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Abstract  

  

CRISPR-Cas9 is a powerful genome editing tool, whose efficiency and safety depends on the 

selection of single-guide RNA (sgRNA). Machine learning has been applied to optimize sgRNA 

selection, but several challenges remain. The performance of predictive model is limited by the 

amount of available data in many cell lines, ignorance of gene network function and its variable 

effect on phenotype, and elusive biological interpretation of computational models. We develop 

an accurate and interpretable deep learning model SeqCrispr to address these problems. In 

benchmark studies, SeqCrispr outperforms state-of-the-art algorithms and improves the 

prediction accuracy when applied to small sample size cell lines. Furthermore, we find that gene 

context-specific network properties are critical for the prediction accuracy in addition to the last 

three nucleotides in sgRNA 3’end. Our findings will bolster developing more accurate predictive 

models of CRISPR-Cas9 across wide spectrum of biological conditions as well as efficient and 

safe gene therapy.  

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/505602doi: bioRxiv preprint 

https://doi.org/10.1101/505602


Introduction 

 

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome 

engineering is a powerful tool for modifying specific genome DNA targets 1, 2. It was easily 

adopted to different biological systems, like plants, animals and even human cells, thus widely 

used in many applications. However, several optimizations are still necessary to improve this 

technique’s efficiency and specificity.  

 

The targeting process in CRISPR-cas9 system has three fundamental requirements for its 

success, specifically for S. pyogenes Cas9 3, 4. First, 20 nucleotide single-guide RNA (sgRNA) 

needs to be complementary with targeting genome sequence. Second, a Protospacer Adjacent 

Motif (PAM) needs to be located upstream of the target site 5. Finally, off-target effect, which is 

caused by other genome sequences similar to the targeting sequence, needs to be minimized 6. 

These are necessary for a powerful system, but are not sufficient. Tens or hundreds of sgRNAs 

can be chosen from to knock out or modify a target gene, but not all of them are ideal. Different 

factors were proposed to affect sgRNA on-target efficiency and specificity. For instance, the first 

step of sgRNA targeting is the unwinding of targeted genome dsDNA 7. The strength of target-

site DNA double strands binding is a determinant for the unwinding rate and thus has impact on 

sgRNA targeting efficiency. DNase sensitivity can indicate the chromatin coverage and 

accessibility of target sites 8, 9. Open chromatin sites may promote sgRNA binding efficiency due 

to their high accessibility. Epigenetic features, such as transcription factor binding and 

methylation on target DNA strand, could also affect sgRNA targeting efficiency 10, 11. It was 

believed that successful design of sgRNAs could save hours and days work as well as the cost on 
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experimental reagents 12. Thus, determination of critical biological features for the on-target 

efficiency and computational prediction of sgRNA on-target efficiency will significantly 

facilitate the success of CRISPR-Cas9 experiments.  

 

Predicting sgRNA targeting efficiency is still a challenging problem. Especially, sgRNA 

targeting efficiencies are different when experiments are not conducted in the same cell line. 

Differences between cell lines can result from re-wired biological network, varied basal gene 

expressions, different epigenetic features, and genome structural variation such as copy number 

differences. Many system-level omics data are now available benefiting from wide utilization of 

next generation sequencing 13, 14. Besides, genome-wide screening technique that combined the 

CRISPR-Cas9 technique and next generation sequencing methods made large-scale CRISPR-

Cas9 data available 15. With these large-scale datasets, it becomes feasible to integrate gene copy 

number variation, gene expression, epigenome information, and sequencing data to develop 

machine learning models. Up to date, several deep learning models have achieved considerable 

success 16, 17.  

 

In spite of these progresses, several critical issues remain in the understanding and the prediction 

of CRISPR-Cas9 efficiency. First, even though large-scale dataset is now available, not all of 

cell lines have enough data for training accurate machine learning models. Second, the state-of-

the-art deep learning model is a black-box. Their biological interpretation is still elusive. It is not 

clear what the most important biological features are to determine the on-target efficiency. Last, 

because of the lack of rational methods comparing sgRNAs efficiencies targeting on different 

genes with distinct functions and essentialities, compromises had to be made. Few existing 
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methods take the context-specific network functional difference of targeting genes into account. 

Since cellular response to gene editing is a systematic behavior, global network properties of a 

gene may play an important role. However, they have not been explored in the machine learning.  

