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Abstract 18 

 19 

We investigated motor skill learning using a path tracking task, where human subjects had to 20 

track various curved paths at a constant speed while maintaining the cursor within the path 21 

width. Subjects’ accuracy increased with practice, even when tracking novel untrained paths. 22 

Using a “searchlight” paradigm, where only a short segment of the path ahead of the cursor 23 

was shown, we found that subjects with a higher tracking skill took a longer section of the 24 

future path into account when performing the task. An optimal control model with a fixed 25 

horizon (receding horizon control) that increases with tracking skill quantitatively captured the 26 

subjects’ movement behaviour. These findings demonstrate that human subjects increase their 27 

planning horizon when acquiring a motor skill. 28 
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Introduction 29 

 30 

The human motor system is able to acquire a remarkable array of motor skills. 31 

Informally, a person is said to be “skilled” if he or she is able to perform faster and at the same 32 

time more accurate movements than other, unskilled, individuals. What we don't know, 33 

however, is what learning processes and components underlie our ability to move better and 34 

faster.  One component may be relatively “cognitive”, involving the faster and more 35 

appropriate selection and planning of upcoming actions (Diedrichsen and Kornysheva, 2015; 36 

Wong et al., 2015). Another component may be related to motor execution – the ability to 37 

produce and fine control difficult combinations of muscle activations (Shmuelof et al., 2012; 38 

Waters-Metenier et al., 2014). Depending on the structure of the task, changes in visuo-motor 39 

processing or feedback control may also contribute to skill development. Motor adaptation, 40 

extensively studied using visuomotor and force perturbations [for a recent review see 41 

(Shadmehr et al., 2010)], may play a certain role in stabilizing performance, but it can not by 42 

itself lead to improvements in the speed-accuracy trade-off (Wolpert et al., 2011).   43 

 A task commonly used in the experiments on motor skill learning is sequential 44 

finger tapping, where subjects are asked to repeat a certain tapping sequence as fast and as 45 

accurately as possible (Karni et al., 1998, 1995; Petersen et al., 1998; Walker et al., 2002). 46 

Improvement in such a task can continue over days, but previous papers have focussed mostly 47 

on the learning that is specific to the trained sequence(s) (Karni et al., 1995).  48 

 Many real-world tasks, however, do not involve the production of a fixed 49 

sequence of motor commands, but the flexible planning and execution of movements. Such 50 

flexibility is often well described by optimal feedback control models (Braun et al., 2009; 51 

Diedrichsen et al., 2010; Todorov and Jordan, 2002) where the skilled actor appears to 52 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 22, 2018. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 37 

 

compute “on the fly” the most appropriate motor command for the task at hand. This requires 53 

demanding computations (Todorov and Jordan, 2002), and the human motor system likely 54 

has found heuristics to deal with this complexity. One way to reduce complexity of the 55 

control problem is to not optimize the whole sequence of motor commands that will achieve 56 

the ultimate goal, but to only optimise the current motor command for a short distance into 57 

the future. This idea is called receding horizon control, also known as model predictive 58 

control (Kwon and Han, 2005). Under this control regime, the system computes a feedback 59 

control policy that is optimal for a finite planning horizon. The control policy is then 60 

continuously updated as the movement goes on and the planning horizon is being shifted 61 

forward. This allows for adaptability, e.g. it can flexibly react to perturbations or unexpected 62 

challenges, as sensory information becomes available. Recent studies provided indirect 63 

evidence that favour the optimisation of short time-periods of a motor command (Dimitriou 64 

et al., 2013). The notion of planning horizon also arises in reinforcement learning, e.g. in the 65 

context of the so-called successor representation (Momennejad et al. 2017).  66 

 Motivated by these ideas, we propose that some of the skill of a down-hill skier or 67 

a race-car driver may lie not only in the ability to execute difficult motor commands, but also 68 

in the ability to plan further ahead and to optimize the movements for a longer time period into 69 

the future. In addition, we propose that the time span that subjects plan ahead increases with 70 

experience, leading to an increasing performance with training.  71 

To test this idea, we designed an experimental condition which would allow us to 72 

measure the planning horizon that skilled actors are using when executing long sequence of 73 

movements that need to be planned “on the fly” – i.e. where the actual sequence of movements 74 

cannot be memorized. For this, we developed a path tracking task, where subjects had to 75 

maintain their cursor within a path that was moving towards them at a fixed speed. A similar 76 

task has been previously used in motor control research (Poulton, 1974), using a mechanical 77 
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apparatus with paths drawn on a paper roll that was moving at a fixed speed. It has been shown 78 

that subjects are able to increase their accuracy with training, but the different computational 79 

strategies between expert subjects and naïve performers remain unclear. In our study we use 80 

‘searchlight’ trials in which subjects see various lengths of the approaching path ahead of their 81 

cursor to probe subjects forward planning and compare experts and novices in this respect.  82 

 83 

Materials and Methods 84 

Subjects 85 

62 experimentally naïve subjects took part in this experiment (33 males and 29 females, age 86 

range 20-52 years old). Subjects gave informed consent and were paid 10 €/h. The experimental 87 

procedures received ethics approval from the University of Freiburg. 88 

 89 

Setup 90 

Subjects sat at a desk looking at a computer monitor (Samsung Syncmaster 226BW) located 91 

~80cm away. A cursor displayed on the screen (Matlab and Psychophysics Toolbox Version 92 

3; Brainard, 1997) was under position control by movements of a computer mouse. The mouse 93 

could be moved on the desk in all directions but only the horizontal (left and right) component 94 

contributed to the cursor movement: the vertical position of the cursor was fixed at 5.7mm 95 

above the base of the screen. 96 

 97 

Task 98 

To begin each trial subjects had to press the space bar. This displayed the cursor (R=2.9mm, 99 

1.1cm from the bottom of the screen) and the path (width = 2.83cm) that extended from the top 100 
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to bottom of the screen (30cm). The path continuously moved downward on the screen at a 101 

vertical speed of 34.1cm/s. The initially visible path was a straight line centered in the middle 102 

of the screen with the cursor positioned in the middle of the path. Once this initial section 103 

moved through the screen, the path then followed a random curvature (Fig. 1A). Subjects were 104 

instructed to keep the cursor between the path borders at all times moving only in the horizontal 105 

plane and were told to be as accurate as possible. The cursor and path were displayed in white 106 

if the cursor was within the path and both turned red when it was outside the path, always on a 107 

black background. 108 

 109 

The cursor position was sampled at 60 Hz and the tracking accuracy was defined for each trial 110 

as the percentage of time steps when the cursor was inside the path. Running accuracy values 111 

were continuously displayed in the top left corner of the screen and final accuracies were 112 

displayed between the trials. 113 

 114 

This experiment is based on a previous version where subjects were asked to track static 115 

randomly curved paths in 2D as quickly as possible without touching the sides [unpublished 116 

data, (Bashford et al., 2015)]. We later found that the 1D paradigm presented here was better 117 

suited to study the planning horizon as the speed was fixed.  118 

Paradigm 119 

Subjects were randomly assigned into two groups: expert (N=32) and naive (N=30). The 120 

paradigm included a training (expert group only) and a testing (all subjects) phase. Subjects in 121 

the expert group trained over 5 consecutive days, each day completing 30 minutes of path 122 

tracking (10 of 3-minute trials with short breaks in-between, searchlight length (s) 100%). If 123 

the performance improved from one trial to the next subjects saw a message saying 124 

