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Abstract 

Deficits in the inwardly rectifying K+ channel, Kir4.1, cause SeSAME syndrome, autism 
spectrum disorders with seizures, multiple sclerosis, Huntington’s disease and Rett syndrome. 
Understanding how deficits in a single gene can accomplish such diverse neurological 
symptoms, requires that we know the functional role of Kir4.1 in the nervous system. We used 
whole exome sequencing (WES), channel physiology in patient-specific lymphoblastoid cells 
(LCLs) and established a Drosophila model to examine the functional effects of a KCNJ10 
variant identified in SeSAME-like family. WES analysis of six related affected individuals, born 
out of consanguineous parentage, identified KCNJ10T290A variant residing within a long 
homozygous stretch in Chr1. The membrane potential of LCLs carrying KCNJ10T290A variant 
were significantly depolarized and exhibit defects in potassium permeability, thus demonstrating 
a loss-of-function effect. Drosophila irk2 mutant, a human homolog of Kir4.1, exhibited 
impairment locomotion, shortened life-span and age-dependent degeneration of dopaminergic 
neurons in the adult brain. Finally, neural specific expression of either Kir4.1 or Irk2 alleviate 
irk2 mutant phenotypes, while the Kir4.1T290A and Irk2T290A mutant proteins failed to do so. 
These results imply the functional conservation of Kir4.1 across species thereby elevate the 
potential of using Drosophila model to improve our understanding of the SeSAME syndrome. 
Our results emphasize the importance of Kir4.1 in regulating extracellular K+ homeostasis, 
which is central to patterning of nervous system during development.  

Introduction 

SeSAME syndrome (OMIM#612780), characterized by Seizures, Sensorineural deafness, 
Ataxia, Mental retardation and Electrolyte imbalance is a rare, autosomal recessive and 
multisystemic disorder. Otherwise known as EAST (Epilepsy, Ataxia, Sensorineural deafness, 
Tubulopathy) syndrome, SeSAME is predominantly caused by homozygous or compound 
heterozygous mutations in KCNJ10 gene (Bockenhauer et al., 2009; Scholl et al., 2009) encoding 
Kir4.1, an inwardly rectifying potassium channel with diverse expression patterns in multiple 
cell types of central and peripheral nervous system (Reichold et al., 2010; Hibino et al., 2010; 
Paulais et al., 2011; Thompson et al., 2011; Kelley et al., 2018; Larson et al., 2018; Song et al., 
2018). Depending on tissue localization and assembly of Kir4.1 subunit, which can constitute 
homotetramers and/or heterotetramers with Kir5.1 (KCNJ16), these channels exhibit distinctive 
physiological properties (Paulais et al., 2011; Pessia et al., 2001). Kir4.1 channel play 
conspicuous roles in the maintenance of resting membrane potential (Kofuji et al., 2000), 
facilitation of glutamate uptake (Djukic et al., 2007), potassium siphoning by glial cells (Neusch 
et al., 2006; Song et al., 2018), cell volume and peak strength regulation of fast α-motor neurons 
(FαMNs; Kelley et al., 2018), axonal integrity through myelination by oligodendrocytes (Neusch 
et al., 2001; Schirmer et al., 2018; Larson et al., 2018) and cell migration (dehart et al., 2008). 
Dysfunction of Kir4.1 has been associated with a spectrum of neurodegenerative conditions like 
idiopathic epilepsy (Buono et al., 2004; Heuser et al., 2010; Lenzen et al., 2005), autism 
spectrum disorder with seizures (Sicca et al., 2011; Sicca et al., 2016; Larson et al., 2018), 
Huntington’s disease (Tong et al., 2014), multiple sclerosis (Srivatsava et al., 2012; 
Brickshawana et al., 2014; Nwaobi et al., 2016; Gu et al., 2016) and Rett syndrome (Olsen et al., 
2015; Kahanovitch et al., 2018).   

Given the genetic redundancy and compensation effects of mammalian Kir channel proteins, 
invertebrate Drosophila model system offers an excellent choice to investigate the physiological 
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functions of Kir mutant proteins. The Drosophila genome encodes only three Kir channel 
proteins; Irk1 (Kir2 family), Irk2 (Kir4 and Kir5 family) and Irk3 (Kir1 family) and are shown to 
be critical for patterning of nervous system during development (Chen and Swale, 2018). In 
contrast, fifteen Kir channels have been identified in mammals which are grouped into seven 
families based on sequence similarity and functional properties (Hibino et al., 2010). Several Kir 
channels (Kir2.1, Kir3, Kir4 and Kir6) that are primarily expressed in thalamus, cortex, 
brainstem and hippocampus are associated with epilepsy (Higashi et al., 2001; Villa and Combi, 
2016). Kir channels display greater inward K+ flow at negative resting membrane potential to 
equilibrium potential for K+ (Ek), while at more positive membrane potentials, outward flow of 
K+ is inhibited by intracellular Mg2+ and polyamines (Lopatin et al., 1994). Overall Kir channel 
allows K+ ions to pass easily inward than outward direction.  
 
We identified a novel homozygous mutation in KCNJ10 by WES of all six affected members of 
a family diagnosed with SeSAME syndrome. Next, using a series of whole-cell patch clamp 
experiments in patient-specific LCLs, we found that the variant compromised the membrane 
physiology of Kir4.1. Furthermore, to investigate its role in the Drosophila nervous system, we 
isolated and characterized irk2 mutant alleles. irk2 mutants exhibited shortened-life span, 
stereotyped locomotor patterns and age-dependent degeneration of dopaminergic neurons in the 
adult brain, which are in part, analogous to the neurological phenotypes observed in SeSAME 
syndrome. Finally, we found that the neural specific overexpression of mutant proteins; neither 
Irk2 nor Kir4.1 failed to alleviate irk2 whole mutant phenotypes unlike the wild type proteins 
demonstrating the loss-of-function of mutant Kir4.1T290A. These findings emphasize the crucial 
physiological role of Kir4.1 from invertebrates to mammals.  
 
Materials and Methods  
Patient recruitment, genomic DNA isolation and generation of lymphoblastoid cells 
The subjects were identified through the clinical services of NIMHANS. Various members of the 
family had been identified over many years, and the clinical information was collated. In 
addition, other branches of the family were identified and invited to participate in the study. The 
study protocol was approved by Institutional Human Ethics Committee and Institutional Stem 
Cell committee at National Institute of Mental Health and Neurosciences (NIMHANS), 
Bangalore, India. Patients were referred for biochemical evaluation and selected for further 
analysis by presence of seizures, ataxia, mental retardation, hearing impairment. Five ml of 
venous blood was collected in EDTA treated tubes (Becton-Dickinson) using standard 
procedures and genomic DNA was isolated using NucleoSpin® Blood L (Macherey-Nagel 
GmbH & Co. KG) for whole exome sequencing (WES). In addition, six ml of venous blood was 
collected separately in sodium heparin tubes (Becton-Dickinson) for isolation of peripheral blood 
mononuclear cells (PBMC) using SepMateTM tubes (STEMCELL Technologies) and histopaque-
1077 (Sigma Aldrich) as a density gradient. For generation of lymphoblastoid cells (LCLs), 
PBMCs were transformed by Epstein Barr virus (EBV) using a standard protocol (Hui-Yuen et 
al., 2011). All six LCLs suspensions were cultured in RPMI 1640 medium pH 7.4 supplemented 
with 10% fetal bovine serum (FBS), 4 mM glutamine and streptomycin/penicillin antibiotic 
cocktail. Cells were maintained in a humified atmosphere of 5% CO2, 95% air at 37oC, the 
medium was replaced every 3rd day and cells were passaged once a week. Stabilized LCLs were 
further karyotyped using the G-banding approach (Bradley Howe et al., 2014), STR profiling 
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[GenePrint® 10 System (Promega)] using blood and LCL DNA was done to confirm sample 
identity.   
 