 

In this paper, we have made several contributions to address these problems. We have developed 

a new deep learning model SeqCrispr. SeqCripr have five unique features. First, it uses a novel 

representation of nucleotides. Second, it for the first time incorporates context-specific network 

features of gene into the model. Third, it combines two most successful deep learning 

architectures: recurrent neuron network (RNN) and convolutional neuron network (CNN). 

Fourth, it uses transfer learning to train predictive models for the cell lines that have few 

samples. Finally, it implements a universal feature ranking algorithm for the deep learning to 

determine the importance of biological features responsible for the CRISPR-Cas9 on-target 

efficiency. In the benchmark study, SeqCrispr outperforms the state-of-the-art algorithms 16, 17 as 

well as significantly improves the prediction accuracy when applied to the cell line with a small 

sample size.  Besides, we find that the context-specific network feature is critical for the 

CRISPR-Cas9 on-target efficiency, in addition that the identity of last three nucleotides in 

sgRNA 3’end is the most important feature of sgRNA. Our results may shed new light into 

developing more accurate and robust machine learning models for selecting efficient sgRNA 

across wide spectrum of biological conditions as well as has implications on developing efficient 

and safe gene therapy using CRISPR-Cas9 technique.  

 

Results: 

Overview of SeqCrispr model for CRISPR-Cas9 efficiency prediction 
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The proposed SeqCrispr model for the prediction of CRISPR-Cas9 efficiency has four major 

components, as shown in Figure 1. The first component is a nucleotide embedding layer that is 

inspired by the word2vec technique 18. As described in Methods part, unsupervised 

representation learning for vector representation of 3mers was conducted with whole genome 

exons sequences. The vector representations of 3mers in the embedding layer of SeqCrispr were 

initialized with that learned with unsupervised representation learning and were also fine-tuned 

later. In addition to the 3mer representation, local biological features such as DNA-sgRNA 

binding melting temperature, DNase peak, CTCF peak, RRBS peak, and H3K4me3 peak as well 

as global gene network property that is derived from the gene neighbor connection and their 

expression values are also used as input features. The second component is a hybridization of 

recurrent neuron network (RNN) and convolutional neuron network (CNN) for the feature 

engineering of the sgRNA. The prior one is well known for its good performance on analyzing 

sequential data, like natural language processing 19. The performance of later one is superior on 

image data processing, but evidences also show CNN’s potential on sequential data processing, 

such as sentence classification 20. Thus these two models could be complementary for analyzing 

sgRNA efficiency considering that the primary feature of CRISPR-Cas9, sgRNA sequence, is 

also sequential. The third component is a fully connected deep neural network that combine the 

sequence features of the sgRNA with the local and global biological features of targeting gene as 

the input. The fourth compound is added to rank the importance of sequence and biological 

features using input perturbation method. 
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Figure 1. Schematic representation of SeqCrispr Model. This model includes four components: 

1) Embedding layer, 2) Convolutional neural network and recurrent neural network layer, 3) 

Fully connected layer, and 4) Input perturbation layer. 

 

SeqCrispr hybrid model is more accurate than state-of-the-art deep learning models 

 

We compared the performance of SeqCrispr hybrid model with random forest, boosted 

regression trees, SeqCrispr RNN only, and SeqCrispr CNN only. The SeqCrispr hybrid model 

clearly outperformed other models (Figure 2A).  The evaluation metric is spearman correlation 
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of predicted on-target efficiency and ground truth on-target efficiency. The performance of 

SeqCrispr hybrid model is higher than conventional machine learning models by 3%-18%. It can 

perform better than SeqCrispr CNN by 4.7%-11.6% and SeqCrispr RNN by 0%-6.7%. Thus we 

used SeqCrispr hybrid model to perform follow-on tests and comparisons. 

 

We further compared the SeqCrispr with the state-of-the-art deep learning models that were 

trained with other datasets. We evaluated the SeqCrispr model in two different scenarios using 

spearman correlation metric. 1) Pre-selected negative selection dataset. It was used to train 

deepCRISPR model 16. The original dataset has ~15K sgRNAs data from four cell lines: HeLa, 

HL60, HCT116 and HEK293T. However, gene expression profile data is not available in 

HEK293T cell line, so the gene global functional property couldn’t be computed. We only 

studied the remaining three cell lines data. We combined randomly selected 80% data from each 

cell line to train the SeqCrispr model and then tested the left 20% data in each cell line. The 

spearman correlation in each of the three cell line is all better than the published performance of 

deepCRISPR model (Figure 2B). 2) CRISPR-Cpf1dataset 17. Deep learning model had better 

performance on studying CRISPR-Cpf1 data. SeqCrispr model spearman correlation 

performance on this dataset is around 0.77. As a comparison, published model DeepCpf1 used in 

Kim et. al could get similar spearman correlation, ~0.75 (Figure 2C). Since only the sgRNA 

sequence information is available, the model input only includes sgRNA primary sequence.  