“Congratulations! You got better! Keep it up!”, otherwise the message “You were worse this 125 
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time! Try to beat your score!” was shown. The training paths were randomly generated on the 126 

fly. Experts performed the testing set of trials after a short break following training on the final 127 

(5th) day. Naïve subjects performed only the testing set of trials. 128 

 129 

The testing phase lasted 30 min (30 of 1-minute trials with breaks in-between) using 30 130 

different pre-generated paths that were the same for all subjects. The testing phase in this 131 

experiment contained 3 normal trials (s=100%) and 27 searchlight trials (s=10-90%) where 132 

some upper part of the path was not visible. Three blocks of 10 trials with the searchlight length 133 

ranging from s=10% to s=100% (in steps of 10%) were presented, with the order shuffled in 134 

each block; the same fixed pseudorandom sequence was used for all subjects. 135 

 136 

Path generation 137 

Paths were generated before each trial start during training and a pre-generated fixed set was 138 

produced in the same way for testing. Each path was initialized to start at the bottom middle of 139 

the screen and the initial 30 cm of each path were following a straight vertical line. Subsequent 140 

points of the path midline had a fixed Y step of 40 pixels (1.1 cm) and random independent 141 

and identically distributed (iid) X steps drawn from a uniform distribution from 1 to 80 pixels 142 

(2.7mm – 2.2cm). Any step that would cause the path to go beyond the right or left screen 143 

edges was recalculated. The midline was then smoothed with a Savitzky-Golay filter (12th 144 

order, window size 41) and used to display path boundaries throughout the trial. All of the 145 

above parameters were determined in pilot experiments to create paths which were very hard 146 

but not impossible to complete after training. 147 

 148 
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Statistical analysis 149 

In all cases, we used nonparametric rank-based statistical tests to avoid relying on the normality 150 

assumption. In particular, we used Spearman’s correlation coefficient instead of the Pearson’s 151 

coefficient, Wilcoxon signed-rank test instead of paired two-sample t-test, and Wilcoxon-152 

Mann-Whitney ranksum test instead of unpaired two-sample t-test. 153 

 154 

We initially recorded N=10 subjects in each group and observed statistically significant 155 

(p<0.05) effect that we are reporting here: positive correlation between the asymptote 156 

performance and the horizon length, as estimated via the changepoint and exponential models. 157 

We then recorded another N=20/22 (naïve/expert) subjects per group to confirm this finding. 158 

This internal replication confirmed the effect (p<0.05). The final analysis reported in this study 159 

was based on all N=62 subjects together. 160 

 161 

Changepoint and Exponential model 162 

We used two alternative models to describe the relationship between the searchlight length and 163 

the accuracy: a linear changepoint model and an exponential model. We used two different 164 

models to increase the robustness of our analysis and both models support our conclusions. 165 

 166 

The changepoint model is defined by  167 

𝑦𝑦 = �
c𝑠𝑠 + 𝑜𝑜             if 𝑠𝑠 ≤ ℎ𝑐𝑐𝑐𝑐
cℎ𝑐𝑐𝑐𝑐 + 𝑜𝑜         if 𝑠𝑠 > ℎ𝑐𝑐𝑐𝑐

 168 

where y is the subject’s performance, s the searchlight length and (c, o, hcp) are the subject-169 

specific parameters of the model which define the baseline performance at searchlight 0% (o), 170 
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the amount of increase of performance with increasing searchlight (c) and the planning horizon 171 

(hcp) after which the performance does not increase any further. 172 

 173 

The exponential model is defined by 174 

𝑦𝑦 = 𝜓𝜓 − exp (−𝜌𝜌𝑠𝑠 + 𝑑𝑑) 175 

where the subject-specific parameters (𝜓𝜓, d, 𝜌𝜌) specify the performance at searchlight 0% (𝜓𝜓 −176 

exp [𝑑𝑑]), the asymptote for large searchlights (𝜓𝜓) and the speed of performance increase (𝜌𝜌). 177 

This function monotonically increases but it never plateaus. The speed of the increase depends 178 

on the parameter 𝜌𝜌 with larger values meaning faster approaching the asymptote. We used the 179 

following quantity as a proxy for the “effective” planning horizon: 10+log(5)/𝜌𝜌. It can be 180 

understood as the searchlight length that leads to performance being five times closer to the 181 

asymptote than at s=10%. The log(5) factor was chosen to yield horizon values of roughly the 182 

same scale as with the changepoint model above. 183 

 184 

Both models (changepoint and exponential) were fit to the raw performance data of each 185 

subject, i.e. to the 30 data points, 3 for each of the 10 searchlight length values. The exponential 186 

fit (see Equation 2 in the Results) was done with the Matlab's nlinfit() function, implementing 187 

Levenberg-Marquardt nonlinear least squares algorithm. The changepoint fit (see Equation 1 188 

in the Results) was done with a custom script that worked as follows. It tried all values of hcp 189 

on a grid that included s=10% and then went from s=20% to s=100% in 100 regular steps. For 190 

each value of hcp the other two parameters can be found via linear regression after replacing all 191 

s>hcp values with hcp. We then chose hcp that led to the smallest squared error. 192 

 193 
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Trajectory analysis 194 

To shed light on the learning process we analysed additional parameters of the subjects’ 195 

movement trajectories.  196 

First, we computed the time lag between the subjects’ movement trajectories and the midline 197 

of the paths (Figure 4A-B). To compute the lags, we interpolated both cursor trajectories and 198 

path midlines 10-fold (to increase the resolution of our lag estimates). We computed the 199 

Pearson correlation coefficient between cursor trajectory and path midline for time shifts 200 

from of -300 to 300 ms, and defined the time lag as the time shift maximizing the correlation. 201 

Second, we extracted the cursor trajectories in all sections across all paths that shared a 202 

similar curved shape to explore the differences in cursor position at the apex of the curve 203 

(Figure 4C). The segments were selected automatically by sliding a window of length 18 cm 204 

across the path. We included all segments that were lying entirely to one side (left or right) of 205 

the point in the middle of the sliding window ("C-shaped" segments), with the upper part and 206 

the lower part both going at least 4.5 cm away in the lateral direction (see Figure 3). Our 207 

results were not sensitive to modifying the exact inclusion criteria. 208 

To draw the 75% coverage areas of the path inflection points in each group (Figure 4C), we 209 

first performed a kernel density estimate of these points using the Matlab function kde2d(), 210 

which implements an adaptive algorithm suggested in  (Botev et al., 2010). After obtaining the 211 

2d probability density function p(x), we found the largest h such that ∫p(x)dx>0.75 over the 212 

area where p(x)>h. We then used Matlab's contour() function to draw contour lines of height h 213 

in the p(x) function. 214 

 215 

 216 

  217 
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Receding horizon model 218 