Whole exome sequencing, variant calling, quality check and annotation  
The blood DNA was extracted for 10 samples [unaffected parents, (n=4), and affected offsprings, 
(n=6)], and the library was prepared using Nextera Rapid Capture and Expanded Exome Kits. 
The library was further subjected to WES, performed on Illumina Hi-Sequencer to generate pair-
end reads (150bp*2). We followed whole exome sequence analysis pipeline used by Suhas et al., 
2018. FastQC (v0.11.5) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used 
for the quality of raw reads, which examine per base and per sequence quality scores, per base 
and per sequence GC content, per base N content and sequence length distribution. Prinseq-lite-
0.20.4 tool was used to trim poor quality region (http://prinseq.sourceforge.net/) and 
adapterremoval-2.1.7 (Schubert et al., 2016) was used to remove adapter contamination in raw 
reads. Filtered reads with a quality score (Q)>20 were aligned to the human reference genome 
hg19 (GRCh37) using BWA (v0.5.9) (Li and Durbin, 2009). SAM to BAM conversion and 
sorting were done with Samtools 1.3 tool 
(https://sourceforge.net/projects/samtools/files/samtools/1.3/). Then the PCR duplicates were 
removed using PICARD tools (v1.96) (https://broadinstitute.github.io/picard/) and the INDELS 
were realigned using GATK (v3.6) (McKenna et al., 2010). The BAM alignment was subjected 
to QC using Qualimap (v2.2) (Okonechnikov et al., 2016). VarScan (v2.3.9) (Coverage=8, 
MAF>=0.25, p-value<0.001) was used to call for SNPs and INDELS (Koboldt et al., 2013). The 
quality of VCF file was checked using RTG tools 3.7.1 
(https://github.com/RealTimeGenomics/rtg-tools/releases). All samples annotation was 
performed using ANNOVAR tool (Wang et al., 2010). Population controls (n=7) representing 
three religious groups (Group A, B, and C) matched for age, sex and ethnicity, were obtained 
from INDEX-db (Ahmed et al., 2018). All controls passed the age of risk i.e., 45 years, for 
neuropsychiatric illnesses, except for the outbred Parsi (religious group 3) individual (age=26), 
who was included as an outlier. All the controls were of southern Indian ethnic origin except for 
the Parsi. To validate KCNJ10 variant identified by whole exome sequencing, we performed 
Sanger validation using the following gene specific primers: Forward 
(CATTCGTTTCAGCCAGCATGC) and Reverse (TCAGACATTGCTGATGCGCA).  
 
Assessing runs of homozygosity (ROH) 
Exome-wide F-statistics was calculated using the --het option in vcftools (v0.1.5), for every 
sample, to investigate whether levels of heterozygosity differed between the affected siblings, 
unaffected parents and population controls (Danecek et al., 2011). Runs of homozygosity (ROH) 
was detected in all samples using --homozyg option in PLINK (v1.9) (Purcell et al., 2007). The 
minimum length for a tract to qualify as ROH was set to 500kb and the minimum number of 
variants constituting an ROH was set to 100. A maximum of 3 intervening heterozygous variants 
were allowed within a ROH window. ROH density was set to default i.e., an ROH must have at 
least one variant per 50kb, on an average. The centromeric, X, Y and mitochondrial variants 
were ignored during this analysis. The stretches that were shared between all the affected 
individuals but not observed in either of the parents or the population controls were thus notified 
as ROHaffected, which were identified by using a combination of intersect and subtract functions 
in bedtools (v2.22) (Quinlan and Hall, 2010). The variants were annotated using variant effect 
predictor (VEP GRCh37) (McLaren et al., 2016).  
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Experiments with lymphoblastoid cells  
Whole-cell patch clamp electrophysiology 
For all electrophysiology experiments, the following LCLs were used. One healthy wild type 
control (not related to the family), two unaffected parental controls (III.11 and III.12) and four 
affected individuals (IV.2, IV.3, IV.4, IV.5) from SeSAME-like family described in this study. 
Cells in suspension are resuspended in fresh RPMI culture media and dissociated to achieve at 
least 40% of single cells in suspension. Thereafter the cells were plated in 15mm diameter cover 
slips (acid-treated, ethanol washed and air dried) coated with poly-D-lysine (A-003-M EMD 
Millipore). Cells were kept in culture incubator (conditions as described above) for half hour 
before recordings. After establishment of whole-cell configuration, we immediately measured 
the membrane potential (Vm) of LCLs. A pulse protocol was applied in which Vm held at resting 
membrane potential and then stepped to test potentials between -120 to 40mV in 10mV steps for 
140ms. To measure membrane currents (nA) we used a single electrode whole-cell patch clamp 
technique. For intracellular voltage-clamp recordings and positioning of perfusion micropipette, 
we used two Narishige hydraulic micomanipulators (MNW-203, Narashige Japan). Perfusion 
pipette with a tip diameter of 30-50 um was positioned close to the tip of patch pipette to 
facilitate rapid application of test solutions especially for experiments with increase in 
extracellular concentration of potassium. Electrodes for whole-cell patch experiments were 
pulled from borosilicate glass capillaries (IB150F-3, World Precision Instruments, USA) with 
resistance of 4-6megaohms in two step protocol using Sutter P-97 puller (Sutter Instruments 
Corp., Novato, CA). Micropipettes were filled with intracellular solution containing 120mM 
potassium D-gluconate (G4500, Sigma), 1mM MgCl2, 15mM KCl, 1mM CaCl2, 10mM EGTA, 
10mM HEPES with 7.2 pH adjusted with KOH/HCl. After obtaining whole-cell mode, access 
resistance was 10-15megaohms. The extracellular recording solution contained 130mM NaCl2, 
3mM CaCl2, 2.5mM MgCl2, 15mM HEPES with 7.4 pH adjusted with NaOH.  In experiments, 
where LCLs were puffed with high extracellular K+, KCl was varied from 5-20 mM while NaCl 
was decreased to 110mM to adjust osmolarity. Recordings in LCLs, were performed using an 
HEKA triple patch clamp amplifiers (EPC 10 USB) at RT. To determine specificity of Kir4.1 
current, we used 110μm/l BaCl2 and to block endogenous Cl- currents, we used 150μm/l 
niflumic acid in the bath solution. The pClamp 9 (Axon Instruments) software package was used 
for data acquisition and analysis. Data were analysed using Molecular Devices Clampfit 10.4 
(Sunnyvale, CA) and Microsoft Excel programs. The results were presented as mean+S.E. For 
statistical analysis we used GraphPad Prism (San Diego, USA). To choose between parametric 
or non-parametric tests for normality criteria, we used Shapiro-Wilk estimator. For data sets with 
small N, we used non-parametric tests to avoid possible type II errors. Mean differences were 
statistically evaluated using ANOVA with Levene’s homogeneity of variances test and pairwise 
comparisons were made using Turkey adjustment. Non-parametric k independent Kruskal-Wallis 
test was applied with Bonferroni correction to compare the differences among means. Error bars 
represent +S.E. 
 
Immunofluorescence 
One mL of 70% confluent LCLs in suspension were collected in 1.5mL Eppendorf tube followed 
a brief centrifugation at 2000rpm for 3 min to collect cells down. Cells were washed briefly once 
with 1X Phosphate buffer Saline (PBS) and fixed in 4% paraformaldehyde (PFA: P6148, Sigma) 
for 10 min at RT. Remove PFA traces by washing cells twice with 1X PBS. Primary antibody 
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incubation was done overnight at 4oC in block solution (0.2% BSA in PBS with 0.02% Triton-
X100), while the secondary antibody incubation was done for 2 hrs at RT. Intermediate washing 
steps were done with PBT (PBS+0.02% Triton-X100) for 30 min. The following antibodies were 
used; hKir 4.1 (1:1000; Cat no: NBP1-20149, Novus Biologicals), Alexa Fluor 488 phalloidin (1: 
1000; A12379: Invitrogen), DAPI (1:5000; D9542: Sigma) and goat anti-mouse IgG Alexa Fluor 
488 (1:1000; A11001; Invitrogen). Cells were mounted using Vectashield antifade mounting 
medium (H-1000: Vector labs) to prevent photobleaching and left overnight at 4oC. Optical z-
sectioning at 0.2 μM intervals was done using Plan-Apochromat 63x/1.40 oil objective in Zeiss 
Axio Observer 7 with Apotome 2 feature and Axiocam 702 monochrome camera (Carl Zeiss, 
Germany). Signal-to-noise ratio was improved using in-built Zeiss deconvolution module and 
MIP projections of 2-3 Z-stacks are presented here. Representative images reported here are from 
three independent experiments. For quantitative measurements, deconvoluted Z-stacks were first 
blinded before analysis. 3D surface rendering plugin in Imaris software is used to reduce signal-
noise ratio to measure Kir4.1 punctae distribution between cytoplasm and nucleus. The 
respective numbers were normalized against cytoplasmic space marked by F-actin and nuclear 
space by DAPI signals.  
 