 

In summary, our implemented deep learning models SeqCrispr has comparable performance with 

or higher performance than the current state-of-art deep learning models. It is noted that the 

word2vec embedding of 3-mer nucleotides outperforms the corresponding one-hot encoding 
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representation that has been widely used by the state-of-the-art methods (Supplementary material 

Table S1). Interestingly, word2vec embedding with Hilbert-curve filling may have advantage 

over vertical stacking (Table S1) 21. We also noted that the performances of machine learning 

models were also determined by the quality of experimental data. Besides, the SeqCrispr model 

performance on CRISPR-Cpf1 experiment is higher than that on CRISPR-Cas9 experiment. This 

might be attributed to lower off-target effect in CRISPR-Cpf1 system 22, 23. 

 

 

 

Figure 2. SeqCrispr hybrid model can get comparable performance with or higher performance 

than other state-of-art deep learning models. A) Comparison of random forest model, boosted 

regression tree model, SeqCrispr models performance on dataset collected in K562, A549 and 
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NB4 cell lines. Deep learning outperforms conventional machine learning model. B) Comparison 

of SeqCrispr model and deepCRISPR performance on dataset collected in each of HeLa, HL60 

and HCT116 cell lines. C) Comparison of SeqCrispr model and DeepCpf1 model performances 

with dataset collected with CRISPR-Cpf1 experiment.  

 

Learned information are transferable between cell lines 

 

Table I. performances of the model training the dataset of cell line in each row and testing on the 

dataset of cell line in each column. 

 K562 A549 NB4 

K562 0.50 0.325 0.252 

A549 0.282 0.48 0.36 

NB4 0.24 0.37 0.44 

	
 

We further investigated the generality and transferability of the SeqCrispr model. We firstly 

learned model with one cell line’s data and then tested the performances of the model on another 

cell line’s data. The spearman correlation ranges in 0.24-0.37 without any posterior weights fine-

tuning (Table I). This indicates that the information learned with data of one cell line is 

transferable to other cell lines. Next, we tested how transferable each part of SeqCrispr model is. 

The first model is trained with the combined dataset from K562, A549 and NB4 cell lines. 

Transfer learning was conducted on the combined dataset from HeLa, HL60 and HCT116 cell 

lines. We froze the weights in the first few layers and fine-tuned the remaining layers’ weights, 

respectively. We showed that the performance would drop more when more layers were frozen 
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(Figure 3A). For the following analysis, we chose to only freeze the embedding layer, a trade-off 

between performance and number of trainable parameters. Then we performed transfer learning 

with new data in different sample sizes (Figure 4B). We found fine tuning the unfrozen weights 

of SeqCrispr model with more unstudied data could still boost model performance. Thus, when 

training data is limited, transfer learning method can improve predictive model performance 

(Figure 4B). It is also worth noting that the performance of the trained model by the regular 

training method could catch up with that of the model trained by the transfer learning method 

when sample size is large enough. Thus when a cell line data sample size is small, a model 

learned with another cell line data has transferable information and initializing parameters with 

that of trained model could improve new model’s prediction performance in this cell line. 

However, more data is still necessary to deliver cell line specific information to the model to 

boost performance. 

 

 

 

Figure 3) Transfer learning performances of SeqCrispr model that is trained with combined 

dataset from K562, A549 and NB4 cell lines and then fine-tuned on combined dataset from 

HL60, HCT116 and HeLa cell lines. A) Different layers’ weights are frozen and made 
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untrainable. Fine tuning: All weights in the model are trainable. Embedding frozen: Only the 

weights matrix in embedding layer are frozen and the remaining weights are trainable. Trainable 

FC: only the weights in the last fully connected layers are trainable and all the remaining weights 

are frozen. Frozen all: All the weights are frozen. B) Transfer learning was performed in 

Embedding frozen way. Transfer learning: different sizes of training data from HL60, HCT116 

and HeLa cell lines are used to fine-tune the transferred model and same test data is used. 

Regular: different sizes of training data from HL60, HCT116 and HeLa cell lines are used to 

train a new model with randomly initialized weights and tested with the same test dataset. 

