,𝑖,𝑘,𝜃)

deterministic but stochastic. We assume spiking to follow a Poisson distribution with expected value 𝜏

[14, 18-20] (see Methods). Because stochastic fluctuations of time courses that follow a Poisson ℱ 

distribution cancel out with increaseing durations, for a longer time interval  the signal to noise ratio 𝜏

(SNR) will be larger. We use the maximum value of firing intensity  to measure the strength of 𝜏𝑓max

the signal and the standard deviation  to quantify noise. Thus, the effect of noise can be 𝜏𝑓max

evaluated by the ratio of noise to signal, i.e., the inverse of SNR: . Since  is unchanged, 1
SNR

≡
𝜏𝑓max

𝜏𝑓max
𝑓max

the effect of noise is reduced as  increases. Below, we will use 1/SNR to characterize the effect of 𝜏

noise and its inverse correlation with . The larger the value of 1/SNR, the stronger the effect of noise.𝜏
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Spatial encoding and evaluation 

Our proposed spatial encoding scheme based on the population activities of grid cells across different 

modules includes intra-module encoding and inter-module encoding, where the former is associated 

with the assumption that grid cells in the same module compete to represent spatial locations, and the 

latter stems from the assumption that cells in different modules complement each other for spatial 

representation. Although our hypothesis lacks immediate and strong experimental supports, some 

evidence in the literature indicates this simple encoding scheme is consistent with the empirical 

properties of grid cells. Specifically, the intra-module encoding scheme implements a “winner-take-all” 

(WTA) rule: a location is represented and encoded by the cell with the highest firing intensity I at the 

location. WTA rules are typically implemented by lateral inhibition [38] consistent with the 

experimentally observed coupling of grid cells via inhibitory interneurons [39] that constitute the 

essential element of attractor models of hexagonal firing patterns of grid cells [40]. The WTA rule can 

be formulated as: 

                                          (2)𝑢𝑘
𝜃(𝑥,𝑦) = 𝑖 ∗ ≡ argmax

𝑖 ∈ (1,⋯,𝑀)
 𝐼((𝑥,𝑦),𝑖,𝑘,𝜃),

where k =1,2,3,4, correspond to 4 modules, and  is the index of the cell that dominates (encodes) 𝑖 ∗

location  in module . Fig 2A illustrates the WTA in the absence of noise. As the result of WTA, (𝑥,𝑦) 𝑘

each grid cell has a set of periodically repeated dominant sites with a hexagonal shape in a module, and 

the center of each dominant site coincides with that of the original firing fields of the grid cell (Fig 2A). 

At any given location, there are four elements  that constitute a vector  for encoding this 𝑢1
𝜃,⋯,𝑢4

𝜃 𝐮𝜃

location, as illustrated in Fig 2B. In general, it can be speculated that more cells and modules enable a 

more precise encoding of locations in terms of less duplication of vector , such that each location can 𝐮𝜃

be more explicitly distinguished from others based on the coding scheme. However, regarding the 

biological cost of creating neurons and supporting their metabolism, there must be a tradeoff between 

the number  of grid cells and the efficiency of spatial encoding.𝑀
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Fig 2. Encoding scheme of multiple modules and spatial information entropy. (A) Top: Example of a winner-

takes-all (WTA) induced dominant firing site (encoded site) with a hexagonal shape in the center, resulting from 

competition between the original firing fields among neighboring grid cells according to the WTA rule. Below: the 

centers of the dominant cites encoded by  grid cells ( ) in a spatial unit with a rhombus shape in a module. 62 𝑀 = 62

The spatial unit with the encoded sites iterates periodically in the space. (B) Dominant sites encoded by grid cells with 

different colors in modules 1 to 4. Every dominant firing site has a hexagonal shape. The encoded sites in a spatial 

unit are arranged periodically in every module. Every location is encoded by four sites (highlighted in each module) 

from four modules, respectively, e.g., the two locations marked by diamond and star. The four encoded sites of 

location  constitute a spatial vector , where each of the four elements denotes the index of the cell engaged in ⋄ 𝑢𝜃( ⋄ )

encoding the site pertaining to location  in a module. (C) The whole space is divided into  belts, where the  ⋄ 2𝑁 𝑁

blue and red belts are parallel to the two sets of borders, respectively. Every belt consists of  boxes with unit scale. 𝑁

(D) Illustration of the occurrence probability  and the spatial information entropy  of different cells in the 𝑝𝑖 ‒ 𝑝𝑖log𝑝𝑖

two belts with  and 8 degrees, respectively. The color bar represents the index of different cells.𝜃 = 0

To evaluate the capacity of this spatial encoding scheme in a closed environment, we resort to the 

concept of information entropy. Let us consider two arbitrary spatial vectors  and . If 𝐮𝜃(𝐱𝟏) 𝐮𝜃(𝐱𝟐) 𝐮𝜃(

, locations  and  will be considered the same and cannot be differentiated. In a space, 𝐱𝟏) = 𝐮𝜃(𝐱𝟐) 𝐱𝟏 𝐱𝟐

a higher number of indistinguishable locations is associated with a poorer spatial representation and a 

lower encoding capacity. Information entropy is a parsimonious metric for accessing encoding capacity 

in terms of measuring the amount of effective information. Note that spatial information encoded from 

different modules is considered to be independent, so that the different modules complement each 

other. Thus, we calculate information entropy of each module separately.

Moreover, we divide the square domain along borders into a number of belt regions of unit width, as 

shown in Fig 2C. We obtain two groups of belt regions, parallel to the two groups of borders of the 

square domain, respectively. Our hypothesis of the division is that a two-dimensional domain can be 

reduced to two orthogonal directions (one dimension each) by simply anchoring to borders. The 

encoding of two dimensions can complement each other to represent the whole space. In addition, 

border cells may help grid cells encode locations close to borders. Taken together, if a spatial encoding 
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scheme generated by grid cells is able to identify locations within each belt, all locations in the domain 

can be explicitly distinguished and an efficient spatial encoding is established.

The capacity of spatial encoding within a belt relies on the spatial distribution of sites  𝑢𝑘
𝜃(𝑥,𝑦)

encoded by grid cells. Let us consider two extreme scenarios. On the one hand, if within a belt, every 

location is represented (encoded) by the same cell, i.e., there is a single value of u, the spatial 

representation is maximally poor and any two locations cannot be distinguished. In this extreme 

scenario, the capacity of spatial encoding reaches the lower bound according to information theory. On 

the other hand, if every location is uniquely encoded by a cell (the value of  u  is completely different 

across all different locations), the capacity of encoding locations will be maximal. The encoding 

capacity in the scenarios can be effectively measured by information entropy within a belt. To be 

concrete, we denote two groups of belts by index  and , respectively, as shown in Fig 2C. Here each 𝑥 𝑦

cell is akin to a random variable and its frequency of appearance in a belt corresponds to the probability 

of a random variable, denoted by a conditional probability  of cell  from module  in a given 𝑝(𝑖|𝜃,𝑘,𝑥) 𝑖 𝑘

belt : 𝑥

  (3)𝑝(𝑖|𝜃,𝑘,𝑥) =
1
𝑁∑𝑁

𝑗 = 1𝛿[𝑖 ‒ 𝑢𝑘
𝜃(𝑥,𝑗)],

where  is the Dirac function with  if  and  otherwise,  is the index 𝛿 𝛿(𝑙1 ‒ 𝑙2) = 1 𝑙1 = 𝑙2 𝛿(𝑙1 ‒ 𝑙2) = 0 𝑗

of the unit box within belt  and  is the total number of boxes in belt . The right hand side of 𝑥 𝑁 𝑥

formula (3) denotes the probability of finding boxes encoded by cell . Analogously, the occurrence 𝑖

probability  in the other group of belts  can be defined by substituting  for .𝑝(𝑖|𝜃,𝑘,𝑦) 𝑦 𝑢𝑘
𝜃(𝑗,𝑦) 𝑢𝑘

𝜃(𝑥,𝑗)

The spatial information entropy  of a belt  is defined as: 𝐸 𝑥

(4)𝐸(𝜃,𝑘,𝑥) =‒ ∑𝑀
𝑖 = 1𝑝(𝑖|𝜃,𝑘,𝑥)log𝑝(𝑖|𝜃,𝑘,𝑥),
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where  is the cell index and  is the number of cells in each module.  of a belt  is defined in the 𝑖 𝑀 𝐸 𝑦

same way. Examples of  and  of two belts with  degrees and 8 degrees are illustrated in Fig 2D. 𝑝 𝐸 𝜃 = 0

 of module  is the summation of the average  of belts along  and  directions, respectively: 𝐸(𝜃,𝑘) 𝑘 𝐸 𝑥 𝑦

(5)𝐸(𝜃,𝑘) =
1
𝑁[∑𝑁

𝑥 = 1𝐸(𝜃,𝑘,𝑥) + ∑𝑁
𝑦 = 1𝐸(𝜃,𝑘,𝑦)],

where  is the number of belts along each direction. Finally, the information entropy  of a domain is 𝑁 𝐸

the average over 4 modules: 

(6)𝐸(𝜃) =
1
4∑4

𝑘 = 1𝐸(𝜃,𝑘),

which depends on the orientation .𝜃

We are able to explore how  is affected by orientation , taking into account different internal 𝐸(𝜃) 𝜃

and external conditions, such as the number of cells  in each module, geometric ratio , effect of 𝑀 𝑟

noise , elliptic distortion  of hexagonal grid, and size  of the square environment. Because the 1/SNR 𝜀 𝑁

hexagonal grid has a rotational symmetry, the orientation, defined as the minimal angle of the grid from 

any border of a square space, can be conveniently confined to the range [ , ] degrees [23].0 15

Numerical results of optimal orientation angle 

Our first goal is to numerically identify the optimal orientation angle  that maximizes information 𝜃opt

entropy  with respect to different internal and external conditions.𝐸

    Fig 3A shows examples of  as a function of  for two values of M, a typical geometrical ratio  𝐸 𝜃 𝑟

and size of space in the ideal situation without noise and elliptic distortion. We see that a global peak of 

 arises at degrees and a local valley at . A more comprehensive assessment of 𝐸 𝜃 = 8 𝜃 = 11 degrees

optimal  as a function of both  and M is shown in Fig 3B. We see that  is insensitive to  𝜃opt 𝑟 𝜃opt 𝑟

within the range 1.4-1.7, but strongly depend on M : only in the region ,  degrees. 𝑀 ∈ [72,132] 𝜃opt = 8

Outside of this small region,  significantly deviates from 8 degrees. Fig 3C shows the average 𝜃opt
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standard deviation  of  among belts along  and  directions at . We see that  is relatively 𝜎 𝐸 𝑥 𝑦 𝜃 = 𝜃opt 𝜎

negligible, indicating that  of belts along each direction is generally stable, regardless of . 𝐸  𝜃opt

(Results for other typical environment sizes can be seen in S1A-B and F-G Fig.) 