Experiments with Drosophila  
Drosophila genetics and molecular biology 
Flies were maintained on standard medium at 25oC. w1118 strain was used as wild-type control. A 
EP insertion in irk2 locus (G8696) obtained from Bloomington Stock Center is imprecisely 
excised to generate irk2 mutant alleles by standard procedures. Following fly stocks were used in 
this study: C155-Gal4 (Lin and Goodman, 1994), TH-Gal4 (Friggi-Grelin et al., 2003), UAS 
mcd8-eGFP (Jan lab). To assess the effect of irk2 mutant on the expression levels of irk2, we 
extracted RNA from embryos (for homozygous irk2e118) and larvae (homozygous irk2e91b and 
heterozygous irk2e118/e91b) and reverse-transcribed into cDNA. Following primers were used to 
investigate Irk2 expression levels; CGACGAGAACTCACCGCTCT and 
AGGGATTCCGCACACCAGCT. Full-length cDNA for Irk2 was amplified using cDNA 
specific primers [ATGCAGGTCCCGCTCAGCGA and GCAGCTCTCGGTGCCCTTGTAA] 
and Kir4.1 cDNA obtained from OriGene (SC118741). Site-directed mutagenesis was performed 
with Irk2 and Kir4.1 cDNA using GeneArtTM site-directed mutagenesis system (A13282: 
Invitrogen) to generate Irk2T290A and Kir4.1T290A cDNAs. All four cDNAs, described above, were 
subcloned into fly pUAST transformation vector (Brand and Perrimon, 1993) using Not1 site and 
used to generate transgenic flies in w1118 genetic background.  
 
Larval locomotor assay 
Five wandering third-instar larvae, staged appropriately, are placed on 1% agar plate. The total 
area available for larvae to crawl around is 6 cm (inner diameter of plate). Before recording their 
locomotor patterns, they were acclimatized for 2 min in the testing arena and recorded for 5 min 
using 13-megapixel Sony digital camera. The distance from agar plate to camera is 25cm and the 
entire chamber is enclosed to prevent external light. A LED light source was used underneath 
agar slabs. The video file was converted into image stacks of 3 fps for 3 min resulting in 5400 
frames. Eight such videos were taken from three replicate bottles resulting in 24 videos per group 
and 120 individual larvae per group. These stacks of images were then analysed using wrMTrck 
software standardized for Drosophila larval locomotion (Brooks et al., 2016).  
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Live imaging of adult locomotion using flyBowl assay and vertical climbing assay 
The schematic of testing arena and the methods to assay adult locomotion are reported in Simon 
and Dickinson, 2010 (flyBowl assay) and Aggarwal et al., 2018 (vertical climbing assay). We 
used 3-5 days old flies, aged at 23oC at 12-12 LD cycle. The videos were captured at 250FPS at 
0.055mm/pixel resolution using Pointgrey camera (13Y3M) with a Canon 18-55ES lens at 
55um/pixel resolution. Total distance traveled: Distance traveled by a fly is equal to the sum of 
all track lengths in body length units (BLUs) in a given time duration. For a genotype, total 
distance traveled in a given time is calculated as the mean of total distance traveled by each fly 
of that genotype. Average speed: For each track, the speed of the fly is calculated as the average 
instantaneous speed for that track. Further, mean speed of a fly is given by the mean of speeds 
for all tracks. Finally, for a genotype, average speed is calculated as the mean of mean speed of 
each fly. For fly bowl Assay: The average speed of the fly was measured by dividing total 
distance traveled by a fly in a given amount of time. The videos were captured at 15FPS at 
0.064mm/pixel resolution. Live imaging done using FlyCon Tra (Fly Contour based Tracker) 
software (Aggarwal et al., 2018). Statistical analysis of all raw data gathered over time for both 
fly bowl and vertical climbing assay was done using GraphPad Prism (San Diego, USA). Graphs 
were plotted using matplotlib library in Python. Unpaired t-test (for normal distribution) or 
Mann-Whitney test (for non-normal distribution) was used for comparison between two 
genotypes. For comparison between more than two genotypes, we used two-way repeated 
measures ANOVA, post-hoc Sidak's multiple comparisons. Data is reported as mean+SEM for 
all experiments.  
 
Results 
Clinical and biochemical features of family with SeSAME syndrome 
Six affected individuals were identified from the relatives of an index subject (IV.2) who had 
sought help with the symptoms of seizures, ataxia and developmental delay. The clinical features 
were broadly similar to SeSAME syndrome but without electrolyte imbalance (Fig. 1A; Table 1). 
Born through two consanguineous unions with no perinatal or postnatal problems, all affected 
individuals developed tonic-clonic seizures at 4-5 months of age and had delayed speech and 
motor development. Cerebellar symptoms (gait ataxia, intentional tremors and 
dysdiadochokinesia) were manifested from early childhood. The gait ataxia was progressive in 
nature, resulting in severe disability and later being confined to wheel chairs [IV. 2-5]. 
Dysmorphic facies, dysarthria, brisk deep tendon reflexes (DTRs), bilateral ankle clonus and an 
extensor Babinski response were evident in all of them. All the patients showed certain 
characteristic dysmorphic facial features like prominent supraorbital ridges, thick eyebrows, deep 
set eyes, epicanthal fold, low set ears, prominent antihelix, prominent nasal tip and thick lips 
(Fig. 1B). Behavioural abnormalities like stereotypies, hyperactivity, anger outbursts and 
psychotic symptoms were also observed (Table 1). They also had hearing impairment, and 
audiometry measures revealed bilateral mild to severe sensory neural hearing loss. Motor nerve 
conduction velocities from patients (V.1-2) were normal. The EEG from patients (V.1-2) showed 
generalised seizure discharges before treatment (Figure 1C), which became normal after 
treatment with anti-epileptic drugs. The other four members (IV.2-5) remained seizure free for 
several years on medication. MRI from IV.2 showed enlarged basal ganglia and cerebellar 
atrophy (Fig. 1D). The remaining members of the family were clinically unaffected.  
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Various biochemical parameters were evaluated for the six affected individuals (Supplementary 
Table 1). The raw values of each parameter were unit variance normalized (-1.85 to +1.95) 
across six samples and hierarchically clustered (Fig. 1F). Serum creatinine levels were highest in 
III.11 and lowest in III.12. Urinary sodium, serum potassium, serum calcium, serum 
homocysteine and LDL/HDL ratio were higher in IV.2 compared to remaining individuals. The 
serum chloride, urinary chloride, plasma ammonia, plasma lactate, vitamin B12, total 
cholesterol, urinary potassium, blood urea and urinary calcium were relatively higher in III.12 
compared to remaining individuals. Aryl sulfatase and urinary creatinine levels were higher in 
IV.2 and IV.3. Calcium/creatinine and alkaline phosphatase levels were higher in IV.4 and IV.5 
compared to remaining individuals. 
 
Novel KCNJ10T290A variant residing in a ROH of Chr1 segregate in all patients  
To identify the crucial disease-causing loci, we performed WES and analyzed exome-wide levels 
of homozygosity in all family members. A novel variant KCNJ10T290A seems to be cosegregating 
with a long homozygous stretch in Chr1 in all affected individuals of this kindred (Fig. 2A). 
Deleterious genetic effects of inbreeding are evident in children’s born out of consanguineous 
unions with a relatively higher burden of homozygous alleles (Bittles and Black, 2010; Shawky 
et al., 2013; Corry, 2014; Fareed and Afzali, 2014). These effects have been implicated to 
influence the evolution of mental illness and neurodevelopmental disorders (Bittles and Black, 
2010). Since SeSAME syndrome follows autosomal recessive (AR) inheritance and the role of 
homozygous alleles in AR illness has been well established (Sund et al., 2013; Kelmemi et al., 
2015; Wang et al., 2016; Martin et al., 2018), we used two independent approaches to identify 
the causative variants segregating with the illness in the SeSAME family; assessing the exome-
wide runs of homozygosity (ROH), referred as ROH method and  assessing the variants based on 
their allele frequencies, referred as non-ROH method. 
 