 

Context-specific gene network property boosts models performance and is one of the most 

important features responsible for CRISPR-Cas9 on-target efficiency 

 

In CRISPR-Cas9 system, sgRNA is the key to find target genome location by matching sgRNA 

sequence with target genome complementary sequence. The sgRNA on-target efficiency can not 

only affected by sgRNA primary sequence, but also by other related biological features. The data 

we used in this study are from CRISPR-Cas9 negative selection experiment in three cell lines 

(K562, A549 and NB4). These cell lines were selected because their biological features, 

including epigenetic features, gene expression, and copy number, are available. In a negative 

selection experiment, a sgRNA pool is firstly designed. Cells are then transduced by sgRNAs 

and sgRNAs targeting on essential genes cause cell death or inhibit cell proliferation 24. Next 

generation sequencing technology is used to detect sgRNA counts in control group and 

experimental group. Log2fc is calculated afterwards. A more negative log2fc indicates a higher 
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sgRNA targeting efficiency. Low sgRNA targeting efficiency is due to either low sgRNA 

targeting efficiency or low gene essentiality. 

 

We chose several biological features as our models inputs. They include local sequence 

properties that affect the accessibility of target genome, and quantify sgRNA and DNA binding 

efficiency. These included amino acid cutting position, RNA-DNA binding melting temperature 

and several epigenetic features. 1) Amino acid cutting position. A mutation close to 5’ end of the 

gene is more likely to cause a structural change on expressed protein because transcript sequence 

locating downstream of the mutation position will be changed. 2) sgRNA-DNA melting 

temperature. Higher sgRNA-DNA binding melting temperature indicates higher binding 

efficiency. 3) We included multiple epigenetic features, including DNase, CTCF binding, 

H3K4me3 and RRBS. Genome regions that are in open chromatin are more sensitive to DNase 

cleavage 25. Target DNA sequence in open chromatin region could be more accessible by 

sgRNA. CTCF binding was shown to regulate high order chromatin structure 26. The methylation 

of H3K4 is also an important epigenetic mark associated with transcription factors binding and 

chromatin remodeling 27. Even though some studies argued that DNA methylation had no 

significant effect on Cas9 cutting on target genome which can perfectly match with sgRNA 11, 

target gene methylation positions were still found to be negatively correlated with DNase 

hypersensitive sites 10. Thus we also included this feature. 

 

We have also included copy number variance. Data has shown that sgRNAs targeting on DNA 

sequence with higher copy number led to higher anti-proliferation effect because they could have 

multiple targeting sequences on genome 28. Moreover, for the first time, we included context-
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specific gene network property that was derived from tissue-specific gene networks and gene 

expression profile. The sgRNAs targeting on non-essential or less-essential genes tend to show 

more positive log2fc because knocking out these genes will not inhibit cell proliferation. Other 

works have empirically filtered out the sgRNAs targeting on non-essential or less-essential 

genes, which dramatically decrease the available sample size 12, 16. Previous study had shown 

that unsupervised representation learning with all available sgRNAs targeting whole genome 

could result in better sgRNA vector representations and ameliorate the model’s performance 16. 

We believe that it is necessary to use more available data including sgRNA data targeting on 

some non-essential or less-essential genes. A less-essential gene in one cell line could be 

essential in another cell line. We included a quantitative score to represent context-specific gene 

network property. We compared three possible ways, gene centrality in a systematic gene 

network, gene expression, and a score calculated with both information 29. The calculated 

context-specific gene network property score showed best negative Pearson correlation with 

average log2fc for each gene (Table II), followed by gene centrality. It indicates that the gene 

network property of a gene is critical for the on-target efficiency, which has not been taken into 

account before.  

 

Table II. Pearson correlation of average log2fc with gene expression, gene centrality and 

context-specific gene network property score. 

 K562 A549 NB4 

Gene expression -0.119 -0.12 -0.13 

Gene centrality -0.242 -0.29 -0.246 

Gene network property score -0.337 -0.365 -0.334 
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To determine the features importance in deep learning models, we implemented an input 

perturbation method which can be used to study any deep learning model features importance. 

With negative selection experiment data (K562, A549 and NB4 cell lines) (Figure 4A), we 

showed that gene network property could boost model performance. Besides, we observed that 

1) the feature importance of gene network property is either ranked the first or second. 2) 

pos_18, which is the 18th -20th nucleotides in sgRNA, contributes significantly in these models. 