Fig 3. Optimal orientation associated with highest spatial information entropy.  (A) Spatial information entropy 

 of a square space as a function of orientation  for  and  in an ideal situation without noise and 𝐸 𝜃 𝑀 = 82 𝑀 = 102

elliptic distortion. Geometrical ratio . The shadow areas represent standard deviation among different belts. 𝑟 = 1.44

(B) Optimal orientation  associated with highest  as a function of both  and M in an ideal situation.  occurs 𝜃opt 𝐸 𝑟 𝜃opt

at 8 degrees in the range  and is largely insensitive to . (C) Standard deviation  of  among different 72 ≤ 𝑀 ≤ 132 𝑟 𝜎 𝐸

belts at  as a function of both  and M in the ideal situation. (D) Illustration of spatial encoding pattern  based on 𝜃opt 𝑟 𝑢

the WTA rule in a module in the presence of noise without elliptic distortion. (E)-(F)  (E) and standard deviation 𝜃opt

 among different belts (F) as a function of both  and M  in the presence of noise without elliptic distortion. (G) 𝜎(𝐸) 𝑟

Illustration of spatial encoding pattern  in the presence of both noise and elliptic distortion. (H)-(I)  (H) and  of 𝑢 𝜃opt 𝜎

 among different belts (I) as a function of both  and M in the presence of both noise and elliptic distortion. (J)-(K) 𝐸 𝑟

 as a function of both the effect of noise  and grid numbers M  in the presence of noise without elliptic 𝜃opt 1/SNR

distortion (J) and in the presence of both noise and elliptic distortion (K). In (E) and (H), when 𝜃opt = 8 degrees 𝑀

, largely independent of . In (D) to (I), the effect of noise . In (G) to (I) and (K), elliptic > 82 𝑟 1/SNR = 0.08

distortion intensity  as observed in experiments (23). The color bar of (B), (E) and (H) represents . The 𝜀 = 1.17 𝜃opt

color bar of (C), (F) and (I) represents standard deviation . In (J)-(K), the geometrical ratio  and in all the 𝜎 𝑟 = 1.5

results, the environmental size is  and  =0.8s. The duration time  corresponding to 1.5 × 1.5m2, 𝑓max = 200Hz 𝜏 𝜏

 is .1/SNR < 0.22 𝜏 > 100ms

     It is worth noting that M represents the actual number of grid cells in each module. Our simulations 

suggest that . Notably, these numbers are independent from any assumptions on the 𝑀 ∈ [72,132]

empirical values of cell numbers M; the exclusive criterion to obtain M is the maximization of 

information entropy at orientations of about 8 degrees. Interestingly, the range of  – i.e., 𝑀 ∈ [72,132]

cell numbers between about 50 and 170 per module – is substantially smaller than previous 

speculations about the numbers of grid cells, which assume about 70,000 cells in layer II of EC [42] of 

which are about 10% grid cells [41], resulting in 7,000 grid cells across 5-7 modules [14, 19]. This 
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suggests that either the number of grid cells is smaller than previously estaimated, or that some grid 

cells have other functions than the optimizaton of spatial information. 

Next, we considered the effect of noise embedded in the firing intensity on .  Fig 3D shows the 𝜃opt

spatial encoding pattern of  blurred by noise in a module. To our surprise, spatial noise 𝑢(𝑥,𝑦)

significantly enlarges the parameter region in which  degrees, as shown in Fig 3E as an 𝜃opt = 8

example. Below, we will theortically assess the mechanisms driving this effect of noise on . Fig 3F 𝜃opt

shows that  of belts are still stable, irrespective of the effect of noise and other parameters. The 𝐸

stability of  among belts facilitates our theoretical analyses by allowing us to arbitrarily choose two 𝐸

representative belts from the two directions, as explained in detail below. (Results for other two typical 

environment sizes can be seen in S1C-D and H-I Fig.)

In addition to noise, we incorporated elliptic distortion to fully capture real hexagonal grids as 

described experimentally (see Methods for the definition of the intensity of elliptic distortion ). Fig 

3G depicts the spatial encoding pattern of  in a module under the influence of both noise and  𝑢(𝑥,𝑦)

elliptic distortion. Simulation results show that the effect of distortion is negligible, because that both  𝐸

and  take very similar values as in the condition without distortion (compare Fig 3E/F to Fig 3H/I). 𝜎

(Results for other two typical values of distortion intensity  can be seen in  S2 Fig.) 𝜀

Next we study the effect of noise  on optimal orientation . Since  is insensitive to , we 1/SNR 𝜃opt 𝐸 𝑟

ignore  and take into account both noise effect  and cell numbers M. Fig 3J shows  as a 𝑟 1/SNR 𝜃opt

function of  and M. Strikingly, we find that the parameter map of  is clearly dominated by an 1/SNR 𝜃opt

orientation of 8 degrees in a large range of  from  to . Specifically, 1/SNR 1/SNR→0 1/SNR = 0.22

there exists a lower bound of M versus , i.e., when M exceeds the bound,  always occurs at 8 1/SNR 𝜃opt

degrees. The lower bound of M increases slightly from 72 to 152 as   is increased from 0 to 0.22. 1/SNR

These results demonstrate that noise indeed provides strong support for the emergence of  at 8 𝜃opt

degrees in a wide range of noise levels and the number M of grid cells. Moreover, the prediction of the 
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lower bound of M is relevant for the interpretation of experimental results, since examining M through 

experiments is still challenging at present. Fig 3K shows  as a function of both and M  with 𝜃opt  1/SNR  

elliptic distortion. The results resemble those in Fig 3J without distortion, indicating the negligible 

effect of elliptic distortion on  compared to noise. (See also S1E, J Fig and S2E, J Fig.) Taken 𝜃opt

together, simulation results demonstrate that in an ideal situation without noise and distortion,  𝜃opt

occurs at  degrees only in a relatively small region of M. In contrast, in the presence of noise and 8

elliptic distortion, an orientation of 8 degrees dominates   as long as M exceeds some lower bound 𝜃opt

– specifically, noise plays a major role in the prominence of 8 degrees, while the effect of elliptic 

distortion is negligible. As an alternative to information entropy, the capacity of this encoding scheme 

can be characterized by means of Hamming distance among the location vectors (see S1 Methods and 

S3 Fig for details). Specifically, if the Hamming distance between the vectors of two locations is larger, 

the two locations can be more explicitly discriminated. Thus, the average Hamming distance among all 

pairs of location vectors in an environment can capture the ambiguity of encoding the environment, and 

the larger Hamming distance, the lower ambiguity. There is an intrinsic correlation between 

information entropy and the Hamming distance, since both of them evalutate spatial ambiguity. In 

general, the higher information entropy, the larger the average Hamming distance among locations. 

However, the Hamming distance is not linearly proportional to information entropy. The Hamming 

distance yields the same result of optimal orientation as that based on the information entropy, 

providing additional evidence to validate our encoding scheme and the effect of noise on optimal 

orientation (see S4 Fig). 

Correlation between information entropy and the number of cells engaged in encoding

The purpose of studying the relationship between  and the number of cells  engaged in encoding a 𝐸 𝑛c

belt should eventually enable for an analytical assessesment of  . Note that  is equivalent to  𝜃opt 𝑛c
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random variables in the standard definition of information entropy. According to Shannon’s theory, the 

occurrence probability of a variable is inversely correlated with the amount of effective information 

encoded by this variable. In other words, a higher number of random variables usually results in a 

higher information entropy. This is because in general, adding more variables decreases the average 

probability of each variable, such that their encoding capacity is enhanced. Thus, we speculate that  of 𝐸

a belt is positively correlated with  of the belt. As shown in S5A Fig, indeed an approximately 𝑛c

positive linear correlation arises between  and , and the correlation is largely independent of the 𝑛c 𝐸

exact values of M. We also test how the correlation is affected by noise and elliptic distortion. The 

results shown in S5B Fig indicate that the correlation is robust against noise, reflected by an only slight 

decrease as the effect of noise  increases. The elliptic distortion has negligible effect on the 1/SNR

correlation as well (S5B Fig). The high and robust correlation between  and  allows us to substitute 𝐸 𝑛c

 for the more complicated  to obtain analytical results of . 𝑛c 𝐸  𝜃opt

Geometrical analysis of optimal orientation in a noise- and distortion-free situation 

We develop a heuristic analysis to theoretically predict for M  in the 𝜃opt = 8 degrees,  ∈ [72,132]

absence of noise and elliptic distortion. Our theoretical approach is basically a geometrical analysis 

relying on the strong correlation between  and  and the strong stability of  among different belts, 𝐸 𝑛c 𝐸

where the latter allows us to arbitrarily select two belts from  and  directions that represent an entire 𝑥 𝑦

two-dimensional square. For simplicity, we use two orthogonal and sufficiently long lines without 

widths to stand for the two belts, as shown in Fig 4A. Each line will traverse a number of hexagonal 

sites  encoded by grid cells. Note that the number of cells  engaged in encoding along a line can be 𝑢 𝑛c

estimated by the mean repeating distance between two nearest locations encoded by a given cell. 