We modelled subjects’ behaviour by a stochastic receding horizon model in discrete time t. In 219 

receding horizon control (RHC, Kwon and Han, 2005) motor commands 𝑢𝑢𝑡𝑡 are computed to 220 

minimize a cost function 𝐿𝐿𝑡𝑡  over a finite time horizon of length h:  221 

minimize 𝐿𝐿𝑡𝑡({𝑥𝑥𝑡𝑡}, {𝑢𝑢𝑡𝑡}) (1) 222 

subject to 𝐿𝐿𝑡𝑡 = �𝑙𝑙𝑡𝑡+𝑘𝑘

ℎ

𝑘𝑘=1

 223 

                   𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) 224 

where 𝑓𝑓 defines the dynamics of the controlled system. Equation (1) is equivalent to an optimal 225 

control problem over the fixed future interval [𝑡𝑡 + 1, 𝑡𝑡 + ℎ]. Solving (1) yields a sequence of 226 

optimal motor commands �𝑢𝑢0
𝑜𝑜𝑐𝑐𝑡𝑡,𝑢𝑢1

𝑜𝑜𝑐𝑐𝑡𝑡 , … ,𝑢𝑢ℎ−1
𝑜𝑜𝑐𝑐𝑡𝑡 �. The control applied at time t is the first 227 

element of this sequence, i.e. 𝑢𝑢𝑡𝑡 = 𝑢𝑢0
𝑜𝑜𝑐𝑐𝑡𝑡. Then, the new state of the system 𝑥𝑥𝑡𝑡+1 is measured 228 

(or estimated) and the above optimization procedure is repeated, this time over the future 229 

interval [𝑡𝑡 + 2, 𝑡𝑡 + 1 + ℎ], starting from the state  𝑥𝑥𝑡𝑡+1. 230 

 231 

Applying RHC to our experimental task, the dynamics of the cursor movement was modelled 232 

by a linear first-order difference equation: 233 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡−𝜏𝜏 + 𝜂𝜂𝑡𝑡    𝜂𝜂𝑡𝑡 ∈  𝒩𝒩(0,𝜎𝜎2) (2)234 

where t is the time step, 𝑥𝑥𝑡𝑡 the cursor position at time t, 𝑢𝑢𝑡𝑡 is the motor command applied at 235 

time t and 𝜏𝜏 the motor delay. 𝜂𝜂𝑡𝑡 is the motor noise which was modelled as additive Gaussian 236 

white noise with zero mean and variance 𝜎𝜎2. We used the following cost function 237 

𝐿𝐿𝑡𝑡     = � [− log(𝑞𝑞𝑡𝑡+𝑘𝑘) + 𝜆𝜆|𝑢𝑢𝑡𝑡−𝜏𝜏+𝑘𝑘−1|2]
ℎ

𝑘𝑘=𝜏𝜏+1

(3) 238 
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where 𝐿𝐿𝑡𝑡 is the expected cost at time t, qt+k is the probability of the cursor being inside the path 239 

at time t+k, h is the length of the horizon in time and 𝜆𝜆 is the weight of the motor command 240 

penalty. At every time step t, 𝐿𝐿𝑡𝑡 is minimized to compute 𝑢𝑢𝑡𝑡 while {𝑢𝑢0, … ,𝑢𝑢𝑡𝑡−1} are known. 241 

Consequently, the lower bound of the sum in (3) is 𝜏𝜏 + 1. The cost function in (3) reflects a 242 

trade-off between accuracy (first term, i.e. log[qt+k]) and effort (second term) whereas their 243 

relative importance is controlled by 𝜆𝜆. Cost functions with a similar accuracy-effort trade-off 244 

have been used previously to successfully model human motor behaviour (Todorov & Jordan 245 

2002, Diedrichsen 2007, Braun et al. 2009).  246 

We assume that subjects have acquired a forward model of the control problem and they can, 247 

therefore, predict the cursor position at time t+1 from the cursor position at time t and the motor 248 

command in accordance with equation (2). We also assume that subjects have an accurate 249 

estimate of the position of the cursor at time t, i.e. xt is known. Subjects can then compute the 250 

probability distribution of the cursor position at future times t+k, given by:  251 

𝑝𝑝�𝑥𝑥𝑡𝑡+𝑘𝑘�𝑥𝑥𝑡𝑡 , {𝑢𝑢𝑡𝑡−𝜏𝜏,𝑢𝑢𝑡𝑡−𝜏𝜏+1, … ,𝑢𝑢𝑡𝑡−𝜏𝜏+𝑘𝑘−1}� =
1

√2𝜋𝜋𝜋𝜋𝜎𝜎2
𝑒𝑒− (𝑥𝑥�𝑡𝑡+𝑘𝑘)2

2𝑘𝑘𝜎𝜎2 (5) 252 

with 253 

𝑥𝑥�𝑡𝑡+𝑖𝑖 = 𝑥𝑥𝑡𝑡 + �𝑢𝑢𝑡𝑡−𝜏𝜏+𝑙𝑙−1

𝑖𝑖

𝑙𝑙=1

(6) 254 

The probability of the cursor being inside the path is then given by 255 

𝑞𝑞𝑡𝑡+𝑘𝑘 = �
1

√2𝜋𝜋𝜋𝜋𝜎𝜎2

𝑚𝑚𝑡𝑡+𝑘𝑘+
𝑤𝑤
2

𝑚𝑚𝑡𝑡+𝑘𝑘−
𝑤𝑤
2

𝑒𝑒− (𝑥𝑥�𝑡𝑡+𝑘𝑘−𝑧𝑧)2
2𝑘𝑘𝜎𝜎2 𝑑𝑑𝑑𝑑 (7) 256 

where 𝑚𝑚𝑡𝑡 is the position of the midline of the path at time t and w the width of the path. The 257 

receding horizon model assumes that motor commands 𝑢𝑢𝑡𝑡 are computed by minimizing the 258 

cost 𝐿𝐿𝑡𝑡 in each time step t for a fixed and known set of model parameters (ℎ, 𝜆𝜆, 𝜏𝜏,𝜎𝜎2). We 259 

simplify the optimisation problem by approximating qt+k by 260 
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𝑞𝑞𝑡𝑡+𝑘𝑘 ≈ 𝑤𝑤 
1

√2𝜋𝜋𝜋𝜋𝜎𝜎2
 𝑒𝑒− (𝑥𝑥�𝑡𝑡+𝑘𝑘−𝑚𝑚𝑡𝑡+𝑘𝑘)2

2𝑘𝑘𝜎𝜎2 (8) 261 

The higher 𝜋𝜋𝜎𝜎𝑘𝑘2 is relative to the path width w, the higher the accuracy of this approximation. 262 

Note that the squared error is scaled by 𝜋𝜋𝜎𝜎2 and hence, errors in the future are discounted. This 263 

is a consequence of the used model of the cursor dynamics in (equation 2).  264 

Using equation (8) and removing all terms which do not depend on 𝑢𝑢𝑡𝑡, we can derive a 265 

simplified cost function 266 

𝐿𝐿�𝑡𝑡 = � �
(𝑥𝑥�𝑡𝑡+𝑘𝑘 − 𝑚𝑚𝑡𝑡+𝑘𝑘)2

2𝜋𝜋𝜎𝜎2
+ 𝜆𝜆|𝑢𝑢𝑡𝑡−𝜏𝜏+𝑘𝑘−1|2�

ℎ

𝑘𝑘=𝜏𝜏+1

(9) 267 

Equation (9) shows that the trade-off between accuracy and the magnitude of the motor 268 

commands is controlled by 𝜎𝜎2𝜆𝜆. We therefore can eliminate one parameter and use the 269 

equivalent cost function  270 

𝐿𝐿�𝑡𝑡 = � �
(𝑥𝑥�𝑡𝑡+𝑘𝑘 − 𝑚𝑚𝑡𝑡+𝑘𝑘)2

2𝜋𝜋
+ �̃�𝜆|𝑢𝑢𝑡𝑡−𝜏𝜏+𝑘𝑘−1|2�

ℎ

𝑘𝑘=𝜏𝜏+1

 with �̃�𝜆 = 𝜎𝜎2𝜆𝜆 (10) 271 

The gradient of the cost function 𝐿𝐿�𝑡𝑡 is given by 272 

𝜕𝜕𝐿𝐿�𝑡𝑡
𝜕𝜕𝑢𝑢𝑡𝑡+𝑗𝑗

=  2�̃�𝜆𝑢𝑢𝑡𝑡+𝑗𝑗 + � �
(𝑥𝑥�𝑡𝑡+𝑘𝑘 − 𝑚𝑚𝑡𝑡+𝑘𝑘)