Variant prioritization using ROH method 
We analyzed the exome-wide levels of homozygosity for all samples within the pedigree 
including seven population controls (see materials and methods). Principal Component Analysis 
(PCA) of the exome-wide F-statistics separates the family members (n=6) from the population 
controls (n=7), explaining for an overall variance of 49.6%. All samples (both familial and 
population) within the two clusters, fell within their 95% confidence ellipses, except for 2 
controls representing the relatively admixed communities (Fig. 2B). The SeSAME family alone 
was subjected to PCA in which the cases (n=4) formed a cluster and the unaffected parents (n=2) 
fell outside the 95% confidence ellipse (Supplementary Fig. 2), explaining the intra-familial 
variance in homozygosity. The ROH within the exomes of the individuals in the pedigree and the 
population controls were identified. A total of 56 homozygous stretches (either overlapping or 
unique) were identified in all cases and controls, of which 44 stretches belonged to the four 
affected siblings and the remaining were distributed between unaffected parents and population 
controls (Supplementary Table 2). Nevertheless, no ROH was detected in a subset of population 
controls. The burden of ROHs witnessed in the cases as compared to controls could be attributed 
to their consanguineous parentage. Of the ROHs identified in total, five stretches were explicitly 
shared between all the affected siblings but not observed in the unaffected parents and population 
controls, which will henceforth be notified as ROHaffected (Table 2). The ROHaffected consists of a 
union set of 5329 variants across all the cases and controls, of which any given variant was 
observed in at least one sample. Since the disorder follows an autosomal recessive (AR) 
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inheritance pattern, of the 5329 variants, we identified those that were heterozygous (HET) in 
both unaffected parents, but homozygous (HOM) in all of the affected siblings. Seventy-eight 
such variants, belonging to 47 genes, were identified and all of them mapped to Chr 1 
(Supplementary Table 3). This skewed observation could not be attributed to the length of Chr 1 
for three reasons: i) the method used to compute ROH uses a sliding window approach which 
essentially removes the bias induced by the length of the chromosome; ii) the same Chr 1 ROH 
was not observed in either of the controls; iii) no ROH was observed in Chr 2 despite its genomic 
length being comparable to that of Chr 1. Of the 78 variants only three missense variants i.e., i) 
Chr1:158368964-C-T (OR10T2) ii) Chr1:160011455-T-C (KCNJ10) and iii) Chr1:161495040-C-
T (HSPA6), were predicted to be deleterious by both SIFT (Vaser et al., 2016) and PolyPhen 
(Adzhubei et al., 2015). 
 
Variants prioritization using non-ROH method 
To identify other putative deleterious variants segregating within the family, which could have 
otherwise been ignored by the ROH based method, we identified all the exonic and splice 
variants (including non-synonymous, stop gain and stop loss) segregating within the family. The 
common variants i.e., those with a minor allele frequency (MAF)>0.01 in 1KG_all (1000 
Genomes Project) and ExAC_all (Exome Aggregation Consortium) databases, were excluded 
from the analysis (Clarke et al., 2012; Lek et al., 2016). We identified seven variants belonging 
to seven genes (Supplementary Table 4). Interestingly, all the seven variants were located within 
Chr1:151288779-161088292, which was a subset of ROHaffected. Amongst the seven variants, 
Chr1:160011455-T-C [KCNJ10] was an obvious overlap. The remaining six variants fell on 
PI4KB, RORC, FLG2, FCRL1, PVRL4 and NIT1 genes. Apart from the KCNJ10 variant, none 
were predicted to be deleterious by both SIFT and PolyPhen. However, three of the remaining 
six variants (Chr1:151288779-T-C [PI4KB], Chr1:161049499-G-A [PVRL4] and 
Chr1:161088292-A-G [NIT1]) were predicted to be deleterious by either of the two algorithms, 
and were seemingly rare with MAFs of 0, 3E-3 and 5E-3 respectively, in South Asian 
populations according to the gnomAD database (Lek et al., 2016). Finally, the zygosity of the 
KCNJ10T290A variant was confirmed for all individuals in the family (III.11-12, IV.2-5, IV.9-10 
and V.1-2) by Sanger sequencing (Fig. 2C). 
 

Thus, of the union set of nine putative deleterious variants (three based on ROH method and 
seven based on allele frequencies) segregating within the family, the KCNJ10 gene was 
shortlisted for functional analysis to unravel the molecular impact of the variant for following 
reasons: i) KCNJ10, the candidate gene known to cause SeSAME syndrome (Celmina et al., 
2018); ii) the variant reported in the patients is novel; iii) this was the only deleterious variant 
identified by both methods and iv) the variant resides on the cytoplasmic C-terminal tail (Fig. 
2D) which is strongly conserved through evolution (Fig. 2E).  
 
Kir4.1T290A disrupts channel properties in patient-derived LCLs  
LCLs have been routinely used as a surrogate in vitro cell model to investigate cellular 
mechanisms of neurodevelopmental psychiatric disorders (Giuliano et al., 2014; Kumar et al., 
2016). To investigate the functional role of Kir4.1T290A, we generated patient-specific LCLs, 
validated by karyotype for six members of SeSAME family. All six LCLs are free from both 
numeric and structural chromosomal abnormalities (Supplementary Fig. 1).  
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The barium-sensitive inwardly-rectifying K+ current in LCLs measured by whole-cell patch 
clamp was substantially compromised in all affected individuals. Kir4.1T290A significantly 
depolarized membranes of LCL and showed deficits in clearance of extracellular K+. To 
determine whether LCLs express functionally active endogenous Kir4.1 protein, we used 
immunofluorescence (IF), western blot and electrophysiology (Fig. 3). In parental controls, 
Kir4.1 is in close proximity with the actin-rich plasma membrane, diffusely discernible in the 
cytoplasm and enriched in the nuclear membrane and nucleus (Fig. 3A). However, in all affected 
individuals, we observed an increased punctate distribution of Kir4.1 in the cytoplasm but with 
no apparent disparity in the nucleus and nuclear membrane (Fig. 3B). To confirm the IF findings, 
western blot analysis showed a substantial increase in the expression of Kir4.1 in all affected 
individuals compared with unaffected parents (Fig. 3C and 3D). These findings suggest an 
unstable nature of Kir4.1T290A in all affected individuals.  
 
To confirm whether the endogenous Kir4.1 expressed in LCLs is functionally active and elicit 
detectable inward-rectifying potassium currents in vitro, we performed whole-cell patch clamp 
recordings in response to voltage-steps from -120 to 40mV in 10mV, from a holding potential of 
-30mV both in the presence and absence of 110μM barium, a selective Kir channel blocker. 
Baseline current discharges from two heterozygous parental controls (III.11: -0.89+0.086, n=18, 
p=1.114 and III.12: -0.86+0.049, n=16, p=1.347) were not significantly different from wild type 
controls (-0.85+0.046, n=17) (Fig. 3E). In contrast, the average barium-sensitive current 
densities were substantially decreased in all three control LCLs tested, in heterozygous parents 
(III.11: -0.64+0.041, n=15, p=2.1E-4 and III.12: -0.60+0.086, n=14, p=1.8E-4) and wild type (-
0.63+0.104, n=14, p=2.5E-4) compared with their respective baseline discharges, implying the 
specificity of K+ currents recorded from endogenous Kir channels (Fig. 3E).  
 