Specifically, every location within the repeating distance along a line will be encoded by a number of 

different grid cells. Thus, a longer repeating distance requires a larger number of grid cells  to encode 𝑛c
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every location within the repeating distance. However, the spatial distribution of  along a line for a 𝑢

given  is rather complex, such that it is difficult to analytically assess the mean repeating distance. 𝜃

Therefore, we reduce the mean repeating distance to the minimum repeating distance among all 

encoded sites along a line to approximate . Our analytical results validate this approximation. Let us 𝑛c

denote the minimum repeating distance of all hexagonal sites  along the two lines by   and  𝑢 𝑇(𝜃) 𝑇(𝜃)

for an arbitrary . This yields the relation 𝜃

                                                                         (7)𝐸~𝑛c~𝑇(𝜃) + 𝑇(𝜃).

We numerically found high correlations between E and , and between  and  𝑇(𝜃) + 𝑇(𝜃) 𝑛c 𝑇(𝜃) + 𝑇(𝜃)

, as shown in S6 Fig. We find that within the range , the correlation is relatively high, 𝑀 ∈ [72, 132]

which allows us to use  to estimate  and E. Due to the complex geometrical features of 𝑇(𝜃) + 𝑇(𝜃) 𝑛c

hexagonal grids with different orientations, it is very difficult to completely explain the exact shape of 

the correlation curve. Here, our conclusions only rely on the overall high correlation value as a starting 

point of our theoretical analyses. Because of the high correlation, when the maximum entropy  is 𝐸

reached, the values of  should be maximized as well at a specific value of , i.e., . 𝑇(𝜃) + 𝑇(𝜃) 𝜃  𝜃opt

Hence, we rotate the “ "-shape in Fig 4A to find the maximum value of  occuring at the +  𝑇(𝜃) + 𝑇(𝜃)

optimal orientation . (Fig 4A shows an example M = 52 for illustration).𝜃opt

Fig 4. Theoretical analysis of the optimal orientation in an ideal situation. (A) Schematic illustration of the 

minimum repeating distance  and  of two adjacent sites encoded by the same cell along the two orthogonal lines at 𝑇 𝑇

orientation . (B) Numerical results of ,  and  as a function of the orientation  for  showing a 𝜃 𝑇 𝑇 𝑇 + 𝑇 𝜃 𝑀 = 102

number of abrupt transition points and plateaus. The plateaus associated with  and  are denoted by  and , 𝑇 𝑇 𝑙 𝑙

respectively, where  and , with the respective transition points as  and . The maximum 𝑙 = 1,⋯,5 𝑙 = 1,⋯,8 𝐽𝑙,𝑙 + 1 𝐽𝑙,𝑙 + 1

value of  occurs at .  (C) Definitions of the unit length in the spatial encoding pattern for calculating plateau  𝑇 + 𝑇 𝐽4,5

values of . Two fundamental directions  and  are defined based on the periodic property of the spatial 𝑇 + 𝑇 ⊥ ∥

encoding pattern. The unit length along the fundamental directions is half of the distance between two adjacent sites 

encoded by the same cell. They are  and  for  and  direction, respectively.  and  denote the 3𝜆/2 𝜆/2 ⊥ ∥ 𝛼𝑙 ∥

absolute number of unit length of the minimum length  in plateau  along  and , respectively.  and  denote 𝑇 𝑙 ⊥ 𝛽 𝛼𝑙 𝛽𝑙
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the absolute number of unit length of the minimum length of  in plateau  along  and , respectively. (D) 𝑇 𝑙 ⊥ ∥

Geometrical configurations of  and , where the tangent line between two sites is associated with transition points 𝑇1 𝑇4

 and . If the orientation  is larger than the angle of the tangent line,  and  will suddenly change to  and 𝐽1,2 𝐽4,5 𝜃 𝑇1 𝑇4 𝑇2

, respectively. The critical orientation  associated with the transition points can be obtained through  and , 𝑇5 𝜃 𝑇 ⊥
1 𝑇 ∥

1

and  and , respectively. (E)  as a function of M obtained by simulations and theoretical analysis 𝑇 ⊥
4 𝑇 ∥

4  max(𝑇 + 𝑇)

from Eq. (12). (F) Optimal orientation  as a function of M obtained by simulations and theoretical analysis from 𝜃opt

Eq. (8). Numerical results are obtained by identifying the orientation associated with the highest entropy  defined in 𝐸

Eq. (6). The geometrical ratio  is  and the environment size is .𝑟 1.5 1.5 × 1.5m2

Fig 4B shows (as an example for M = 102) the numerically calculated dependence of  and  on , 𝑇 𝑇 𝜃

which exhibit a stepwise behavior with distinct plateaus and abrupt transitions between adjacent 

plateaus. For convenience, we define  and , and use  to denote the 𝑇𝑙 ≡ 𝑇(𝜃) 𝑇𝑙 ≡ 𝑇(𝜃) 𝑙,𝑙 = 1,2,⋯

plateaus in  and , respectively, with the corresponding transition points denoted by  and , 𝑇 𝑇 𝐽𝑙,𝑙 + 1 𝐽𝑙,𝑙 + 1

as shown in Fig 4B. (The results of  and  versus  for M = 82 are shown in S7A Fig as an example). 𝑇 𝑇 𝜃

It can be seen that the optimal value  occurs at  for  and at  for  max[𝑇(𝜃) + 𝑇(𝜃)] 𝐽1,2 𝑀 = 72,82 𝐽4,5 𝑀 =

 to  (S7B Fig). The transition points occur at about 8 degrees. This finding provides a base for a 92 122

geometrical prediction of the value of  associated with different plateaus and the  max[𝑇(𝜃) + 𝑇(𝜃)]

critical transition points among the plateaus.

Fig 4C shows the geometrical relation between  and  associated with plateaus and the 𝑇(𝜃) 𝑇(𝜃)

periodic scale along the two fundamental directions (  and ) of the encoded grid. Both  and  ⊥ ∥  𝑇(𝜃) 𝑇

 can be captured by the number  ( ) and  ( ) of the unit length (half of the two nearest sites (𝜃) 𝛼𝑙 𝛼𝑙 𝛽𝑙 𝛽𝑙

encoded by the same cell) along the fundamental directions for plateau  ( ). Note that the unit lengths 𝑙 𝑙

along the fundamental directions are available, because they are only determined by  in module . 𝜆 𝑘

Thus, analytical results can be obtained based on the specific geometrical feature of the plateau 

associated with .max[𝑇(𝜃) + 𝑇(𝜃)]
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Fig 4D show typical geometrical features at two transition points. We see that an abrupt transition 

occurs in the scenario when a line becomes the tangent of two nearest hexagonal sites  encoded by the 𝑢

same cell. As the line (“ "-shape) continues to rotate in the counter-clockwise direction,  suddenly + 𝑇𝑙

changes to , indicating a discontinuous transition. The values of   and  can be analytically 𝑇𝑙 + 1 𝑇𝑙 𝐽𝑙,𝑙 + 1

calculated in terms of the geometrical features of the tangent line, as shown in Fig 4E. For deriving 

, the position of tangent points can be neglected for simplicity and the distance max[𝑇(𝜃) + 𝑇(𝜃)]

between the centers of two neighbouring encoded sites is able to ensure prediction accuracy (see Eq. 

(12) and Methods). Fig 4E shows a good agreement between the analytical and simulation results of 

. For the critical transition point associated with , the tangent points should be max[𝑇(𝜃) + 𝑇(𝜃)]  𝜃opt

considered to enhance accuracy, as shown in Fig 4D. Finally,   in the region M  can be  𝜃opt  ∈ [72,132]

formulated in terms of the angle of the tangent: 

                                   (8) 𝜃opt = { arctan(
2
3𝑀), 𝑀 = 72,82;

arctan(
1
2 +

1
𝑀

5 3
2 ‒

1
3𝑀

), 𝑀 = 92,102,⋯,132.

The analytical predictions of  in the absence of noise agree with simulation results in the region of 𝜃opt

M , as shown in Fig 4F (see Methods for detailed calculations). ∈ [72,122]

It is noteworthy that the analytical results of  in Eq. (8) are exclusively determined by M,  𝜃opt

regardless of the geometrical ratio  of modules, which is consistent with the simulation results in Fig 𝑟

3B, further validating our analysis. However, in the presence of noise, the theoretical analysis based on 

 is not valid anymore, because of the significant driving effect of noise on degrees. Thus, 𝑇(𝜃)  𝜃opt = 8 

we have to provide a new geometrical approach to dealing with noise.