𝜋𝜋 �
ℎ

𝑘𝑘=𝑗𝑗+(𝜏𝜏+1)

(11) 273 

with 𝑗𝑗 =  0, … , ℎ − (𝜏𝜏 + 1). The Hessian of the cost function is given by 274 

𝜕𝜕2𝐿𝐿�𝑡𝑡
𝜕𝜕𝑢𝑢𝑡𝑡+𝑚𝑚𝜕𝜕𝑢𝑢𝑡𝑡+𝑛𝑛

= 2𝛿𝛿𝑚𝑚,𝑛𝑛�̃�𝜆 + �
1
𝜋𝜋

ℎ

𝑘𝑘=max(𝑚𝑚,𝑛𝑛)+(𝜏𝜏+1)

 (12) 275 

with m, n = 0, … ,ℎ − (𝜏𝜏 + 1). For �̃�𝜆 = 0 all pivots of the Hessian matrix are positive and 276 

therefore the Hessian is positive definite for �̃�𝜆 = 0. For the general case �̃�𝜆 > 0 the Hessian 277 

remains positive definite as 𝐻𝐻2 = 𝐻𝐻1 + 𝐷𝐷 is positive definite if 𝐻𝐻1 is positive definite and 𝐷𝐷 is 278 

a diagonal matrix with only positive diagonal entries. Given the positive definiteness of the 279 

Hessian we can conclude that the cost function 𝐿𝐿�𝑡𝑡 is strictly convex with a unique global 280 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 22, 2018. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 37 

 

minimum. Setting the gradient (12) to 𝟎𝟎 defines a system of h−𝜏𝜏 linear equations with h−𝜏𝜏 281 

unknowns (𝑢𝑢𝑡𝑡 , … ,𝑢𝑢𝑡𝑡+ℎ−(𝜏𝜏+1)) which solution minimizes 𝐿𝐿�𝑡𝑡. The solution can be computed 282 

efficiently using standard numerical techniques. We used the ‘linsolve’ function of MATLAB 283 

(R2016b) which uses LU factorization.  284 

As a measure of task performance, we computed the expected time inside the path from the 285 

model trajectory 𝑑𝑑𝑡𝑡 as follows 286 

𝑎𝑎 =
1
𝑇𝑇
��1 −�

1
√2𝜋𝜋𝜎𝜎2

𝑚𝑚𝑡𝑡+𝑤𝑤2

𝑚𝑚𝑡𝑡−𝑤𝑤2

𝑒𝑒− (𝑧𝑧𝑡𝑡−𝜂𝜂)2
2𝜎𝜎2 𝑑𝑑𝜂𝜂�

𝑇𝑇

𝑡𝑡=1

(13) 290 

with 𝑇𝑇 depicting the number of time steps per path. The lag was computed by maximizing the 287 

correlation coefficient between the model trajectories and the path midline identical to how the 288 

lag was computed for the subjects’ trajectories. 289 

When applying the model to the searchlight path we made the additional assumption that the 291 

model horizon increases with searchlight length 𝑠𝑠 up to a maximal value ℎ𝑚𝑚𝑚𝑚𝑥𝑥 beyond which 292 

the model horizon remains constant: 293 

ℎ(𝑠𝑠) = � 𝑠𝑠, 𝑠𝑠 < ℎ𝑚𝑚𝑚𝑚𝑥𝑥
ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝑠𝑠 ≥ ℎ𝑚𝑚𝑚𝑚𝑥𝑥

(14) 295 

 294 

Fitting the receding horizon model to subjects’ behaviour 296 

We fitted the RHC model to the subjects’ movement trajectories in the searchlight testing paths 297 

using Bayesian inference (Gelman et al. 2000). The model parameters were estimated by 298 

computing their expected values from the posterior distribution 299 

�̂�𝛽 = 〈𝛽𝛽〉 = ∫𝛽𝛽 𝑝𝑝(𝛽𝛽|𝑣𝑣) 𝑑𝑑𝛽𝛽 (15)300 

where 𝛽𝛽 is the model parameter, 𝑣𝑣 the movement trajectory data of a subject and 𝑝𝑝(𝛽𝛽|𝑣𝑣) the 301 

posterior probability distribution for 𝛽𝛽. We approximated the integral in (15) by sampling from 302 

the posterior distribution using the Metropolis algorithm which can sample from a target 303 
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distribution that can be computed up to a normalizing constant (Gelman et al. 2000). The RHC 304 

model has four parameters �ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆,𝜎𝜎2� out of which three �ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆� affect the shape of 305 

the trajectory (cf. equation (10)). Assuming a flat prior for the model parameters, i.e. . 306 

𝑝𝑝�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆�=const., and a non-informative prior for the error-variance 𝛿𝛿2, i.e. 𝑝𝑝(𝛿𝛿2) = 1 𝛿𝛿2⁄  307 

(Gelman et al 2000), we obtained the following equation for the posterior 308 

𝑝𝑝(𝛽𝛽|𝑤𝑤) ∝  𝑝𝑝�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆�
1

𝛿𝛿2+𝑁𝑁
𝑒𝑒−

𝑚𝑚𝑚𝑚𝑚𝑚�ℎ𝑚𝑚𝑚𝑚𝑚𝑚,𝜏𝜏,𝜆𝜆��
2𝛿𝛿2 (16) 312 

where 𝑚𝑚𝑠𝑠𝑒𝑒�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆� is the mean squared error between the model and the subject movement 309 

trajectories and 𝑁𝑁 the number of trials. The mean squared error between the movement 310 

trajectories of a subject and the model is given by 311 

𝑚𝑚𝑠𝑠𝑒𝑒�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆� =
1

10𝑇𝑇|ℱ|����𝑣𝑣𝑡𝑡
(𝑚𝑚,𝑗𝑗) − 𝑑𝑑𝑡𝑡

(𝑚𝑚,𝑗𝑗)�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆��
2𝑇𝑇

𝑡𝑡=1𝑗𝑗∈ℱ𝑠𝑠

10

𝑚𝑚=1

(17) 313 

with 𝑇𝑇 depicting the number of time steps per path, ℱ𝑚𝑚 the set of paths ids for searchlight 𝑠𝑠, 314 

𝑣𝑣𝑡𝑡
(𝑚𝑚,𝑗𝑗) the movement of subject 𝑖𝑖 at time 𝑡𝑡 in path 𝑗𝑗 for searchlight 𝑠𝑠 and 𝑑𝑑𝑡𝑡