We recorded the resting membrane potential of LCLs from patients (Fig. 3F). Average 
membranes voltages from all patients (IV.2: -30mV+3.640, n=18, p=1.3E-5; IV.3: -
32mV+2.156, n=20, p=2.4E-5; IV.4: -31mV+3.083, n=17, p=1.7E-4; IV.5: -24mV+2.817, n=20, 
p=2.8E-5) were significantly hyperpolarized as compared to wild type (WT:-55mV+4.102, n= 
24) and parental controls (III.11: -51mV+3.842, n=21 and III.12: -50mV+4.21, n=19). In whole-
cell voltage clamp, membrane current amplitudes were measured in all family members at both 
positive and negative potentials than the K+ equilibrium potential (Ek) (Fig. 3G and 3H). The 
mean current densities as a function of voltage (pA/pF) measured in all those expressing the 
mutant channel were markedly smaller than wild type and parental controls (Fig. 3H). One major 
facet of the Kir4.1 channel is to clear extracellular K+ thereby showing stronger rectification. To 
test the K+ clearance ability of LCLs, we clamped the cells at their resting membrane potential, 
with and without 110μM barium, and measured the elicited membrane current discharges upon 
induced K+ steps (from 5-20 mM). Overall, barium-sensitive currents from all patients were 
significantly reduced when compared to both parental and wild type controls (Fig. 3I).  
 
Neural expression of Kir4.1T290A did not rescue Drosophila irk2 mutant phenotypes 
Of the three Kir channel proteins expressed in Drosophila, BLASTp search identified Irk2 
(CG4370), as the single closest homolog of human Kir4.1. Amino acid sequence alignment of 
Irk2 with Kir4.1 showed identical domain organization with 20% identity and 36% similarity 
(Fig. 4A). Enhancer-promoter (EP) element G8696 residing in the intronic region of Irk2 
genomic locus was imprecisely excised to generate a 2348 bp and 2092 bp deletion from the EP 
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insertion site to the pore-forming intramembrane domain, yielding two irk2 mutant alleles; 
irk2e118 and irk2e91b (Fig. 4B). Homozygous irk2e118 mutants are late embryonic lethal and 
transcriptional null allele, whereas homozygous irk2e91b mutants hatched viable and fertile adults 
with 51+12% reduction in Irk2 mRNA levels relative to wildtype and hemizygous genetic 
controls (Fig. 4C). However, the transheterozygotes (irk2e118/ irk2e91b); henceforth referred as 
irk2 mutant, exhibited reduction in Irk2 mRNA levels (72+15%) and shortened life span (Fig. 
4D). Furthermore, to confirm the specificity of irk2 whole mutant phenotypes, we performed 
rescue experiments using the Gal4-UAS system with Irk2WT, Kir4.1WT, irk2T290A and Kir4.1T290A 
channel proteins. Motor neuron-specific overexpression of either Irk2WT or Kir4.1WT, 
substantially rescued embryonic lethality of irk2e118 homozygous mutants and shortened life span 
of heteroallelic irk2 mutant. The neural specific overexpression of mutant proteins irk2T290A and 
Kir4.1T290A, in contrast, failed to ameliorate irk2 mutant phenotypes (Fig. 4E).  
 
In addition, we assayed larval locomotion to study the inherent functional capacity of Irk2 
channels in motor neurons. Live imaging of larval locomotion over time followed by automated 
tracing revealed substantial restricted movement of irk2 compared to WT controls (Fig. 5A). irk2 
(n=100) mutants displayed altered peristaltic behaviour (26+6.8) and speed (5.9+0.2) compared 
to WT (n=100; 75+5.9, p<0.00024 and 2.4+0.32, p<0.00017, respectively). Both peristaltic and 
speed defects are substantially improved by restoring Irk2WT channel expression (57+7, n=100, 
p<0.00035 and 5.4+0.16, n=100, p<0.00054) and Kir4.1WT (59+5.3, n=100, p<0.00017 and 
5.8+0.23, n=100, p<0.00068) in neurons (Fig. 5B). Nonetheless, neural expression of mutant 
proteins viz., irk2T290A and Kir4.1T290A failed to suppress the locomotor defects of irk2 implying 
the functional significance of T290A mutation segregating in SeSAME family (Fig. 5).  
 
irk2 mutant flies displayed impaired locomotion  
The motor neurons in adult flies are necessary for complex movements (Bidaye et al., 2014; 
Enriquez et al., 2015; Gowda et al., 2018) and we tested the persistence of early larval 
phenotypes in young adults. We used high-resolution live-tracking adult locomotor assays in two 
independent platforms; a vertical fly-climbing assay to measure fly’s innate response to gravity 
and its role in patterns of locomotion, thereby indirectly assaying the drive to move (Fig. 6A; 
Aggarwal et al., 2018) whereas horizontal fly-bowl assay which measures locomotion in a cue 
free environment (Fig. 6D; Simon and Dickinson, 2010). In the vertical fly-climbing assay, 5-
day old flies were provided with regular stimulus for locomotion by rotating the arena for fly 
climbing every 15 seconds (Aggarwal et al., 2018). The innate geotactic response of the flies 
makes them always climb towards the top of the arena, and when, after 15 seconds, the arena is 
rotated 180 degrees, the flies which are on the top are now pushed downwards providing them 
with the geotactic stimulus. This regular geotactic stimulus, delivered every 15 seconds is 
processed very reliably in the controls, with an evident climbing event for each rotation. irk2 
mutants, are positively geotactic in the first minute (p=0.02; data not shown). The total number 
of tracks as well as the distance remain unchanged between wild type and irk2 mutants 
(p=0.3788; p=0.4656). However, the average time spent by flies per track was higher in irk2 
mutants (7.98+0.44 seconds) compared with wild type (5.83+0.65 seconds, p=0.0183, unpaired 
student's t-test, n=10; Fig. 6B). Furthermore, irk2 mutants were slow climbers (1.56 + 0.15 
BLU/s) compared to controls (2.36 +0.22 BLU/s, p=0.0095, unpaired student's t-test, n=10) (Fig. 
6C; Supplementary Video 1). In the flyBowl assay, irk2 mutants walked significantly slower 
(2.49+0.28 mm/s) as compared to wild type (4.24+0.35mm/s, p=0.002, unpaired Kolmogorov-
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Smirnov test, Fig. 6E). In this cue free environment, the irk2 mutants showed a sharp decline in 
locomotor activity post 6 minutes into the assay compared to wild type flies (p<0.01 for all the 
time points, two-way repeated measures ANOVA, post-hoc Sidak's multiple comparisons, n>35, 
Supplementary Video 2).  
 
Progressive loss of dopaminergic neurons in the irk2 mutant brain 
We know that specific loss of dopaminergic neurons in the aging brain lead to motor deficits in 
many neurodegenerative conditions especially in Parkinsonism and Ataxia syndrome. In 
addition, these patients manifested tremors, ataxia, progressive spasticity and basal ganglia and 
cerebella dysfunction. We therefore explored whether a similar pathology occurs in irk2 mutants. 
To visualize DA neurons in 30 days old adults, we used TH (tyrosine hydroxylase)-specific Gal4 
line (Friggi-Grelin et al., 2003) fused to membrane-tethered eGFP. Cells positive for anti-GFP 
were consider for analysis. We focused on six major clusters in central brain, which are 
annotated hereafter as paired posterior lateral 1 and 2 (PPL1 and PPL2); paired posterior media 1 
and 2 (PPM1/2), paired posterior medial 3 (PPM3) and paired anterior lateral (PAL) (Fig. 7A). 
Paired anterior media (PAM) cluster was excluded from our analysis, since TH-Gal4 does not 
reliably label these cells. The neurons in all four DA clusters per hemisphere were significantly 
fewer in irk2 mutant flies, as compared to age-matched controls (Fig. 7B). This suggests that 
inhibiting Irk2 channel function promotes degeneration of DA clusters. To test whether the 
observed decrease in DA neurons is due to age-associated neurodegeneration rather an improper 
neural development, we analysed DA clusters in these mutants at an early age. On day 3, irk2 
mutants showed no loss DA neurons compared to age-matched control flies (Fig. 7C). These 
results, strongly suggest that loss of irk2 function is sufficient to accelerate age-dependent 
progressive loss of dopaminergic neuronal clusters which could plausibly be attributed to 
locomotor defects and shortened-life span.  
 
Discussion 
We are able to identify a novel variant in the KCNJ10 gene as a cause for the SeSAME 
syndrome. The biological processes involved were explored using genomics, channel physiology 
from patient-derived LCLs and behavioural abnormalities in Drosophila that are influenced by 
age-dependent degeneration of dopaminergic neurons. These processes are perhaps conserved 
across species, and could provide a useful platform for translational neuroscience (Ryczko and 
Dubuc, 2017; Splinter et al, 2018).  
  