Geometrical analysis of optimal orientation in the presence of noise 
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We introduce a heuristic geometrical counterpart of noise to convert the effect of noise into a 

geometrical variable. In contrast to Fig 4A with an infinite space, here we consider a two-dimensional 

closed domain that can be mapped into a torus, as shown in Fig 5A [8, 35] (the torus can be obtained 

by connecting the upper and lower boundaries, and connecting the left and right boundaries of a square 

or retangular domain). The two orthogonal lines in Fig 4A at orientation   become two trajectories on 𝜃

the surface of the torus, as illustrated in Fig 5A for three examples of . When degrees, two  𝜃 = 0 

periodic orbits appear on the torus, whereas when  or 15 degrees, the trajectories become more 𝜃 = 8

intricate and are not closed. The behaviors can be depicted more explicitly in mapping onto the 

periodic spatial unit, i.e. the rhombus in Fig 5A (see also Fig 2A). In this depiction, the two trajectories 

convert to two sets of lines starting from the left-bottom corner and folding onto the boundaries of the 

rhombus. Here ‘folding’ refers to terminating at a point at one boundary and recurring at the same point 

at the opposite boundary. For  degrees, one line folds onto the top right corner and the other line 𝜃 = 0

fold onto the bottom right corner, and both return to the starting point, leading to periodic orbits. In 

contrast, at  or 15 degrees, the folding process results in two groups of parallel lines. The key to 𝜃 = 8

our theory lies in quantifying the effect of noise on the basis of the folding lines in the rhombus. Fig 5B 

exhibits the geometrical counterpart of the noise effect exerted on a narrow belt (line). It explicitly 

demonstrates that the effect of noise is akin to expand the width of the belt, such that more cells are 

engaged in encoding and nc  increases. Statistically, a stronger effect of noise is associated with a wider 

belt, and we use the noise-induced belt width  around a line to estimate the effect of noise.

Fig 5. Theoretical analysis of the optimal orientation in the presence of noise. (A) Three toruses of a closed space 

and three spatial units (rhombus) on the torus for , 8 and , respectively. The two trajectories (red and 𝜃 = 0 15 degrees

blue) on a torus and the two groups of folding lines (red and blue) in a rhombus correspond to the two orthogonal 

lines with finite length in a 2-dimensional space (see Fig. 4A). In a rhombus, each line starts from the bottom left 

corner and the ending points are highlighted. (B) Illustration of noise effect. Left panel: arbitrary belt and its widened 

image on the right hand side in the presence of noise (both are highlighted by a black frame). Middle panel: a belt and 

its widened image (highlighted by a black frame) with the same parameter as that in the left panel but in the presence 
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of noise. Right panel: a wider belt without noise is associated with similar nc to that of a narrower belt with noise in 

the middle panel. Thus, the effect of noise is similar to the effect of widening a belt in the ideal situation without 

noise. (C) Noise-induced folding belts rooted in a set of folding lines at . The width of belts is denoted by . The 𝜃 Δ

total length of the folding belts is .  is approximately determined by the area covered by the belts. (D) Illustration 𝑁 𝑛c

of a transformed rhombus and definitions of variables. Three groups of parallel light beams starting from the bottom 

left corner are displayed. The starting point of the first light beam of each group is highlighted. (E) Theoretical 

predictions of  as a function of  from Eq. (24).  peaks at , indicating  ‒ σ 𝜃 ‒ σ 𝜃 = 8 degrees 𝜃opt = 8 degrees

associated with the highest  and . (F) Simulation results of  as a function of  for different effect of noise 𝐸 𝑛c 𝑛c 𝜃 1/SNR

. In (F),  and the environment size is .𝑀 = 202 1.5 × 1.5m2

As shown in Fig 5C, because of the effect of noise, a set of parallel lines is transformed into a set of 

belts with overlapping regions. As a result,  is approximately determined by the area covered by the 𝑛c

belts, and the larger the area, the higher the value of . Simulation results of the covered area as a 𝑛c

function of  show that in a wide range of , the largest area arises at  degrees, substantiating our Δ Δ 𝜃 = 8

heuristic hypothesis of the geometrical counterpart of the effect of noise (see S8 Fig). Actually, the 

parameter  is not necessary to assess the effect of noise. The key to eliminating  lies in the fact that Δ Δ

the area covered by the parallel belts is inversely correlated with the size of the overlapping areas. 

Moreover, the total overlapping area can be captured by the variance of the interval between the central 

lines of two nearest belts. Intuitively, a smaller variance associated with more similar intervals leads to 

smaller overlapping areas and a larger coverage. Thus, we analyze the standard deviation  of the 𝜎

intervals for different  to estimate . As shown in Fig 5D, we implement a geometrical 𝜃 𝑛c

transformation on the rhombus unit, such that all folding lines are parallel to the boundaries of the new 

rhombus to facilitate our analysis. This allows us to formulate the starting point of each line during the 

folding process by virtue of a set of inequalities (see Methods for details). The starting points are the 

key to deriving the theoretical result of  , as shown in Fig 5E. Fig 5F shows simulation results of  𝜎 𝑛𝑐

versus  for different influences of noise, which are in good agreement with analytical predictions in 𝜃

Fig 5E, especially for the global maxima at  degrees, the local maxima at  degrees, and   𝜃 = 8  𝜃 = 15

the local minima at  degrees and 7 degrees. The analytical and simulation results provide strong  𝜃 = 11
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evidence that an optimal orientation at 8 degrees is associated with maximum information entropy in 

the presence of noise.

Reinforcement learning model for the evolution of orientation 

The results described so far demonstrate the benefit of an orientation at 8 degrees for maximizing 

spatial information content in the presence of noise both numerically and analytically. However, how 

hexagonal grids gradually evolve towards this optimal orientation remains an outstanding question. We 

address this issue by a reinforcement learning model that is trained using experimentally recorded 

trajectories of rats (data:http://www.ntnu.edu/kavli/research/grid-cell-data). Broadly, reinforcement 

learning is a type of machine learning, which uses experience gained through interacting with the 

environment to evaluate feedback and improve decision making. We hypothesize that rats implement a 

spatial encoding scheme during exploration of a new environment and optimize their spatial 

representation for a higher chance of survival. More specifically, we assume that a rat is able to 

evaluate its orientation  based on past experience and modify  to maximize spatial information 𝜃 𝜃

content.

The essential ingredients of our reinforcement learning model are an adopted strategy set, in which 

the evolutionary fitness of each strategy is evaluated based on experience. To be concrete, we assume 

that the strategy set consists of all possible orientation angles , , ,  in the range [ , ] degrees 𝜃1 𝜃2 ⋯ 𝜃𝑛 0 15

with a small interval between two adjacent strategies. As shown in Fig 6A, we assign the same initial 

fitness  to all strategies. We assume that a rat explores the environment using the same strategy 𝐹(𝜃𝑖,0)

in a round for a certain amount of time. In an arbitrary round, say , the animal chooses a current 𝑡

strategy  from the strategy set according to the selection probability determined by the fitness Θ(𝑡) = 𝜃𝑖

of strategy  at time  (see Eq. (26) in Methods for the definition of selection probability). After 𝜃𝑖 𝑡 ‒ 1 Θ(

 in round  is decided, the rat’s grid cells create hexagonal grids, encode spatial locations and 𝑡) = 𝜃𝑖 𝑡

evaluate spatial representation with respect to its moving trajectory in round . In particular, it is 𝑡
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reasonable to assume that only locations pertaining to trajectories are encoded and used to calculate 

information entropy  in the current round  (see Eq. (28) in Methods for the definition of ). 𝐸(𝑡) 𝑡 𝐸(𝑡)

Subsequently, the fitness  of strategy  used in round  is updated according to Eq. (27), in 𝐹(𝜃𝑖,𝑡) 𝜃𝑖 𝑡

which  associated with  in all rounds prior to  are used. In the next round , the rat repeats 𝐸(𝜃𝑖,𝑡) 𝜃𝑖 𝑡 𝑡 + 1

this process. After a number of rounds, we obtain a distribution of the frequency of strategies (see 

Methods for more details).

Fig 6. Reinforcement learning model for the evolution towards the optimal orientation. (A) Schematic 

illustration of the reinforcement learning model, where the current strategy  used by rats is determined by Eq. (26) Θ

and the strategy fitness F is updated according to Eq. (27). The trajectories of rats in experiments are used to compute 

spatial entropy over all passing locations in all belts in both directions. (B-D) Frequency of using strategy  in the 𝜃

ideal situation without noise and elliptic distortion (B), in a situation with noise but without distortion (C) and in a 

realistic situation with both noise and elliptic distortion (D). The parameters in the reinforcement learning models are 

, , ,  and , environment size  and . The frequency 𝑟 = 1.44 𝑀 = 102 𝑡 = 500 𝑤(𝑡) = 𝑒𝜅𝑡 𝜅 = 0.15 1.5 × 1.5m2 𝜀 = 1.17

distributions are obtained by  independent realizations. In (C) and (D), the effect of noise . In all 1000 1/SNR = 0.08

simulation, .𝑓max = 200Hz

Fig 6B-D show, respectively, three sets of representative results from the reinforcement learning 

model: in the ideal situation, in the presence of noise only and in the presence of both noise and elliptic 

distortion. A common phenomenon is that there are two peaks in the frequency distributions at  𝜃 = 8

degrees and about 15 degrees, respectively, where the former is the global maxima and the latter is a 

local maxima. The global maxima at  degrees is consistent with recent experimental 𝜃 = 8 

observations. Meanwhile, the local maxima at  degrees is also supported by some previous 𝜃 = 15

experimental evidence [15]. We speculate that the experimental observation of  degrees may be 𝜃 = 15

attributed to a relatively small amount of recorded grid cells in the experiments, leading to a bias 

towards the local maxima at  degrees. The distribution obtained by our reinforcement learning 𝜃 = 15

model provides a possible explanation for the different experimental results in the literature.
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Due to finite evolutionary time assumed in our reinforcement learning model, the strategy pool still 

consists of a rich variety of strategies in spite of the advantage of  degrees. In principle, a  𝜃 = 8

strategy with evolutionary advantages possesses higher fitness, and the “strong gets stronger” effect 

during the process reinforces the strategy. If the evolutionary time is sufficiently long, the optimal 

strategy  degrees will prevail eventually and dominate the strategy set, and all the other strategies  𝜃 = 8

will be eliminated. To be consistent with experiments, our results pertain to temporal stages (see 

Methods for more details) rather than the thermodynamic limit. As a result, a distribution of strategies 

with both the global and a local maxima are obtained.