(𝑚𝑚,𝑗𝑗)�ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆� the 315 

corresponding movement predicted by the RHC model. 316 

To save computation time, we precomputed the 𝑚𝑚𝑠𝑠𝑒𝑒 for specific discrete combinations of the 317 

model parameters. The model horizon parameter ℎ𝑚𝑚𝑚𝑚𝑥𝑥 could take any integer value between 1 318 

and 26 given a maximum possible planning horizon of 30cm (vertical screen size) which is 319 

equivalent to 30cm �34 cm
s
∙ 1
30

s�� = 30cm �34
30

cm�� ≈ 26 time steps,  where 34 cm/s is the 320 

path speed and 1/30s the time step. Hence, admissible values for the horizon parameter 321 

corresponded to horizons of ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = (1, … , 26) ∗ 34
30

cm. For the delay we allowed the values 322 

𝜏𝜏 = (1, … , 15) ∗ 1
30

s, assuming that subjects won’t have larger delays than 500ms. In fact, the 323 

maximum delay of a subject we found from fitting was 286 ms which is well below the limit 324 

we imposed. The motor penalty parameter �̃�𝜆 was allowed to take any of 103 logarithmically 325 
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equally spaced values between 10-4 and 107 and 0. In total, we had, therefore, 326 

26x15x1001=390390 admissible parameter combinations for ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏 and �̃�𝜆. We simulated the 327 

model for all of these parameter values and computed the mean squared errors according to 328 

equation (17). We then used the Metropolis algorithm to generate 106 samples from the 329 

posterior distribution of the parameters. Each sample consisted of a 4-tuple of values for the 330 

parameters �ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, �̃�𝜆, 𝛿𝛿2�. We computed the motor noise parameter of the model 𝜎𝜎2 from the 331 

estimated error-variance 𝛿𝛿2 as explained below and then 𝜆𝜆 = �̃�𝜆 𝜎𝜎2⁄   (cf. equation 10). For each 332 

parameter sample we also computed the lag, as explained at the end of the previous section, 333 

and the task performance using equation (13). As a result, we obtained 106 parameter values, 334 

lags and task performances, which reflect samples from the posterior distribution of the model 335 

parameters. 336 

To evaluate the quality of the model, we used three-fold cross-validation where in each fold 337 

the posterior distributions of the model parameters were estimated using the data from two of 338 

the three trials for each searchlight. The posterior distributions were then used to make model 339 

predictions of performance and lag in the remaining trial for each searchlight. This was done 340 

for each subject separately and the model predictions were compared to the experimentally 341 

observed performances and lags (cf. Fig. 5A-D).  342 

Expected values of the model parameters were computed according to equation (13). Expected 343 

values were calculated for each cross-validation fold separately and then averaged across the 344 

three cross-validation folds. This yielded the model parameters ℎ𝑚𝑚𝑚𝑚𝑥𝑥, 𝜏𝜏, 𝜆𝜆,𝜎𝜎2 for each subject, 345 

shown in Fig. 5E-H. 346 

 347 

Estimation of the motor noise parameter from the error-variance 348 

If all model assumptions are fulfilled, the motor noise model parameter 𝜎𝜎2 will be linearly 349 

related to the error-variance 𝛿𝛿2 and we should therefore be able to estimate 𝜎𝜎2 from  𝛿𝛿2. For 350 
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each subject we computed 𝜎𝜎2 by minimizing the squared error between the model task 351 

performance (eq. 13) and the experimentally determined task performance. A scatter plot of 352 

the resulting 𝜎𝜎2 over the error-variance 𝛿𝛿2 revealed an approximate linear relationship between 353 

𝜎𝜎2 and 𝛿𝛿2. We then determined the proportionality factor 𝛼𝛼 by linear-least squares regression 354 

of the model 𝜎𝜎2 = 𝛼𝛼𝛿𝛿2 and used it to compute 𝜎𝜎2 from  𝛿𝛿2. The linear-least squares regression 355 

was done for each subject separately, using only the 𝜎𝜎2 and  𝛿𝛿2 values from all other subjects 356 

to avoid overfitting. 357 

 358 

Estimating the influence of model parameters on performance difference between expert 359 

and naïve groups 360 

To estimate how much a single model parameter causes the experts' gain in performance we 361 

computed the performance of the model for naive group parameters but with one parameter 362 

(horizon, motor noise, delay or motor penalty) changed to expert group values. We also 363 

performed the opposite procedure, replacing each parameter for each participants of the expert 364 

with those of the naïve group. Using the Bayesian inference approach described in the previous 365 

section, we replaced the full posterior distribution of the affected parameter with the posterior 366 

distribution from the other group. This procedure was carried out for each subject separately 367 

and the posterior of the affected parameter was replaced by the posterior of each subject from 368 

the other group separately. We then computed the posterior of the performance curve and from 369 

that the expected values of the performance by averaging. Hence, we obtained for each 370 

parameter change 𝑁𝑁𝑚𝑚 ∙ 𝑁𝑁𝑛𝑛 performance curves where 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑛𝑛 are the number of subjects in 371 

the expert and naïve group, respectively. These performance curves were averaged and 372 

compared to the average performances for the expert and naïve groups obtained for the fitted 373 

model (see Results for details). 374 

 375 
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Parts of the modelling computations were run on the high-performance computing cluster 376 

NEMO of the University of Freiburg (http://nemo.uni-freiburg.de) using Broadwell E5-2630v4 377 

2.2 GHz CPUs. 378 

 379 
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Results 380 

 381 

Learning the Tracking Skill 382 

We designed an experiment where subjects had to a track a path moving towards them at a 383 

fixed speed (Fig. 1A and Methods). The narrow and wiggly path was moving downwards on a 384 

computer screen while the cursor had a fixed vertical position in the bottom of the screen and 385 

could only be moved left or right. Accuracy, our performance measure, was defined as the 386 

fraction of time that the cursor spent inside the path boundaries.  One group of subjects (the 387 

expert group, N=32) trained this task for 30 minutes on each of 5 consecutive days. Another 388 

group (the naïve group, N=30) did not have any training at all. Both groups then performed a 389 

testing block that we describe below. 390 

 391 

 392 

 393 

Figure 1. Experimental Paradigm. (A) Subjects had to track a curved path that was dropping 394 

down from top to bottom of the screen with a fixed speed of 34 cm/sec by moving the cursor 395 

horizontally. (B) Expert subjects’ performance over the 5 days of training. Bold line shows the 396 

group average, thin lines show individual subjects (each point is a mean over 3 trials with the 397 
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same searchlight length, 100%). (C) Expert subjects' performance over the 5 days of training 398 

with the performance on the first day subtracted. 399 

 400 

 401 

Over the course of five training days, the experts' accuracy increased from 66.9±8.0% to 402 

79.6±6.4% (mean±SD across subjects, first and last training day respectively) as shown on Figs 403 

1B-C, with the difference being easily noticeable and statistically significant (p=8 ∙ 10−7, 404 

z=4.9, Wilcoxon signed rank test; Cohen’s d=1.8, N=32). As all paths generated during the 405 

training were different, this difference cannot be ascribed to memorizing the path, therefore 406 

this improvement represents the genuine acquisition of the skill of path tracking. 407 