Why renal tubulopathy is spared in a subset of SeSAME cases?  
All six affected individuals in SeSAME family reported here displayed relatively uniform 
neurological and psychiatric manifestations in the form of ataxia, focal epilepsy, delayed 
developmental milestones, loss of intellectual and sensory-neural hearing but with no apparent 
electrolyte imbalance. These clinical features specific to SeSAME-like pedigrees (Dhaibani et 
al., 2018) is also evident in children with autism-spectrum disorders with epilepsy (Sicca et al., 
2011; Sicca et al., 2016). In fact, several modern-day mammals like Jack Russell Terriers 
(Gilliam et al., 2014), Belgian Shepherd dogs (Mauri et al., 2017) and Malinois dogs (Van 
Poucke et al., 2017) experienced this SeSAME-like phenotype with KCNJ10 mutations. 
Therefore, it remains obscure how and why certain KCNJ10 variants fail to manifest electrolyte 
imbalances in SeSAME syndrome. There could be two possibilities for this discrepancy. First, 
it’s possible that certain KCNJ10 mutations can affect CNS functions independently of other 
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organ systems. It is conceivable that astrocytes and microglial cells of nervous system are highly 
sensitive to dysregulation of potassium homeostasis, while basolateral membrane in the distal 
nephron may be impervious to this effect (Djukic et al., 2007). Another possibility is that same 
KCNJ10 variants could behave differently between CNS and kidney, since the channel activity 
depends largely on the formation of heterotetramers with other Kir entities (Kir5.1), cell type 
specificity, gating mechanisms and influence of cell surface signaling receptors (Reichold et al., 
2010; deHart et al., 2008). Finally, it is unclear whether renal electrolyte deficit is a progressive 
impairment that develops over time, or a direct effect of the mutation, which necessitates further 
investigations and follow-up clinical evaluations.  
 
Is ROH a cause or an effect of recessive inheritance in SeSAME syndrome? 
The KCNJ10 is the single most identified candidate gene for the SeSAME syndrome, with 21 
mutations from 27 patients reported till date, of which 11 were from consanguineous unions 
(Celmina et al., 2018). Autosomal recessive neuropsychiatric illnesses have also been witnessed 
in children born out of consanguineous marriages and some of them carry long stretches of 
homozygous segments within their genomes (Melhem et al., 2016; Gandin et al., 2015; Bittles 
and Black, 2010). Since the affected individuals detected to have SeSAME syndrome were born 
out of consanguineous parentage, we primarily used the ROH based approach to identify those 
variants present within the homozygous stretches shared between all those affected. This 
approach identified three deleterious variants belonging to KCNJ10, OR10T2 and HSPA6 genes. 
The allele frequencies of OR10T2 (18%) and the HSPA6 (9%) variants in the ExAC South Asian 
(SAS) populations are fairly high and hence unlikely to contribute to illness. However, it is 
interesting to note the previous association of the reported HSPA6 variant in patients with 
sensory disturbances (Kobayashi et al., 2013). This suggests that although gene of major effect 
are probably the primary drivers of the illness, the diversity in the clinical presentation is 
possibly an outcome of the complex genetic interactions between common and rare variants of 
varying effect sizes. As an alternative, we also used a non-ROH approach which is purely based 
on the allele frequencies to identify homozygous rare coding variants that could have been 
missed out by the previous approach. The fact that both methods autonomously converged to a 
deleterious novel KCNJ10T290A variant, co-segregating with the illness is remarkable. Given the 
clinical phenotypic diversity and for additional reasons as discussed above, we suggest two 
possibilities broadly classified into intrinsic and extrinsic factors. Intrinsic factors include 
recombination hot-spots, defects in DNA repair, chromatin remodelling and yet unidentified 
intra-cellular signaling events, that favour to the occurrence of ROH, co-segregating with the 
illness. Another factor could be the clan structure of the family, which indicates a high degree of 
endogamy. Therefore, an interplay between these two factors could influence the clinical 
diversity of SeSAME syndrome. 
 
Another possibility is that individual ROHs might play key role in spatial-temporal regulation of 
gene expression within cell types that are sensitive to K+ homeostasis (Christofidou et al., 2015). 
The difference in the expression of Kir4.1 among unaffected siblings in our SeSAME pedigree 
also highlights the role of ROH in gene regulation. Therefore, it would be useful to investigate 
the functional consequences of homozygosity in expression of genes within the ROH and/or in 
close proximity especially in cell types that are relevant to the pathophysiology of SeSAME 
syndrome.  
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Usually for every pregnancy in autosomal recessive disorders, there is a probability of 0.25 that 
the offspring(s) will inherit two copies of the disease gene and will therefore exhibit the 
phenotype (Ellard et al., 2015). However, in a clinical setting this distribution is skewed more 
towards almost all affected individuals in the same generation, than one would rather expect by 
chance, especially in children born to consanguineous unions. Thus, this skewed observation 
needs to be addressed at holistic paradigms by developing bio-physical and mathematical models 
to understand the physics and governing dynamics (Nash J.F, 1950) of the intra-cellular events, 
influencing the silent recombination choices of homologous chromosomes. 
 
Importance of KCNJ10 variant characterization in SeSAME syndrome 
Functional characterization of exogenously expressed mutant Kir4.1 has been attained in a 
variety of isolated cell types like astrocytoma cells (Sicca et al., 2016), C6 glioma cells (Mendez-
Gonzalez et al., 2016), CHO and HEK 293 cells (Reichold et al., 2010; Williams et al., 2010), 
Drosophila S2 cells (Doring et al., 2002), kidney-derived ts201 cells (Mendez-Gonzalez et al., 
2016) and Cosm6 (Kucheryavykh et al., 2007). However, the sensitivity and specificity of 
physiological read outs from Kir ion channels depends inherently on factors like cellular milieu, 
auxiliary subunits and formation of subunits for heterooligomeric assembly in the cell type of 
choice (Doring et al., 2002; Neush et al., 2006; Fakler et al., 1996a and 1996b). Another major 
challenge is to extrapolate the findings from cloned Kir channels in isolated cell types to their 
native effects in disease-relevant tissues, which most likely yield weak currents and rectification 
(Olsen et al., 2006). Therefore, in vitro cellular models that preserves the native environment to 
measure authentic Kir4.1 channel activity will serve as an excellent cell of choice to investigate 
functional effects. We therefore addressed these issues, using patient-derived LCLs which 
harbour the risk variant.  
 
Since the KCNJ10T290A variant observed in this SeSAME family, is a potential threonine 
phosphorylation residue, we performed in silico analysis to explore this possibility. Using 
Group-based Prediction system (GPS; Xue et al., 2008), we speculate that T290 could potentially 
be phosphorylated (GPS score 9.4 > cutoff 6.78 by Interleukin 1 Receptor Associated Kinase 4, 
IRAK4) at native conditions. Nonetheless, T290A phosphorylation has not been reported in 
PhosphoSitePlus. In light of the in-silico predictions and in vitro functional implications of 
KCNJ10T290A variant using patient-derived LCLs followed by whole-cell patch clamp (see 
results section), we predict the likelihood of T290 phosphorylation either at a very low 
stoichiometry or under specific signaling stimuli. However future experiments will assist in 
discriminating between these possibilities.  
 