Discussion

Converging experimental evidence has revealed that the main axes of grid cells are anchored to 

environmental borders at an offset of about 8 degrees. Here, we aimed at understanding the possible 

functional roles (i.e., the evolutionary advantage) and the physiological mechanisms underlying this 

phenomenon. 

By combining a computer simulation of the spatial coding properties of the grid cell network with 

analytical considerations and a reinforcement learning model, we found evidence that a grid axis offset 

of 8 degrees maximizes the spatial information content specifically in thre presence of noise. 

We first implemented a computer simulation of the grid cell network and analyzed the influence of 

grid orientation on the grid cell network’s spatial coding properties, depending on various factors such 

as grid cell numbers, the effect of noise, the spatial ratio of module scales, and elliptic distortions. 

Unexpectedly, we found that a grid orientation of 8 degrees maximizes spatial information content 

across a wide range of conditions specifically in the presence of noise. In a noise-free situation, an 

orientation at 8 degrees is only optimal within a narrow and putatively unrealistic range of the numbers 

of grid cells, beause the maximum number in that range is smaller than the putative number of grid 
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cells based on experiments [15]. By contrast, in the presence of noise, an orientation of 8 degrees 

maximizes spatial information as long as the number of grid cells exceeds some lower bound. This 

lower bound is small, insensitive to noise, and largely independent of other internal and external 

conditions. These results demonstrate that noise plays a significant role in driving optimal orientation 

towards 8 degrees and mammals optimize spatial coding in the presence of noise. Although noise has 

been known as a driving force of many biological phenomena [43], e.g. genetic mutation, the effect of 

noise on shaping the hexagonal firing pattern of grid cells has not be revealed before.

To unveil the mechanisms underlying the noise-induced universal orientation, we provide two 

theoretical analyses for the ideal and noisy situations. A property of information entropy is exploited to 

enable analytical predictions of the optimal orientation, i.e., the strong correlation between information 

entropy and the number of grid cells. For the ideal situation, the number of encoded grid cells along a 

line is estimated by the minimum repeating distance between two nearest sites encoded by the same 

cell. For the realistic situation with noise and elliptic distortion, the effect of noise is akin to 

transforming a line to a belt with a certain width. The analytical predictions are in good agreement with 

simulation results across a wide range of grid cell numbers and noise effects.

Finally, we modeled the temporal evolution of grid cell orientations towards the optimal angle via a 

reinforcement learning model based on experimentally observed behavioral trajectories of rats. During 

the time-course of reinforcement learning, the model evaluates the fitness (i.e., information entropy 

along trajectories) depending on various strategies that are defined by sets of orientation angles. If an 

orientation angle leads to a higher information entropy prior to a moment, the angle will be adopted 

with a higher probability at that moment. As the process continues, all possible strategies (angles) will 

be employed, but the strategies with higher fitness will be used more frequently. Our results 

demonstrate that for both ideal and realistic situations, the likelihood of strategies exhibits a global 

maximum at 8 degrees and a second maximum at about 15 degrees, in line with experimental evidence 

[15, 23-24].
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The main hypothesis of our coding scheme – i.e., that the orientation of grid patterns maximizes 

spatial information – has been partially validated by a very recent experiment in humans [44]. In the 

experiment, two axes with different amounts of information are arranged in a circular environment. It is 

found that grid cell systems reduce the uncertainty of representation by aligning grid patterns to the 

axis of greatest information. The concept of uncertainty reduction is analogous to the maximization of 

spatial information in our coding scheme, despite the very different experimental settings. The 

orientation aligned to the axis of greatest information, suggesting a similar effect as for the optimal 

orientation at 8 degrees in a square environment. Taken together, these recent experimental results 

substantiate the idea that grid orientation serves to maximize spatial information. 

It is worth noting that our encoding model can not only explain the functional benefit of the 

empirically observed grid orientation but also generates experimentally testable predictions on the 

lower bound of cell numbers  in each module. According to the results in Fig 3K, this lower bound is 𝑀

determined by the effect of noise measured by the inverse of the signal to noise ratio 1/SNR. The effect 

of noise that depends on the duration time  can be estimated from hexagonal patterns in any one 𝜏

module documented in experiments (see S2 Methods). As shown in S9 Fig,  estimated in experiments 𝜏

is about 0.19s and the effect of noise can be assessed to be 0.16. According to Fig 3K, the minimum 

cell numbers  for inducing an optimal orientation at 8 degrees can be predicted to be 162 in each 𝑀

module. It is noteworthy that the actual number of grid cells may be larger than this prediction. In fact, 

the result predicts that under a certain amount of noise, the number of grid cells should be larger than a 

critical value to ensure an optimal encoding at an orientation of 8 degrees. If the amount of noise is 

increased by reducing , in order to achieve an valid coding, more grid cells are needed. This is 𝜏

explicitly reflected by the increasing trend in Fig 3K as  increases. Since the exact number of grid 𝜏

cells currently cannot be empirically determined, the model’s predictions have implications in 

constraining future modeling approaches. 
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Besides square environments, our coding model can be easily applied to other environments with 

regular shapes. For example, in a rectangular environment, we vary the ratio of the longer edge to the 

lower edge, and compute optimal orientation angles under different ratios. Due to the destruction of 

symmetry in a rectangle compared to a square, the range of  becomes  degrees. Our results 𝜃 [0, 30]

show that spatial information is maximized at either  degrees or degrees, depending on 𝜃 = 8 𝜃 = 22 

both the effect of noise  and the cell numbers  of grid cells in each module (see S10A-B Fig). 1/SNR 𝑀

The range of the lower bound of the cell numbers M is quite similar to that in square environments. 

Note that 8 degrees and 22 degrees are symmetric values around the center of 15 degrees within the 

range  degrees. When the edge ratio equals one (the rectangle becomes a square), 8 degrees and [0, 30]

22 degrees are completely equivalent because of the recovery of the broken geometrical symmetry. 

Therefore, there is an essential relationship between the orientation in a square and in a rectangular 

environment according to our prediction, resulting from the geometrical similarity between the two 

shapes. The analytical results based on the folding in a rhombus are applicable for rectangular 

environments as well, and the analytical results are in good agreement with simulation results based on 

information entropy (see S10C Fig).  The numerical and theoretical predictions in rectangular 

environments could be validated by future experiments. 

It has been argued that grid cells play a crucial role for path integration, a navigation strategy that is 

based on an idiothetic reference frame [8-10, 45-46]. As a consequence, an orientation of grid patterns 

that maximizes spatial information may benefit path integration. Specifically, during path integration, 

several types of information are integrated, such as spatial locations, speed, and directions. In addition 

to the putative role of place cells, speed cells and head directional cells for path integration, grid cells 

can provide necessary information as well. On the one hand, grid cells in MEC may input low-

dimensional information into different high-dimensional cells, e.g., place, speed and head directional 

cells, to implement path integration. On the other hand, during path integration, errors from noise will 

be aggregated in the absence of salient landmarks or boundaries, and place fields will drift [29]. The 
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grid cell systems may help reduce the errors because the low-dimensional cognitive map created by 

grid cells is relatively stable across different contexts and environments. Note that to precisely encode 

either distance [35] or speed during path integration, an accurate self-localization is imperative. The 

orientation of hexagonal grid patterns maximizes spatial information and discriminates different 

locations in an optimal manner, so that the tracking of distance and speed is favored by this orientation 

as well may improve path integration. 