 408 

Searchlight testing 409 

To unravel the mechanisms of skill acquisition we designed testing trials called “searchlight 410 

trials”, during which subjects had to track curved paths as usual, but could only see a certain 411 

part of the path (fixed distance s) ahead of the cursor. The searchlight length s varied between 412 

10% and 100% of the whole path length in steps of 10% (the minimal s was ~3cm) to probe 413 

subjects' planning horizon. During the testing block all subjects completed 30 one-minute-long 414 

trials (three repetitions of each of the 10 values of s). The average accuracy at full searchlight 415 

s=100% was 82.8±7.5% for the expert group and 65.7±8.4% for the naïve group (mean±SD 416 

across subjects), with the difference being highly significant (p=2 ∙ 10−9, z=6.0, Wilcoxon-417 

Mann-Whitney ranksum test, Cohen’s d=2.2, N=62). The performance of the naïve subjects 418 

matched the initial performance of the expert subjects on their first day of training. 419 

 420 
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Before we present the rest of the data, let us consider several potential outcomes for the 421 

dependence of accuracy on the searchlight length (Fig. 2A). It is clear that for each subject, 422 

accuracy should be a non-decreasing function of searchlight length. The data presented in 423 

Poulton (1974) indicate that this function tends to become flat, i.e. subjects reach a performance 424 

plateau, after a certain value of searchlight length that we will call planning horizon (Fig. 2A 425 

Top), while we assume all subjects will be constrained to the similar poor performance at the 426 

smallest searchlight. For the expert group, this function has to reach a higher point at s=100%, 427 

but it could do so because the initial rise becomes steeper (Fig. 2A bottom left), or because the 428 

planning horizon increases (Fig. 2A bottom right), or possibly both. 429 

 430 

Fig. 2B shows subjects' accuracy in the searchlights trials as a function of the searchlight length 431 

s. It is obvious that all subjects were strongly handicapped at short searchlights, and at the 432 

shortest searchlight the performance of the two groups was similar with experts being only 433 

marginally better (42.5±2.3% for the expert group, 41.4±1.8% for the naïve group, p=0.042, 434 

z=2.0 Wilcoxon ranksum test; Cohen’s d=0.5, N=62). 435 

 436 

 437 
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 438 

 439 

Figure 2. Searchlight testing. (A) Expert subjects were trained to have a higher performance 440 

at full searchlight length (top). This could be achieved by an increased initial slope (bottom 441 

left) at smaller searchlight length and/or an increased planning horizon as indicated with 442 

dashed vertical lines (bottom right). (B) Mean tracking performance for each searchlight 443 

length for each individual subject, in blue for the expert group and in red for the naïve group. 444 

Faint lines show individual subjects and bold lines show group means. (C) Mean tracking 445 

performance for each searchlight length, rescaled for each subject to start at 0 and end at 1 446 

(see text). Error bars indicate 95% confidence intervals around the means, stars indicate 447 

significance between the groups (**: p<0.01, Wilcoxon rank sum text, Bonferroni-Holm 448 

corrected for multiple comparisons). (D-E) Planning horizon for each subject was defined by 449 

fitting a changepoint linear-constant curve (D) or an exponential curve (E) (see text). Both 450 

models yield an asymptote performance for each subject; the changepoint model yields a 451 
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horizon length and the exponential fit yields an “effective” horizon length. The scatter plots 452 

show relation between the asymptote performance (as a proxy for subjects' skill) and their 453 

planning horizon. Spearman’s correlation coefficients are shown on the plot (**: p<0.01, ***: 454 

p<0.001). Colour of the dot indicates the group. (F) Scatter plot showing Spearman correlation 455 

coefficient between the planning horizon and initial slope of the curve (10-20% in A), colours 456 

and values as in D&E (***: p<0.001). 457 

 458 

 459 

Visual inspection of Fig. 2B suggests that both effects sketched in Fig. 2A contribute to expert 460 

performance. (i) the planning horizon for the expert group was longer than for the naïve group; 461 

and (ii) the expert group has higher accuracies in the initial part of the performance curve, 462 

before the performance plateaus.  463 

 464 

To better visualize the change in performance across searchlight lengths, we linearly rescaled 465 

each subject's performance curve, first by subtracting the mean performance at s=10% and then 466 

by dividing by the asymptote performance (computed as the mean performance across s=80-467 

100%). The resulting curves all start at 0 and end at 1 (Fig. 2C). We observed a significant 468 

difference between the groups at s=40% & 50% (p=0.005 and p=0.004 respectively, Wilcoxon 469 

ranksum test, p-values adjusted for testing 6 searchlight lengths between 20% and 70% with 470 

Holm-Bonferroni procedure, N=62), indicating that while naïve subjects had reached their 471 

plateau by then, the expert subjects kept increasing their performance. For this analysis we 472 

removed two naïve subjects with essentially flat searchlight curves (Fig. 1B), as rescaling those 473 

did not lead to meaningful results. 474 

 475 
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To investigate individual differences in tracking skill, we estimated the planning horizons of 476 

individual subjects (Fig. 2D). For this we fit each subject's performance (y) with a changepoint 477 

linear-constant curve (see Methods), where the location of the changepoint defines the horizon 478 

length. We found that the novice group had an average horizon length of 11.5±3.6cm 479 

(mean±SD) and the expert group a horizon length of 14.2±3.5cm, with statistically significant 480 

difference (p=0.007, z=2.7, Wilcoxon ranksum test; Cohen’s d=0.8, N=62). We found a 481 

positive correlation between the horizon length and the asymptotic performance (R=0.34, 482 

p=0.006, Spearman correlation, N=62).  483 

 484 

In addition to the change-point model, we also quantified the planning horizon using a single 485 

exponential to fit the individual subjects' performance data (see Material and Methods). This 486 

analysis confirmed our results (Fig. 2E). We again observed a significant difference in the 487 

horizon length between the two groups (14.76+-4.6cm vs. 11.04+-4.7cm, means+-SD for both 488 

groups, p=0.002, z=3.0, Wilcoxon ranksum test; Cohen’s d=0.8, N=62). Again, we found a 489 

positive correlation between the asymptote performance and the effective horizon length 490 

(R=0.43, p=0.0008, Spearman correlation, N=62). 491 

 492 

Not only was planning horizon positively correlated with tracking skill (the asymptote 493 

accuracy), but also the initial slope of the changepoint model. Fig. 2F shows the correlation 494 

between the initial slope and asymptote accuracy (R=0.49, p=6 ∙ 10−5, Spearman correlation, 495 

N=62) and a clear difference of the initial slope between the groups (p=0.008, z=2.6, Wilcoxon 496 

ranksum test; Cohen’s d=0.6, N=62). We therefore conclude that the difference between expert 497 

and naïve performances is a combination of both possibilities presented in Fig. 2A. 498 

 499 

 500 
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Trajectory analysis 501 