3) The copy number variation is the second most important biological features. 4) The 

epigenetics features have lower importance than sequence features (Figure 4B, 4C and 4D). It is 

also worth to note that PAM sequence’s feature importance is low because all studied sgRNAs 

had optimized PAM sequence.  
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Figure 4. Features importance study for SeqCrispr hybrid model. A) SeqCrispr hybrid model 

was trained and tested on data with and without gene global functionality property score as a 

feature. The spearman correlation metrics were compared. B), C) and D) features importance of 

SeqCrispr models trained with dataset in B) K562 cell line C) A549 cell line and D) NB4 cell 

line are calculated with input perturbation method. 

 

Similar results were also observed in the Random Forest model. We selected random forest 

models for three reasons. 1) As one of the state of art models, it is robust and resistant for 

overtraining 30. 2) It can be used to study features importance 31. 3) Both random forest and 

boosted regression trees model showed superior performance in previous studies. They have 

similar performance on the three datasets in this study. We drew the following conclusions 

(Figure 5). Including gene network property boosted models performance. The other important 

feature is pos_18 3mers, which is the 18th -20th nucleotides in sgRNA. This observation is 

supported by two experimental discoveries. Firstly, unwinding of target site dsDNA starts from 

the 3’ end of sgRNA 7. It showed that the unwinding process is critical for an efficient sgRNA 

targeting. Secondly, the cutting site of Cas9 endonuclease located in the 18th nucleotide 3, 32. The 

identity of this nucleotide is a key factor for endonuclease cleavage on DNA genome. The 

consistent ranking of feature importance from different algorithms suggests that the determined 

biological features are model agnostic and could be biological meaningful.  
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Figure 5. Features importance study for Random Forest model. A) Random Forest model was 

trained and tested on data with and without gene essentiality score as a feature. The spearman 

correlation metrics were compared. B), C) and D) feature importance attained with random forest 

model with data in B) K562 cell line C) A549 cell line and D) NB4 cell line. 

 

Discussion 

Recently, large scale CRISPR-Cas9 experiments dataset were generated through the combination 

of next generation sequencing techniques. Machine learning models, particularly deep learning, 

could be used to study these datasets. In positive selection experiment, a selective reagent is 

applied to the sgRNAs library pool targeted cell populations. Knocking out one or a small 

fraction of genes could make cells gain resistance and survive. Doench et. al had identified an 

algorithm for on-target efficiency prediction, named Rule Set II, with ~4000 sgRNAs targeting 

on 17 genes 6. To make efficiencies of sgRNAs that are targeting on different genes comparable, 

they ranked all the sgRNAs’ log2fc targeting on one gene and used the rank to represent sgRNAs 

efficiencies. They assumed that sgRNAs efficiencies in one gene follows a uniform distribution. 

In negative selection experiment, the amount of data available is much larger because they don’t 

have any requirement for targeted genes. sgRNA libraries are transduced to a cell population. 

The cells with essential genes targeted by inserted sgRNA would lose the ability to proliferate 

due to genes loss of function and then die out. The sgRNAs log2fc could still indicate its on-

target efficiencies. However, these introduce more variability due to different gene function and 

cellular response. Previous works pre-selected negative selection experiment data. They have set 

a threshold and pre-selected genes that was predicted to be essential genes and then limited 

analysis on sgRNAs targeting on these essential genes. All of existing methods ignore the 
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variability and context-specific nature of gene essentiality. The impact of knocking-down/out a 

gene on the phenotype can be variable on different cell lines or conditions. 

 

To solve gene function variability problem, we introduced a new feature to quantify gene 

network property 29. This method utilized context-specific gene-gene interaction network and 

gene expression of neighborhood genes to calculate a gene network property score. We showed 

this score played an important role in the model prediction accuracy. Gene network property was 

also statistically negatively correlated with log2fc value, thus we believe that it can explain the 

impact of gene knockout on the phenotype. This finding has multiple implications on the 

application of CRISPR-Cas9 techniques. Technically, it is possible for us to enlarge the amount 

of available data to train machine learning and deep learning model. Most importantly, it 

suggests that the on-target efficiency and off-target effect determined in one condition may not 

be directly transfer to another condition unless the context-specific gene function is taken into 

account. It is critical when developing the CRISPR-Cas9 technique as a gene therapy.   