Many open issues remain for a more general understanding of the dynamics and functions of grid 

cells during spatial navigation. For example, how does the activity of place cells in the hippocampus 

relate to the orientation of grid cells [47-50]? How do grid cells modulate the coding scheme for two 

separate spaces when the two spaces are being merged into a single space [51-52]? Our modeling 

approach consisting of a spatial encoding scheme, a method to characterize encoding capacity, 

geometrical analyses for both ideal and realistic situations, and a reinforcement learning model offers 

tools for addressing these issues to unravel the mysteries of the navigation ability of the mammalian 

brain. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507061doi: bioRxiv preprint 

https://doi.org/10.1101/507061
http://creativecommons.org/licenses/by/4.0/


                                                                                                                                 Page 27 of 41

Methods

Spatial firing rate of grid cells 

The idealized firing rate  of cell  in module  with orientation  at an arbitrary location ( ) is ℱ(𝐱,𝑖,𝑘,𝜃) 𝑖 𝑘 𝜃 𝐱

                        (9)ℱ(𝐱,𝑖,𝑘,𝜃) = 𝑓max ⋅ exp[
ℋ
3 ∑3

𝑙 = 1{cos(𝜔𝑘Ω𝑙 ⋅ (𝐱 ‒ 𝒄𝒊)) ‒ 1}],

 where  denotes the location,  with  for 𝐱 = (𝑥,𝑦) ∈ ℝ2 Ω𝑙 = (cos(𝜑𝑙),sin(𝜑𝑙)) 𝜑𝑙 =‒ 𝜋/6 + 𝑙𝜋/3 + 𝜃 𝑙

, ,  measures the cell’s relative tuning width,  is the = 1,2,3 𝜔𝑘 = 2𝜋/[𝜆(𝑘)sin(𝜋/3)] 1/ℋ 𝑓max

maximum expected firing rate,  is the spatial phase of cell  (any one of the centers of the firing fields 𝒄𝑖 𝑖

- see Fig 1). Because of the property of modularity, we assign the same tuning function to each grid cell 

within a module so that they have the same  and  values (e.g.,  and ), but the 𝑓max ℋ 𝑓max = 200 ℋ = 2

values of the spatial phase parameter  are equidistantly arranged, as shown in Fig 2A.𝒄

Spatial noise in firing intensity 

With respect to measurement noise and intrinsic noise in firing rate, the actual firing intensity  𝐼(𝐱,𝑖,𝑘,𝜃)

would scatter around the ideal (expected) value .  at location  is 𝐼(𝐱,𝑖,𝑘,𝜃) = 𝜏ℱ(𝐱,𝑖,𝑘,𝜃) 𝐼(𝐱,𝑖,𝑘,𝜃) 𝑥

assumed to follow a Poisson distribution with expected value  as used in (14, 18–20) : 𝐼(𝐱,𝑖,𝑘,𝜃)

(10)𝒫[𝐼(𝐱,𝑖,𝑘,𝜃)] =
𝐼(𝐱,𝑖,𝑘,𝜃)𝐼(𝐱,𝑖,𝑘,𝜃)

𝐼(𝐱,𝑖,𝑘,𝜃)! 𝑒 ‒ 𝐼(𝐱,𝑖,𝑘,𝜃).

Elliptic distortion 

Suppose that the firing field centers of a grid cell lie on an ellipse with a semi-major axis  and semi-𝑎1

minor axis  with  (see the yellow axis  and black axis  in the ellipse in Fig 3K). To model 𝑎2 𝑎1 > 𝑎2 𝑎1 𝑎2

ellipticity, the wave vectors in Eq. (9) are rescaled to , where  denotes the Ω𝑙 = (cos(𝜑𝑙)/𝜀,sin(𝜑𝑙)) 𝜀

elliptic intensity and is defined as the ratio of the major axis of the ellipse to the minor axis: .𝜀 = 𝑎1/𝑎2
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Geometrical analysis in the ideal situation 

The value of  can be estimated by the length of the tangent at  associated with a max(𝑇𝑙 + 𝑇𝑙) 𝜃o𝑝𝑡

specific plateau (see Fig 4E). Note that the geometry of tangent points has negligible effect on max(𝑇𝑙

 because of the plateaus. We thus only calculate the interval between the centers of two nearest + 𝑇𝑙)

hexagonal sites encoded by the same cell pertaining to the tangent (Fig 4E). In general,  and  of 𝑇𝑙 𝑇𝑙

plateau  and  can be captured by virtue of the two fundamental directions (  and ) of the grid (see 𝑙 𝑙 ⊥ ∥

Fig 4D): 

             (11){𝑇 ⊥
𝑙 =

3
2 𝛼𝑙𝜆,

𝑇 ∥
𝑙 =

1
2𝛽𝑙𝜆,

   and   {𝑇 ⊥
𝑙 =

3
2 𝛼𝑙𝜆,

𝑇 ∥
𝑙 =

1
2𝛽𝑙𝜆,

where , , , and  are the numbers of the unit length (half distance between two nearest sites 𝛼𝑙 𝛽𝑙 𝛼𝑙 𝛽𝑙

encoded by the same cell) along the two fundamental directions for plateaus  and , respectively (see 𝑙 𝑙

Fig 4D). Corresponding to the maximum value of , the value of  can be estimated as 𝐸 max(𝑇𝑙 + 𝑇𝑙)

max (𝑇𝑙 + 𝑇𝑙) = (𝑇 ⊥
𝑙 )2 + (𝑇 ∥

𝑙 )2 + (𝑇 ⊥
𝑙 )2 + (𝑇 ∥

𝑙 )2

                                           (12)=
𝜆
2( 3𝛼2

𝑙 + 𝛽2
𝑙 + 3𝛼2

𝑙 + 𝛽2
𝑙),

where  are  for ,  for ,  for  to , (𝛼𝑙,𝛽𝑙,𝛼𝑙,𝛽𝑙) (1,9,3,1) 𝑀 = 72 (1,11,3,1) 𝑀 = 82 (1,11,8,2) 𝑀 = 92 112

 for , and  for . The analytical results are in good agreement (1,13,8,2) 𝑀 = 122 (1,17,12,2) 𝑀 = 132

with simulation results, as shown in Fig 4F.

To obtain the value of  determined by the tangent angle, the geometrical features of the tangent 𝜃opt

points can increase the prediction accuracy (see Fig 4E). We formulate all the transition points. There 

are two kinds of transitions: from a lower plateau to an upper one and vice versa. For the former class, 

i.e.,  (or ), the geometrical relation in Fig 4E gives 𝑇𝑙 < 𝑇𝑙 + 1 𝑇𝑙 < 𝑇𝑙 + 1
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        (13){T ⊥
l =

3
2 αlλ +

2λ
3𝑀,

T ∥
l =

1
2βlλ,

   and   {T ⊥
l =

3
2 αlλ ‒

λ
3𝑀,

T ∥
l =

1
2βlλ +

λ
𝑀.

For the second type, i.e.,  (or ), the tangent behavior is different from that in Fig 𝑇𝑙 > 𝑇𝑙 + 1 𝑇𝑙 > 𝑇𝑙 + 1

4E, where the tangent point is at the top of the left field and at the bottom of the right field. In this case, 

we have 

     (14){𝑇 ⊥
𝑙 =

3
2 𝛼𝑙𝜆 ‒

2𝜆
3𝑀,

𝑇 ∥
𝑙 =

1
2𝛽𝑙𝜆,

   and   {𝑇 ⊥
𝑙 =

3
2 𝛼𝑙𝜆 +

𝜆
3𝑀,

𝑇 ∥
𝑙 =

1
2𝛽𝑙𝜆 ‒

𝜆
𝑀.

The quantities  and  can be obtained as  and , respectively.𝜃𝑙,𝑙 + 1 𝜃𝑙,𝑙 + 1 arctan(𝑇 ⊥
𝑙 /𝑇 ∥

𝑙 ) arctan(𝑇 ∥
𝑙 /𝑇 ⊥

𝑙 )

The value of  can be obtained from the tangent of two nearest sites encoded by the same cell. In 𝜃opt

particular, for , the value of  is determined by . Using the values of  and  for 𝑀 = 72,82 𝜃opt 𝐽1,2 𝛼1 𝛽1 𝑙

 ( ), we have . For  to , the value of  is determined by . = 1 𝛼1 = 0,𝛽1 = 2 𝜃opt = 𝜃1,2 𝑀 = 92 132 𝜃opt 𝐽4,5

Using the values of  and  for  ( ), we have . Finally, we obtain Eq. (8) 𝛼4 𝛽4 𝑙 = 4 𝛼4 = 5,𝛽4 = 1 𝜃opt = 𝜃4,5

for  in the region .𝜃opt 𝑀 ∈ [72,132]

Geometrical analysis in the presence of noise 

We present the process of theoretically deriving the starting points of folding lines on the left boundary 

of the transformed rhombus in Fig 5D.

We define the bottom left corner to be the zero point, and suppose that there is a beam of light 

emitted from the zero point along direction  in the rhombus unit, as shown in Fig 5C. If the light 𝜃

reaches the right (top) boundary, it will return to the same point in the left (bottom) boundary because 

of the closed boundary condition. The representation is able to capture the scenario that a line goes 

through a number of rhombus units on the surface of the encoded torus in Fig 5A. The other trajectory 
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on the surface of the torus (orthogonal line in Fig 4A) is a beam of light along  degrees in the 30 ‒ 𝜃

rhombus unit. Below we focus on the analysis associated with .𝜃

To simplify our analysis, we transform the rhombus in Fig 5C to that in Fig 5D by cutting the bottom 

region (grey region below the light beam starting from the zero point) and moving it to the top. In the 

new rhombus, all light beams are parallel to the top and bottom boundaries. The first beam emitted 

from the zero point (starting point ) overlaps with the bottom boundary. After it reaches the right-𝑠(1)
0

bottom corner point, it will return to a new starting point on the left boundary with a fixed distance  𝑊

from the zero point. This process is repeated until a starting point is reached that is higher than the top 

boundary. The set of light beams, the starting points of which are lower than  is defined to be the 1st 𝜆

group. The first light beam that exceeds the top boundary returns to bottom with a starting point at  𝑠(2)
0

on the left boundary according to the periodic boundary condition, and it becomes the first beam of the 

2nd group of beams, as shown in Fig 5D. We iterate this process until the total length  of the beams 𝑁

are reached, and several groups arise. Within each group, the interval between two nearest beams is 

always , such that if the starting point of the first beam of each group is identified, all starting points 𝑊

of beams can be calculated analytically in a group. Thus, our first task is to derive the starting point  𝑠(1)
0

of the first beam and the number of beams in the 1st group, which can be solved via 

           (15){(𝑞(1) ‒ 1)𝑊 + 𝑠(1)
0 < 𝜆 ≤ 𝑞(1)𝑊 + 𝑠(1)