Naïve subjects performed worse than the expert subjects at long searchlights but all subjects 502 

performed almost equally badly at short searchlights. What kinematic features can these 503 

differences be attributed to? 504 

 505 

Clearly, at short searchlights, performance has to be reactive. To measure how quickly changes 506 

in the path were reflected in the motor commands, we computed the time lag between cursor 507 

trajectory and path midline (the lag maximizing cross-correlation between them). As Fig. 3A 508 

shows the lag was ~200 ms at s=10% for all subjects and dropped to ~0 ms at s=50% for the 509 

expert group. While many naïve subjects also decreased their lags to zero, 10 out of 30 never 510 

achieved the 0 ms lag. The five naïve subjects showing the largest lags at large searchlights 511 

were also those with the worst performance (Fig. 3B). Therefore, there was a strong negative 512 

correlation between the asymptote lag (mean across s=80-100%) and the asymptote 513 

performance (mean across s=80-100%) of r=-0.58 (Fig. 3B, p=8 ∙ 10−7, Spearman correlation, 514 

N=62). 515 

 516 
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 517 

 518 

Figure 3. Analysis of trajectories. (A) Mean time lag between cursor trajectory and path 519 

midline, for each searchlight length for each individual subject (faint lines) and mean of per-520 

subject values (bold lines), in blue for the expert group and in red for the naïve group. (B) 521 

Asymptote lag and asymptote performance across subjects. Correlation coefficient is shown on 522 

the plot (***p<0.001). Colour of the dot indicates the group. (C) Average per-subject 523 

trajectories in sharp bends (leftward bends were flipped to align them with the rightward 524 

bends). Each trajectory is averaged across approximately 40 bends (the number of bends 525 

varied across searchlight lengths). Colour of the lines indicates the group. Black lines show 526 

average path contour. Dots show turning points of the trajectory. Contour lines show the kernel 527 
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density estimate 75% coverage areas. Subplots correspond to searchlight lengths s=10%, 20%, 528 

50%, 60%, 90% and 100%. 529 

 530 

Next, for each testing path we found all segments exhibiting sharp leftward or rightward bends 531 

(see materials and methods, our inclusion criteria yielded 13±5 segments per path, mean±SD). 532 

For each searchlight length s and for each subject, we computed the average cursor trajectory 533 

over all segments (N=38±8 segments per searchlight) after aligning all segments on the bend 534 

position (Fig. 3C, leftward bends were flipped to align them with the rightward bends). At 535 

s=10% all subjects from both groups follow very similar lagged trajectories, resulting in low 536 

accuracy. As searchlight increases, expert subjects reach zero lag and choose more and more 537 

similar trajectories, whereas naïve subjects demonstrate a wide variety of trajectories with some 538 

of them failing to reach zero lag and others failing to keep the average trajectory inside the path 539 

boundaries. To visualize this, we plotted the kernel density estimate 75% coverage contour of 540 

inflection points for each group. As the searchlight increases, the groups become less 541 

overlapping and the naïve group appears to form a bimodal distribution (Fig. 3C). 542 

 543 

In summary, at very short searchlights all subjects performed poorly because in this reactive 544 

regime their trajectories lagged behind the path. At longer searchlights the expert subjects were 545 

able to plan their movement to accommodate the bends (the longer the searchlight the better), 546 

but naïve subjects failed to do so in various respects: either still lagging behind or not being 547 

able to plan a good trajectory. 548 

 549 

Receding horizon model analysis 550 

Next, we modelled subjects’ behaviour by receding horizon control (RHC). In RHC a sequence 551 

of motor commands is computed to minimize the expected cost over a future time interval of 552 
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finite length, i.e. the horizon. After the first motor command is applied, the optimization 553 

procedure is repeated using a time interval shifted one time step ahead. See Methods section 554 

for a more detailed and formal description of RHC. As cost function, we used the weighted 555 

sum of a measure of inaccuracy (i.e. probability of being outside the path) and the magnitude 556 

of the motor cost (see Methods for details). Cost function with a similar trade-off between 557 

movement accuracy and motor command magnitude have been used previously to describe 558 

human motor behaviour in different tasks (Todorov & Jordan 2002, Diedrichsen 2007, Braun 559 

et al. 2009). The model has four different parameters: horizon (ℎ), motor noise (𝜎𝜎2), motor 560 

delay (𝜏𝜏) and motor command penalty weight (𝜆𝜆).  561 

We ran the model on the experimental paths to obtain simulated movement trajectories from 562 

which task performance and lag could be computed in the same way as for the experimental 563 

trajectories (Fig. 2 and 3). Our simulations revealed that both, a larger model horizon as well 564 

as a smaller motor noise parameter increased the task performance and decreased the lag (Fig. 565 

4). Hence, the experimentally observed higher performance and smaller lag of expert subjects 566 

compared to naive (Fig. 2B and 3A) could be explained either by an increased model horizon 567 

or by reduced motor noise in the model. However, the searchlight length at which the task 568 

performance of the model reached a plateau increased with model horizon and did not change 569 

or even decreased with a smaller motor noise parameter (Fig. 4A, C). Experimentally, on the 570 

other hand, we observed that subjects with a higher task performance reached their 571 

performance plateau at higher searchlights (Fig. 2D, E). This correlation between performance 572 

and plateau onset, that was observed experimentally, cannot be explained by the variation of 573 

the motor noise parameter across subjects, but is only consistent with an increase of the model 574 

planning horizon for subjects with higher performance.  575 

 576 
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 577 

Figure 4: Task performance and lag as a function of searchlight length for model simulations 578 

with different horizons (A,B) or different amounts of motor noise (C,D). A motor noise of 𝜎𝜎2=1 579 

was used for (A,B) and a horizon of ℎ=15cm for (C,D). The motor delay and motor command 580 

penalty weight were fixed at 𝜏𝜏=200ms and 𝜆𝜆=0.5 in all simulations.  581 

 582 

Next, we used Bayesian inference to estimate the model parameters from the experimentally 583 

observed movement trajectories (see Methods for details). Based on inferred distributions of 584 

parameter values, we then predicted task performance and lag for each subject. To avoid over-585 

fitting cross-validation was used, i.e. fitting and prediction was done on different trials. Model 586 

task performance and lag resembled the experimentally observed task performance and lag 587 

with regard to their change across searchlights as well as with regard to the difference between 588 

naïve and the expert subjects (Fig. 5A,B). On a single subject and trial level there was a high 589 

correlation between model and experimental task performance (Fig. 5C, Spearman correlation 590 

r=0.9, R2=0.84) and lags (Fig. 5D, Spearman correlation r=0.87, R2=0.88).  591 

We compared the estimated model parameters between expert and naïve subjects. The fitted 592 

model horizon was higher for the expert group than for the naïve group (Fig. 5E, Wilcoxon 593 

ranksum test: z=4.84, p=1⋅10-6, N=62) and was correlated with the horizon obtained from the 594 

change point analysis (Spearman correlation, r=0.48, p=7⋅10-5, N=62) and the exponential fits 595 
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(Spearman correlation, r=0.43, p=6⋅10-4, N=62). The fitted motor noise was significantly lower 596 

for the expert than for the naïve group (Fig. 5F; Wilcoxon ranksum test: z=4.66, p=3⋅10-6, 597 

N=62) while the delay and the penalty parameters were not different (Fig. 5G,H; delay: 598 

Wilcoxon rank sum test, z=1.50, p=0.13; penalty: Wilcoxon rank sum test, z=0.528, p=0.60, 599 