Genetic manipulation techniques and phenotypic similarities among different categories of K+ 
channel mutants in Drosophila (Littleton and Ganetsky, 2000; Bellen et al., 2010), offer an 
excellent opportunity to investigate the functional role of Kir ion channels at organismal level. 
Apart from in vitro approaches, animal models showed greater potential in deciphering the cell-
type specific role of Kir4.1 in brain function. Justifying the importance of Kir4.1 in K+ 
homeostasis, Kir4.1 knockout mouse, Xenopus oocytes and zebrafish mimics a subset of 
SeSAME symptoms observed in humans (Djukic et al., 2007; Neusch et al., 2001). In fact, of the 
three Kir channels identified in Drosophila, reduced expression of irk2 in the CNS lead to 
defects in spike discharges and adult lethality suggesting an alternate model to investigate 
cellular functions of Kir4.1 (Chen and Swale, 2018). In addition, irk2 channels are constitutively 
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active in Drosophila S2 cells, derived from the macrophage-like lineage, and functionally 
associate with sulphonyl urea receptors (SUR). In this study, we explored the role of Irk2 in CNS 
at cellular level. Irk2 is essential for survival of adult dopaminergic neurons and for coordinated 
rhythmic locomotion in larval and adult motor neurons. This relies on complex interplay between 
central and peripheral nervous systems where the central pattern generator (CPG) neurons at 
neuromeres regulate peristaltic movement of peripheral body wall muscles (Hasegawa et al., 
2016; Kohsaka et al., 2017). Therefore, it appears that Irk2 ion conductance pathway in 
Drosophila is responsible for regulating K+ gradient and glutamate homeostasis at tripartite 
synapses of neuromuscular junctions (NMJ) ultimately controlling synaptic activity and 
neurotransmitter release. In addition, it would be valuable to dissect the role of Irk2 in synaptic 
vesicle turnover at NMJ given the role of K+ inward rectification in regulating endocytosis 
(Feliciangeli et al., 2010). Finally, our findings provide a proof-of-concept approach to explore 
the cell type specific function of Kir4.1 in Drosophila nervous system to better understand 
mechanisms of K+ spatial buffering and synaptic architecture which is an essential feature for 
proper synaptic transmission and plasticity.   
 
Finally, recapitulating the biology of complex neuropsychiatric disorders in cellular and animal 
models, to identify downstream mechanisms is of heuristic value. Using patient-specific cells we 
were able to show the dysfunction of the primary disease causative gene in SeSAME syndrome, 
which when defective can cause quantifiable degenerative symptoms in Drosophila model 
system. As we constantly expand the identification of candidate genes for neuropsychiatric 
syndromes, these trans-disciplinary approaches will benefit our understanding of genotype-
phenotype correlations at mechanistic level.  
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Figure legends 

Figure 1. Clinical diagnosis of SeSAME family members.  
(A) Genogram of family with SeSAME syndrome with no electrolyte imbalance. The 
generations are marked in roman letters (I to V) and individuals in each generation are given 
running numbers. (B) All affected siblings showed dysmorphic facial features. (C) T2W image 
of IV.2 showing enlarged and bilateral basal ganglia (blue arrows) (D) T1 MPRAGE of IV.2 
showing bilateral cerebellar atrophy (orange arrows) (E) EEG of V.1 showing generalized sharp 
and slow wave discharges predominantly in Fronto Central region (F) EEG of V.2 showing 
generalized poly spike discharges predominantly in Fronto-Temporal region. (G) Hierarchical 
clustering of 23 biochemical readouts from whole blood samples.  
 
Figure 2. Identification of novel mutation in KCNJ10 by homozygosity mapping and whole 
exome analysis of SeSAME family members.   
(A) WES analysis pipeline and variant prioritization methods. (B) Principle component analysis 
(PCA) of exome-wide F-statistics explains for an overall variance of ~49% (PC1) between the 
SeSAME family members (purple ellipse) and healthy population controls (blue ellipse). The 
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dot-dash lines in the plot represents the 95% confidence ellipse (C) The zygosity of the 
KCNJ10T290A variant was validated in all the six affected (HOM) and the four unaffected 
individuals (HET) within the pedigree. (D) A schematic reconstruction of Kir4.1 with the T290A 
variant (purple) mapped in the cytoplasmic C-terminal domain, along with other deleterious 
variants identified from previous studies. (E) Multiple sequence alignment (MSA) of the Kir4.1 
protein sequence across species reveals the evolutionary conservation of T290A in VEST 
domain. 
 
Figure 3. Novel Kir4.1T290A mutation affects channel localization and function in patient-
derived LCLs  
(A) Projected Z-stacks of six LCLs showing the distribution of Kir4.1 in green, phalloidin to 
label F-actin in red and DAPI to label nucleus in blue. Scale bar, 10μm. (B) Quantitative 
measurement of cytoplasmic and nuclear punctae normalized against the cytoplasmic space (as 
measured by F-actin distribution) and nuclear space (as measured by DAPI distribution) in Z-
stacks.  (C) Anti-hKir4.1 western of six LCLs showing the distribution of both monomeric and 
multimeric forms of the protein. Arrow indicates the expression of Kir4.1 protein against beta-
actin loading control (blot insert at the bottom). -/+ and -/- indicates the nature of zygosity of 
unaffected parents and affected individuals. (D) Densitometric plots representing the relative 
expression Kir4.1 protein from three independent western experiments is represented as 
mean+SEM. Data analyzed using ANOVA. (E) Whole-cell currents measured from healthy wild 
type controls and two unaffected parental controls in response to voltage step protocol from -120 
to 40mV in presence and absence of 110μM barium. Cells were clamped at Vm, equal to resting 
Vm (Vh=Vm). Histogram shows the subtraction of currents obtained with barium from whole-
cell currents, which served as internal control for each experiment. Barium sensitive current 
shows the contribution of Kir channels to whole-cell currents in each LCLs. Data analysed by k 
independent Kruskal-Wallis test with Bonferroni correction and represented as +S.E. (F) 
Average membrane potential of LCLs from healthy control (wild type), two unaffected parents 
(III.11 and III. 12) and four affected (IV.2 to IV.4). Data analyzed using k independent group 
one-way ANOVA test with Turkey-Kramer post hoc tests. (G) whole-cell patch clamp 
recordings in response to voltage-steps from -120 to 40mV in 10mV steps, from a holding 
potential of -30mV. Representative currents traces from respective LCLs. (H) Current-voltage 
relationship is summarized within -120 to 40mV range. (I) Summary of inward currents 
discharges measured in response to induced K+ steps from 5-20 mM extracellular K+. For 
improved Kir specificity, Kir current discharges measured with and without barium. Data 
analysed using k independent group one-way ANOVA test with Turkey-Kramer post hoc tests. 
Error bars represent +S.E. ** represents p<0.001.  
 
Figure 4. Generation and molecular characterization of irk2 mutants  
(A) Amino acid sequence alignment of Drosophila Irk2 and human Kir4.1. Identical amino acid 
residues are marked in white and black in grey background. Relative position of human Kir4.1 
domain organization is marked in the alignment. The variant identified in this study is marked by 
*. (B) Genomic organization of Drosophila irk2 locus and position of P element G8696. The 
regions deleted by P-element excision events are marked here. (C) RT-PCR analysis of cDNA 
extracted from fly heads of wild-type (WT), homozygous and heterozygous combinations of 
irk2e118 and irk2e91b mutants using primers specific for irk2 coding region. cDNA derived from 
homozygous irk2e118 embryos were used for RT-PCR analysis since they are embryonic lethal.  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/506949doi: bioRxiv preprint 

https://doi.org/10.1101/506949
http://creativecommons.org/licenses/by-nc/4.0/


Expression of neighboring gene (CG10177) and housekeeping gene RpL32 were used as internal 
control. (D) Survival percentage was evaluated for irk2 mutants compared with wild-type 
controls, heterozygous irk2 mutants and heteroallelic combinations of irk2 mutants. (E) Neuronal 
rescue experiments were performed with C155-G4 with UAS derivatives expressing both wild 
type and mutant forms of human Kir4.1 and Drosophila Irk2 proteins. Survival percentage was 
assayed for all above mentioned combinations both in wild-type and irk2 mutant background 
(heteroallelic irk2e118/irk2e91b combination referred as irk2 mutant).  
 
Figure 5. Kir4.1T290A variant fail to ameliorate larval locomotion defects observed in irk2 
mutants 
(A) Automatic traces of larval locomotor patterns generated for various genotypes. (B) 
Quantification of average speed, current length against mean length and peristaltic contractions 
for various genotypes tested here. Data analyzed by one-way ANOVA test with Turkey-Kramer 
post hoc tests (p<0.005 for all comparisons with their respective irk2 mutant alone control). Error 
bars represent +S.E. ** represents p<0.001.  
 