0 ,
𝑞(1)𝐿 ≤ 𝑁,

where  is the number of beams in the first group,  is the starting point of the first beam in the 𝑞(1) 𝑠(1)
0

first group (zero point here),  is the length of the top (bottom) boundary 𝐿 = 𝜆sin(120 ∘ )/sin(60 ∘ ‒ 𝜃)

in the transformed rhombus and  is the interval between two beams long the 𝑊 = 𝜆sin(𝜃)/sin(60 ∘ ‒ 𝜃)

left (or right) boundary. The first inequality is formulated based on the boundary condition to 

characterize that the th beam is below the top boundary but the th beam exceeds the top 𝑞(1) (𝑞(1) + 1)

boundary. The second inequality describes that the total length of beams in the 1st group should not 

exceed . The two inequalities can exclusively yield the number  of beams in the 1st group: 𝑁 𝑞(1)

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/507061doi: bioRxiv preprint 

https://doi.org/10.1101/507061
http://creativecommons.org/licenses/by/4.0/


Page 31 of 41

      (16)𝑞(1) = min(⌈ 𝜆
𝑊⌉,⌈𝑁

𝐿⌉),

where  denotes rounding up to an integer. Thus, the starting point  of an arbitrary beam, say  in ⌈ ⋅ ⌉ 𝑠(1)
𝑖 𝑖

the 1st group can be written by 

      (17)𝑠(1)
𝑖 = 𝑠(1)

0 + 𝑖𝑊,    (𝑖 = 0,1,⋯,𝑞(1) ‒ 1),

where the subscript  denotes the th beam and . Akin to the 1st group, the starting points of 𝑖 𝑖 𝑠(1)
0 = 0

beams in all groups can be solved iteratively via a general form of inequalities 

       (18){(𝑞(𝑙) ‒ 1)𝑊 + 𝑠(𝑙)
0 < 𝜆 ≤ 𝑞(𝑙)𝑊 + 𝑠(𝑙)

0 ,
∑𝑙

𝑖 = 1𝑞(𝑖)𝐿 ≤ 𝑁.

The number  of beams in the th group is: 𝑞(𝑙) 𝑙

      (19)𝑞(𝑙) = min(⌈𝜆 ‒ 𝑠(𝑙)
0

𝑊 ⌉,⌈𝑁
𝐿 ‒ ∑𝑙 ‒ 1

𝑖 = 1𝑞(𝑖)⌉),

where 

𝑠(𝑙)
0 = 𝑞(𝑙 ‒ 1)𝑊 + 𝑠(𝑙 ‒ 1)

0 ‒ 𝜆,

and the starting points of the th group are 𝑙

         (20)𝑠(𝑙)
𝑖 = 𝑠(𝑙)

0 + 𝑖𝑊,    (𝑖 = 0,1,⋯,𝑞(𝑙) ‒ 1).

We thus obtain a set  composed of all the starting points in all groups: 𝑆

     (21)𝑆 = {𝑠(1)
0 ,⋯,𝑠 (1)

𝑞(1) ‒ 1,𝑠(2)
0 ,⋯,𝑠 (2)

𝑞(2) ‒ 1,⋯,𝑠(𝑙)
0 ,⋯,𝑠 (𝑙)

𝑞(𝑙) ‒ 1,𝜆}.

We sort the elements of  in ascending order, yielding 𝑆

   (22)𝑆' = {𝑠'1,𝑠'2,⋯,𝑠'(∑𝑙
𝑖 = 1𝑞(𝑙) + 1)},    (𝑠'1 < 𝑠'2 < ⋯ < 𝑠'(∑𝑙

𝑖 = 1𝑞(𝑙) + 1)).

Thus, the interval  of two nearest beams is 𝜍𝑖

      (23)𝜍𝑖 = (𝑠'𝑖 + 1 ‒ 𝑠'𝑖)sin(60 ∘ ‒ 𝜃),    (𝑖 = 1,2⋯,∑𝑙
𝑖 = 1𝑞(𝑙)).
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Then the standard deviation  of  along direction  can be calculated via 𝜎1 𝜍𝑖 𝜃

       (24)𝜎1 =
1

∑𝑙
𝑖 = 1𝑞(𝑙) ‒ 1

∑∑𝑙
𝑖 = 1𝑞(𝑙)

𝑖 = 1 (𝜍𝑖 ‒ 𝜍)2.

 of the other groups of beams along  can be analytically obtained in the same manner. The 𝜎2 30 ∘ ‒ 𝜃

average standard deviation   over two groups of beams is 𝜎

      (25)𝜎 =
𝜎1 + 𝜎2

2 .

The analytical result of  is shown in Fig 5E.𝜎

Reinforcement learning 

In an arbitrary round, say , a rat chooses a current strategy  from the strategy pool according to 𝑡 Θ(𝑡)

the probability determined by its fitness values prior to  through a softmax distribution: 𝑡

        (26)Π(𝜃𝑖,𝑡) =
𝑒

𝑤(𝑡 ‒ 1)𝐹(𝜃𝑖,𝑡 ‒ 1)

∑𝑛
𝑗 = 1𝑒

𝑤(𝑡 ‒ 1)𝐹(𝜃𝑗,𝑡 ‒ 1),

where factor  with  ensures asymptotic stability of the evolutionary process. The 𝑤(𝑡) = 𝑒𝜅𝑡 𝜅 = 0.15

fitness  of strategy  in round  is calculated using all the rounds prior to round : 𝐹(𝜃𝑖,𝑡 ‒ 1) 𝜃𝑖 𝑡 ‒ 1 𝑡

       (27)𝐹(𝜃𝑖,𝑡 ‒ 1) =
∑𝑡 ‒ 1

𝑡 = 1𝐸[Θ(𝑡)] ⋅ 𝛿[Θ(𝑡) ‒ 𝜃𝑖]

∑𝑡 ‒ 1
𝑡 = 1𝛿[Θ(𝑡) ‒ 𝜃𝑖]

,

where  is the Dirac function with  if  and  otherwise,  is the 𝛿 𝛿(𝑙1 ‒ 𝑙2) = 1 𝑙1 = 𝑙2 𝛿(𝑙1 ‒ 𝑙2) = 0 𝐸[Θ(𝑡)]

spatial information entropy associated with strategy  in round . Here the definition of  Θ(𝑡) 𝑡 𝐸[Θ(𝑡)]

slightly differs from that in the static encoding scenario. Specifically, only locations pertaining to the 

trajectories of rat are used to evaluate the spatial encoding in a round. We build a database composed of 

40 trajectories of rats, each of which is recorded within 10 minutes (data from 

http://www.ntnu.edu/kavli/research/grid-cell-data). In an arbitrary round , we randomly choose a 𝑡
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trajectory from the database, and compute  with respect to the trajectory. In the definition of , 𝐸[Θ(𝑡)] 𝐸

 is changed to 𝑝(𝑖|𝜃,𝑘,𝑥)

      (28)𝑝(𝑖|𝜃,𝑘,𝑥) =
1
𝑁∑𝑁

𝑗 = 1𝜂(𝑥,𝑗) ⋅ 𝛿[𝑖 ‒ 𝑢𝑘
𝜃(𝑥,𝑗)],

where  is the index of a box on the th belt,  is the Dirac function and  only if location 𝑗 𝑥 𝛿 𝜂(𝑥,𝑗) = 1 (𝑥,𝑗

 pertains to the trajectory in the round (  if  does not pertain to the trajectory). ) 𝜂(𝑥,𝑗) = 0 (𝑥,𝑗)

Analogously,  is defined in the same way but substituting  for , and  for 𝑝(𝑖|𝜃,𝑘,𝑦) 𝑢𝑘
𝜃(𝑗,𝑦) 𝑢𝑘

𝜃(𝑥,𝑗) 𝜂(𝑗,𝑦)

.𝜂(𝑥,𝑗)
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S1 Methods. Hamming distance. To provide additional evidence to validate our encoding scheme, we 

propose a measurement based on Hamming distance for encoding capacity as an alternative to 

information entropy. Note that a basic requirement for any positioning task lies in the ability to 

distinguish vectors u(x) after the grid cell system maps the environment using orientation θ. 

Consider two arbitrary locations x and y. They cannot be distinguished if u(x) = u(y). In addition, if 

the two vectors u(x), u(y) are approximately equal with a negligible difference, it would be difficult to 

separate them. The two locations may be conceived of as the same by the animal. The difference 

between u(x) and u(y) can be conveniently measured by the Hamming distance defined as:

,                                          (S1)                                      𝐻[𝐮𝜃(𝐱),𝐮𝜃(𝐲)] =
1
4∑4

𝑘 = 1𝛿[𝑢𝑘
𝜃(𝐱) ‒ 𝑢𝑘

𝜃(𝐲)]

where  is the Dirac function with  if , and  otherwise (see S3 Fig). If 𝛿 𝛿(𝑙1 ‒ 𝑙2) = 1 𝑙1 = 𝑙2 𝛿(𝑙1 ‒ 𝑙2) = 0

u(x) and u(y) are exactly the same, H is zero; if the encoded site u(x) differ from u(y), we have H =1. 