 

Compared with DeepCpf1 and deepCrispr, seqCrispr performs better due to three reasons. 1) It 

involves a sequence feature engineering layer. It utilizes unsupervised representation learning to 

find the vector representation of 3mer instead of one-hot encoder. 2) We have investigated more 

biological features. The feature importance study implies that biological features can contribute 

15%-20% to the model performance. 3) This hybrid model can take both advantages of RNN and 

CNN and make the model more resistant to data noise. However, there are still rooms to improve 

the performance. We believe that a better encoder of nucleotides can enhance model robustness 

and performance. Gene network property score can improve the way to display gene global 
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function differences. More importantly, we used input permutation method to study features 

importance. It can be applied to any deep learning model and is shown to draw consistent 

conclusion. Thus, we could explore more advanced deep learning model.  Even though next 

generation sequencing enables us to collect large-scale dataset, the amount of data is still less 

than sufficient. One issue is that the CRISPR-Cas9 experiment in each cell line lacks replication. 

Some cell lines have replication data but the experiments were conducted by different labs.  

Experiment performed on different lab will cause batch effect. We believed that more high 

quality data were still needed to reduce the noise of CRISPR-Cas9 experiment result and would 

improve the models performance. 

 

Methods: 

Dataset 

We have used three types of dataset. 1) Raw negative selection data. Data was collected from 

previously published literature 28, 33. We have picked up data from three cell lines K562, A549 

and NB4. All three cell lines have the following features available: copy number variation, 

DNase-seq, Chip-seq for CTCF and H3K4me3 and RRBS data. Epigenetics features were 

collected as described in biological features section. Models were trained with normalized log2fc 

as model output. 2) Pre-selected negative selection data. These datasets were also used in other 

literature 16. Data were collected from three cell lines: HeLa, HL60 and HCT116. They have all 

biological features available except copy number variation. Data from negative selection dataset 

was preselected based on predicted gene essentiality. Only sgRNA targeting on predicted 

essential genes were selected. 3) CRISPR-Cpf1 dataset. The first two sets of data were from 
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CRISPR-Cas9 system experiment, while this dataset was data from CRISPR-Cpf1 system 

experiment 17. 

 

Biological Features  

 

Gene network property score integrated both global gene-gene interaction network information 

from STRING and gene expression data from Broad Institute Cancer Cell Line Encyclopedia 

(CCLE) 13, 34 or The Encyclopedia of DNA Element (ENCODE) 13. In this method, for each 

gene, its network property was calculated with the following steps: 1) Find genes which are 

connected with the studied gene 2) Calculate the product of connected gene expression values 

and gene-gene connection confidence score.  Gene-gene connection confidence score is the 

weight of gene-gene interaction in gene-gene network 3) Sum all the products to get the score.  

 

Copy number variation data was collected from CCLE 34. DNA-sgRNA binding melting 

temperatures are calculated using different thermodynamic tables from	Sugimoto '96 35. DNase 

peak, CTCF peak, RRBS peak and H3K4me3 peak data are curated from ENCODE 13. DNase 

peak, CTCF peak and H3K4me3 peak data chromosome location was annotated with hg38 

reference genome. RRBS peak data chromosome location was referred with hg19 reference 

genome and was then overlifted to hg38 reference genome with CrossMap 36.  

 

Features importance study 
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We used random forest and boosted regress tree models implemented by h2o package, which 

treats categorical feature as one feature naturally. In this way, it is easier to interpret categorical 

features importance. In Random Forest model, we set number of trees to 200 and use default 

values for other parameters. In deep learning study, we used input perturbation methods to study 

the feature importance described here37. For each feature, we shuffled 40 times and use the 

average performance based on mean square error as feature importance. We then normalized 

each feature importance using the sum of all features importance. We implemented this method 

in python which is compatible with any deep learning model implemented in Keras. 

 

SeqCrispr model 

The first part of SeqCrispr model is an embedding layer, in which 3mer’s representation was 

initialized by the vector learned with 3mer2vec and we made this vector representation trainable 

except in transfer learning. Each vector is the representation of a 3mer, who is the three 

nucleotides from position i to position i+2 on sgRNA 20 nucleotides. The last 3mer is a vector 

representation of PAM sequence. This was connected to a convolutional neural network, 

recurrent neural network or the combination of them. The last layer is a fully connected neural 

network. The input of fully connected neural network is the concatenation of all biological 

features and the output of the front layer. A linear regression was used to generate the final 

output. Mean square error was used as the loss function but spearman correlation was used as 

report performance metric. SeqCrispr model was implemented with Keras, which is built on top 

of Tensorflow. The implementation of SeqCrispr is available at 

https://github.com/qiaoliuhub/seqCrispr 
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