Figure 6.  Locomotion impairment in irk2 mutant adults 
(A) Schematic of vertical climbing assay (Aggarwal et al 2018). (B) Average time spent by flies 
to complete one climb was higher in irk mutants as compared to the controls. (C) Average speed 
of the flies was lower for irk mutants as compared to controls. (B') and (C') represent track 
duration and average speed of the flies with respect to per unit time spent in the assay. The track 
duration and average speed of mutants at initial timepoints do not differ significantly from other 
timepoints, indicating no fatigue or metabolic defect (two-way repeated measures ANOVA, 
post-hoc Sidak's multiple comparisons). (D) Schematic of flyBowl setup (Simon and Dickinson, 
2010). (E) Average speed of flies in the flyBowl assay in overall 15 minutes for irk mutant is 
significantly lower than controls. (E') time series analysis of average speed of flies shows 
significant decrease in speeds of irk mutants wrt controls post 6th minute into the assay (p<0.01 
for all timepoints, two-way repeated measures ANOVA, post-hoc Sidak's multiple comparisons, 
n>35). 
 
Figure 7. Age dependent degeneration of adult dopaminergic neurons in irk2 mutants   
(A) Graphical representation of anterior (left) and posterior (right) brain regions to show the TH-
Gal4 labeled DA neuronal clusters. ML represents mid line (B) MIP of Z-stacks of 
TH>mCD8::GFP expressing adult brain stained with anti-nc82 and anti-GFP to label 
dopaminergic neurons in anterior and posterior regions of 3d and 30d old flies. Scale bar, 5μm 
(C) Quantification of number of DA neurons per brain hemisphere between wild type (n=13 and 
n=17) and irk2 mutant (n=14; n=21) of 3d and 30d old flies. ns represents not significance and 
** represents p<0.001. 
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Table 1: Clinical information of the affected individuals in the pedigree 
Clinical Information 

Features IV.2  IV.3  IV.4 IV.5 V.1 V.1 
Age  30 28 25 22 12 9 
Gender Female Female Male Male Male Female 
Developmental 
delay 

++ ++ ++ ++ ++ ++ 

Seizures GTCS GTCS GTCS GTCS GTCS GTCS 
Ataxia ++ ++ ++ ++ ++ ++ 

Nystagmus Upgaze nystagmus No No 
Horizontal gaze 
evoked 

No No 

Incoordination ++ ++ ++ ++ ++ ++ 

Muscle tone 
Increased 
(spastic type) 

Increased  
(spastic type) 

Increased 
 (spastic type) 

Increased  
(spastic type) 

Increased 
(spastic type) 

Increased 
(spastic type) 

DTRs Exaggerated Exaggerated Exaggerated Exaggerated Exaggerated Exaggerated 
Plantar Extensor Extensor Extensor Extensor Extensor Extensor 
Irritability + + + + + + 
Stereotypes - - + - + - 
Psychosis + - - - - - 

Hyperactivity - - + - + + 

Speech 
Dysarthric 
(scanning+spastic) 

Dysarthric 
(scanning+spastic) 

Dysarthric 
(scanning+spastic) 

Dysarthric 
(scanning+spastic) 

No speech No speech 

Gait Unable to walk Unable to walk Unable to walk Unable to walk 
Walks with 
support 

Walks with 
support 

Audiometry Mild SNHL Mild SNHL Severe SNHL Severe SNHL 
Moderate 
SNHL 

Moderate 
SNHL 

IQ  Not Done Not Done Not Done  Not Done  
Profound 
mental 
retardation

*
  

Profound 
mental 
retardation

*
 

* IQ is measured using Vineland Social Maturity Scale (VSMS) and found to be <20  
 
 
Table 2. ROHaffected 
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Chr Start End 
1 149726239 152185823 
1 152883608 161561287 
12 115109694 125324197 
5 137206560 143131673 
8 15398151 31024638 
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Supplementary Material 
 

Supplementary Figure 1: Karyotypic and STR validation of six LCLs 
(A) Metaphase chromosomal spreads of six LCLs. 
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Supplementary Figure 2 PCA plot explaining the intra-familial levels of homozygosity between affected and un-affected members 
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Supplementary Table 1: Biochemical investigations of all affected individuals in the SeSAME family 
 

Biochemical investigation of affected siblings in SeSAME family  

Investigation Reference values IV.1  IV.2  IV.3 IV.4 V.1 V.1 

Serum Sodium 136-146 mmol/L 137.4 137.3 136 137.7 137.7 137 

Serum Potassium 3.5-5.1 mmol/L 3.68 3.69 4.23 3.98 3.81 3.95 

Serum Chloride 101-109 mmol/L 104 103.5 98.5 100.9 100.2 99.2 

Serum Calcium 8.8-10.6 mmol/L 9.14 9.45 10.2 9.73 Not done Not done 

Serum phosphorus 
(inorganic) 

2.5-4.5 mmol/L 2.9 3.2 Not done 3.4 Not done Not done 

Plasma Ammonia 
11-51 umol/L 
 

38 
 

50 36 40 37 48 

Plasma Lactate 
4.5-20 mg/dL 
 

12.6 22 10.3 17.6 17.8 16.2 

Creatinine Kinase <171 U/L 58 90 78 96 Not done Not done 

Serum Bilirubin 0.3-1.2 mg/dL 0.35 0.23 0.35 0.35 0.27 0.28 

SGOT 8-35 U/L 24.4 27.8 25.3 30.7 25 25 

SGPT 7-35 U/L 18.1 19.7 21 22.7 17 13 

Alkaline phosphatase 
30-120 U/L 
 

151 142 123 117 158 188 

Serum Albumin 3.5 - 5.2 g/dL 3.59 3.93 4.39 4.14 3.76 4.11 

Serum Globulin 2.5-5.6 g/dL 4.2 3.6 3.9 - 3.4 3.1 
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Albumin/Globulin ratio 1.2-2.5 0.9 1.1 1.1 1.16 - 1.3 

Total Protein 6.6-8.3 g/dL 7.74 7.56 8.27 7.68 7.1 7.2 

Blood Urea 
17-43 mg/ dL 
 

21.4 25.4 18.3 26 22 15 

Serum Creatinine 0.66-1.09 mg/ dL 0.82 0.62 0.66 0.7 0.62 0.51 

Total cholesterol <200 mg/ dL 195 241 207 162 173 163 
HDL cholesterol 40-60 mg/ dL 56.2 65.1 38.8 41.6 55.5 75 
LDL cholesterol <100 mg/ dL 121 157 156 108 104 85 
Serum Triglycerides <150 mg/ dL 88 93 63 61 66 62.7 

VLDL 5-30 mg/ dL 18 19 13 12 13 15 

Aryl sulfatase 35-130 nmol/4hrs/ml 87 86 104 108 75 88 

Vitamin B12 180-914 pg/ml 166 277 180 168 197 189 

Serum Homocysteine <15 umol/L 16 14 21 17 8.5 9.0 

Urinary Sodium  10-250 mmol/L 170 141 202 157 174 85 

Urinary Potassium  1-100 mmol/L 23.74 61.69 40.92 45.77 62.35 22.4 
Urinary Chloride  10-250 mmol/L 180.9 195.5 45.7 201.2 81.3 86.3 
Urinary Calcium  0.6-30 mg/ dL 3.5 6.1 3.7 4.5 3.5 1.0 
Urinary Creatinine 0.31-367 mg/ dL 118.8 208.5 236.6 311.5 77.2 37.5 
Calcium/creatinine <0.14 0.0294 0.0292 0.0156 0.0144 0.0453 0.0266 
Screening for Inborn Errors 
of Metabolism 

- Negative Negative Negative Negative Negative Negative 

Urine screening for 
abnormal metabolites 

- Negative Negative Negative Negative Negative Negative 
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Supplementary Table 2: ROH (n=56) (either overlapping or unique) detected within the exomes of all cases and controls. No ROH 
detected in the populations controls 7, 8 and 9. 
 
Supplementary Table 3: List of variants (n=78) within ROHaffected that were HET in all of the unaffected parents and HOM in all of 
the affected siblings. (0/1 = HET; 1/1 = HOM) 
 
Supplementary Table 4: Variants (n=7) shortlisted based on assessing the allele frequencies (MAF<0.01) in 1KG_all and ExAC_all. 
The below variants are the only those which were HET in all unaffected parents and HOM in all affected siblings. 
 
Supplementary Video 1: Live imaging of a single adult wild type and irk2 mutant fly climbing in vertical arena. Note the reduced 
speed and distance travelled by irk2 mutant compared with wild type.  
 
Supplementary Video 2: Live imaging of wild type and irk2 mutant flies in flyBowl assay
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