A larger value of H indicates a better spatial encoding and less ambiguity. For orientation θ, the mean 

Hamming distance  over all belts along direction x and y in a space is defined as𝐻

 ,  (S2)𝐻 =
1

𝑁2(𝑁 ‒ 1){∑𝑁
𝑥 = 1

∑𝑁 ‒ 1
𝑖 = 1

∑𝑁
𝑗 = 𝑖 + 1𝐻[𝐮𝜃(𝑥,𝑖),𝐮𝜃(𝑥,𝑗)] + ∑𝑁

𝑦 = 1
∑𝑁 ‒ 1

𝑖 = 1
∑𝑁

𝑗 = 𝑖 + 1𝐻[𝐮𝜃(𝑖,𝑦),𝐮𝜃(𝑗,𝑦)]}

where xth or yth belt is divided into N unit boxes, each being denoted by index i or j. To obtain the 

mean Hamming distance , the average H of every belt should be obtained by averaging over N 2 (N-1) 𝐻

pairs of boxes in a belt. Then  is obtained by averaging over all belts along the two directions, 𝐻

respectively. The results of  are shown in S4 Fig.𝐻

S2 Methods. Experimental assessments of the signal to noise ratio and its influence on the 

predicted minimum number of grid cells M. As described in the main text and shown in Fig 3, the 
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minimum number of grid cells is crucially influenced by noise. Specifically, in case of a higher noise 

level, a larger number of grid cells are required for obtaining an optimal orientation at 8 degrees. Note 

that this effect of noise is determined by the duration  across which the signal is integrated and the  𝜏

intrinsic firing rate. The relationship of these two factors is determined by the ratio of the variance 

 to the mean value  of the Poisson distribution of firing, i.e., , where  is 𝜏𝑓max 𝜏𝑓max
1

SNR
=

𝜏𝑓max

𝜏𝑓max
𝜏𝑓max

the maximum firing intensity that measures the strength of signal.  Thus, estimating the minimum value 

of M requires quantifying  from experimental data, which is possible by measuring the duration of 𝜏

firing at a specific location. This duration depends on the time that a rat stays at a given location – i.e., 

since animals are moving in an environment,  corresponds to the cumulative time of traversing a 𝜏

specific location. Now, the minimal spatial distance between pairs of spikes of grid cells defines the 

minimum spatial resolution of a rat. Based on these numbers, we constructed distributions of distances 

between any two firing locations of the grid cell, and defined the top 0.5% of smallest distances to be 

the scale of spatial units. As shown in S9 Fig, the average of spatial unit from all spatial patterns of grid 

cells is about 1.8cm, and the mean number of spatial units containing trajectories is 3120. Note that the 

average duration of each trajectory is 10 minutes (600s). Thus, the average duration  at every spatial τ

unit is  and the effect of noise . According to Fig 3K in the τ =
600s
3120 = 190ms  

𝜏𝑓max

𝜏𝑓max
=

190 × 200
190 × 200 = 0.16

main text, we thus estimate the minimum number of grid cells to be M =162 in each module. 

S1 Fig. Optimal orientation associated with highest spatial information entropy for two environmental sizes. 

(A) Optimal orientation associated with highest E as a function of both geometrical ratio r and M in the absence 𝜃opt 

of noise. (B) Standard deviation of E of different belts at  as a function of both r and M in the absence of noise.  𝜃opt 
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(C)  as a function of both r and M  in the presence of noise. (D) Standard deviation of E of different belts at  𝜃opt θopt 

as a function of both r and M in the presence of noise. (E)  as a function of both noise  and M in the 𝜃opt 1/SNR

presence of noise. In (A)-(E), the environmental size is 1.2× 1.2m2. The color bar of (A) and (C) represents . The 𝜃opt

color bar of (B) and (D) represents standard deviation σ. In (E) geometrical ratio r = 1.5.  (F)-(J) are the same as (A)-

(E) but the environment size is 2× 2m2. In (C) and (H), the effect of noise . In all simulation, 1/SNR = 0.08 𝑓max

.= 200Hz

S2 Fig. Optimal orientation associated with highest spatial information entropy for two elliptic grids. (A) 

Optimal orientation associated with highest E as a function of both geometrical ratio r and M in the absence of 𝜃opt 

noise. (B) Standard deviation of E of different belts at  as a function of both r and M in the absence of noise.  𝜃opt 

(C)  as a function of both r and M in the presence of noise.  (D) Standard deviation of E of different belts at 𝜃opt 𝜃opt 

as a function of both r and M in the presence of noise. (E)  as a function of both noise  and M in the 𝜃opt 1/SNR

presence of noise. In (A)-(E), the intensity of elliptic distortion is ε = 1.17. The color bar of (A) and (C) represents 

. The color bar of (B) and (D) represents standard deviation . In (E) geometrical ratio r = 1.5 and the 𝜃opt 

environmental size is . (F)- (J) are the same as (A-E) but the elliptic distortion is ε = 1.25. In (C) and (H), 1.5 × 1.5m2

the effect of noise . In all simulation, .1/SNR = 0.08 𝑓max = 200Hz

S3 Fig. Encoding scheme of multiple modules and Hamming distance. (A) Hexagonally encoded sites of grid cells 

with different colors in modules 1 to 4. The encoded sites are distributed periodically in every module. The two 

locations marked by a diamond and a star are encoded by a site in each of four modules. (B) The spatial vector u of 

each location consists of 4 elements. If a location x belongs to the site encoded by cell i (highlighted in each module), 

the element in u(x) is i. The Hamming distance H of these two locations is 3/4 because there are 3 different elements 

between the two spatial vectors.

S4 Fig. Optimal orientation associated with highest Hamming distance H. (A) Optimal orientation associated 𝜃opt 

with highest  as a function of both geometrical ratio r an M  in the absence of noise. (B) Standard deviation σ of  of 𝐻 , 𝐻

different belts at  as a function of both r and M  in the absence of noise. (C)  as a function of both r and M  in 𝜃opt 𝜃opt 

the presence of noise. (D) Standard deviation of  of different belts at  as a function of both r and M  in the 𝐻 𝜃opt 
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presence of noise. (E) as a function of both noise  and M  in the presence of noise. In (A)-(E), the intensity 𝜃opt 1/SNR

of elliptic distortion is ε = 1. The color bar of (A) and (C) represents . The color bar of (B) and (D) represents 𝜃opt

standard deviation σ. In (E) geometrical ratio r = 1.5 and the environmental size is .  (F)-(J) are the same 1.5 × 1.5m2

as (A)-(E) but the intensity of elliptic distortion is ε = 1.25. In (C) and (H), the effect of noise . In all 1/SNR = 0.08

simulation, .𝑓max = 200Hz

S5 Fig. Correlation between the number of cells engaged in encoding and information entropy. (A) In the 

absence of noise, the number of cells nc engaged in encoding belts as a function of normalized spatial information 

entropy E for different values of M. Normalized E is defined as the ratio of E over the maximum E in all belts. (B) 

Pearson correlation between nc and E as a function of noise  for two different intensities ε of elliptic distortion.1/SNR

S6 Fig. Correlation among information entropy, the number of cells engaged in encoding and the minimum 

repeating distance. The correlation between E and   as a function of M and the correlation between nc and 𝑇 + 𝑇 𝑇 +

 as a function of M. Here M is the number of grid cells in each module.𝑇

S7 Fig. Minimum repeating distance and optimal . (A) Simulation results of   ,  and  as a function of 𝜽𝐨𝐩𝐭 𝑇 𝑇 𝑇 + 𝑇

the orientation  for , which exhibit a number of abrupt transition points and plateaus. The plateaus associated  𝜃  𝑀 = 82

with  and  are denoted by l and , respectively, where  and , with the respective transition points 𝑇 𝑇  𝑙 𝑙 = 1,⋯,4 𝑙 = 1,⋯,8

as  and  The maximum value of   occurs at . (B) Simulated orientation  at   and  as a 𝐽𝑙,𝑙 + 1 𝐽𝑙,𝑙 + 1 𝑇 + 𝑇 𝐽1,2  𝜃 𝐽1,2 𝐽4,5

function of M . For  ,  occurs at either  or , marked by the hollow triangular symbols.  𝑀 ∈ [72,122] 𝜃opt 𝐽1,2 𝐽4,5

S8 Fig. Area covered by a set of belts. (A) Area S covered by the belts as a function of  for belt width ∆ = 0.12λ. 𝜃

The largest area is achieved at  = 8 degrees. (B) Orientation θSmax associated with maximum value θSmax of  S as a 𝜃

function of the belt width ∆. In a wide range of ∆, 8 degrees is the exclusive optimal orientation.
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S9 Fig. Estimation of  from experiments. (A) Top: typical firing patterns of three grid cells, where firing locations 𝜏

are marked in green dots. Below: distribution of the distance between any two pairs of firing locations. The top 0.5% 

of smallest distance in the distribution is set to be a threshold, as marked by a red line. This threshold measures the 

minimal spatial resolution of rats and reflects the scale of spatial units for estimating . (B) Left: distribution of the  𝜏

unit scale of 193 grid cells documented in experiments. The mean distance is 1.8cm. It is set to be the average scale of 

the spatial unit in the environment ). Right: distribution of the numbers of spatial units computed using  (1.8 × 1.8cm2

76 trajectories (during about 10 minutes for each trajectory) in experiments. The mean number of spatial units 

containing trajectories is 3120. Thus, the average duration  at every spatial unit is .𝜏 𝜏 =
600

3120 = 0.19s

S10 Fig. Optimal orientation in rectangular environments. (A) Variation of the length of a side of a rectangle. (B) 

Simulation results of  as a function of M and noise  for different lengths of variant side of rectangles. The 𝜃opt 1/SNR

color bar represents the value of . The geometrical ratio r is 1.5.  is identified by the highest spatial 𝜃opt 𝜃opt 

information entropy. (C) Comparison between theoretical and simulation results of optimal orientation in rectangular 

environments. The theoretical results are obtained from Eq. (25) in the main text and the simulation results are 

obtained using the dominant angle for different length of the variant side in (A). The geometrical ratio r is 1.5 and  

.𝑓max = 200Hz
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