N=62). In the model, lower motor noise lead to steeper initial accuracy slope (Fig. 4C). The 600 

expert group having lower estimated motor noise hence agrees well with our observation that 601 

experts had steeper initial accuracy slope (Fig. 2F). 602 

 603 

 604 

Figure 5: Comparison between the receding horizon model and subjects’ behaviour. A,B: Task 605 

performance and lag as a function of the searchlight for expert and naïve subjects for the 606 

experiments and model simulations. C,D: Scatter plot of model and experimental task 607 

performance and lag for each trial of each subject. E-H: Model parameters for the subjects 608 

from the naïve and the expert group. Each dot depicts one subject, boxplots show medians as 609 

well as first and third quartiles. 610 
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 611 

Using the model fits obtained above, we estimated how much of the experts' gain in asymptote 612 

performance was due to increased horizon vs. decreased noise. To do this, we simulate the 613 

model with naive group parameters but expert group horizons (see Methods). This brings the 614 

performance almost half-way to the expert performance (for large searchlights the performance 615 

levelled off at 72% instead of 82% with lower horizon, compared to 66% for the naïve 616 

subjects). We observe roughly the same increase (to 75%) when we simulate the model with 617 

naive group parameters but expert group noise levels. Similarly, when we use expert group 618 

parameters but naive group horizons or noise levels, the performance drops approximately half-619 

way to the naïve accuracy (74% for naïve horizon, 71% for naïve motor noise). In contrast, the 620 

delay and the motor penalty parameters had less influence on the asymptote performance (63% 621 

and 64% for naïve group parameters with expert delay or motor penalty; 80% for expert group 622 

parameters with naïve delay or motor penalty). From this we conclude that the increase in the 623 

experts’ performance was caused by equal measures through an increase in planning horizon 624 

and the decrease in motor noise. 625 

 626 
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Discussion 627 

 628 

We used a paradigm that allowed us to study skill development when humans had to track an 629 

unpredictable spatial path. The skill requires fast reactions to new upcoming bends in the road, 630 

but also a substantial “planning ahead” component – i.e. the anticipation and preplanning of 631 

movements that have to be made in the near future. We used the accuracy, i.e. the fraction of 632 

time the cursor was inside the path boundaries, as the measure of performance. We observed a 633 

substantial improvement in accuracy after 5 days of training (Fig. 1B,C). The paths were 634 

different on every trial, so the improvement in performance cannot be attributed to a memory 635 

for the sequence. 636 

 637 

What changes in the motor system occur through learning that allowed skilled subjects to 638 

perform better? We hypothesized that one important component is an increased ability to take 639 

into account approaching path bends and to prepare for an upcoming movement segment. We 640 

directly estimated subjects' planning horizons by using a searchlight testing where only a part 641 

of the approaching curve was visible. We found that subjects with a higher tracking skill 642 

demonstrated larger planning horizons: on average ~14cm for the expert group vs. ~11cm for 643 

the naïve group, corresponding to the time horizons of ~0.4s and ~0.3s respectively. 644 

 645 

Note that “planning”/“preparing” the movement can be interpreted differently depending on 646 

the computational approach. In the framework of optimal control (Todorov and Jordan, 2002), 647 

subjects do not plan the actual trajectory to be followed, but instead use an optimal time-648 

dependent feedback policy and then execute the movement according to this policy. The 649 

observed increase in planning horizon can be interpreted in the framework of model predictive 650 

control, also known as receding horizon control, RHC (Kwon and Han, 2005). In RHC, the 651 
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optimal control policy is computed for a finite and limited planning horizon, which may not 652 

capture the whole duration of the trial. This policy is then applied for the next control step, 653 

which is typically very short, and the planning horizon is then shifted one step forward to 654 

compute a new policy. Hence, RHC does not use a pre-computed policy, optimal for an infinite 655 

horizon, but a policy which is only optimal for the current planning horizon. Increasing the 656 

length of the planning horizon is therefore likely to increase the accuracy of the control policy. 657 

In our experiments this would allow for a larger fraction of time spent within the path 658 

boundaries. We designed a simple RHC model to test directly which components in the model 659 

would have to change through training to quantitatively explain the subject’s behavior. The 660 

dynamics of movement and the cost function were modelled in line with previous studies that 661 

used optimal control to describe human behaviour in various motor control and learning tasks 662 

(Todorov & Jordan 2002, Diedrichsen 2007, Braun et al. 2009). We fitted the RHC model to 663 

the behaviour of each subject and found that it was able to fit the data very accurately (Fig. 5). 664 

The experimentally observed differences between expert and naïve subjects were reflected in 665 

the model fits by higher planning horizons and lower motor noise parameters in the expert 666 

group. Our findings, thus, demonstrate that subjects’ behaviour can be understood in the 667 

context of RHC, and longer planning horizons of the expert group indicate that subjects learn 668 

how to take advantage of future path information to improve motor performance. 669 

 670 

The increased planning horizon does not account for all of the observed improvement in 671 

performance and further motor and non-motor processes may play a role in tracking skill 672 

learning. Indeed, our results show that expert subjects are even better at shorter searchlight 673 

lengths, a phenomenon that is explained by the model in assuming better motor acuity (lower 674 

motor noise) for expert subjects (Shmuelof et al., 2014, 2012). We estimated that in our 675 

experiments nearly half of the increased performance after practice is due to an increased 676 
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planning horizon while the other half can be accounted for by a reduction in the motor noise 677 

which may be interpreted as higher motor acuity.  678 

 679 

Related work 680 

Ideas similar to the RHC were put forward in a recent study (Ramkumar et al., 2016) that 681 

suggested that movements are broken up in ‘chunks’ in order to deal with the computational 682 

complexity of planning over long horizons. That study suggests that monkeys increase the 683 

length of their movement chunks during extended motor learning over the course of many days 684 

which may be explained by monkeys increasing their planning horizon with learning. At the 685 

same time, the efficiency of movement control within the chunks improved with learning which 686 

may also be the result of a longer horizon. Despite these potential consistencies with our 687 

approach we note that in their model Ramkumar et al. (2016) assumed that ‘chunks’ are 688 

separated by halting points (i.e. points of zero speed) and movements within ‘chunks’ are 689 

optimized independently from each other. Our RHC model does not have independent 690 

movement elements but movements are optimized continuously. 691 

 692 

Even though our study, to the best of our knowledge, is the first to directly investigate the 693 

evolution of the planning horizon during skill learning, similar path tracking tasks have been 694 

used before (Poulton, 1974). Using a track that was drawn on a rotating paper roll, these early 695 

studies found that the accuracy of the tracking increased with practice and with increasing 696 

searchlight length (which was modified by physically occluding part of the paper roll, Poulton, 697 

1974, p 187). These studies, however, did not investigate the effect of learning on the planning 698 

horizon. 699 

 700 
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More recent studies used path tracking tasks where the goal was to move as fast as possible 701 

while maintaining the accuracy (instead of moving at a fixed speed). In all of these studies the 702 

identical path was repeatedly presented. In one study subjects had to track a fixed maze without 703 

visual feedback and learnt to do it faster as the experiment progressed (Petersen et al., 1998); 704 

there the subjects had to once “discover” and then remember the correct way through the maze. 705 

In another series of experiments, Shmuelof et al. asked subjects to track two fixed semi-circular 706 

paths. Subjects became faster and more accurate over the course of several days (Shmuelof et 707 

al., 2012), but this increase in the speed and accuracy did not generalize to untrained paths 708 

(Shmuelof et al., 2014). In contrast to these previous path tracking studies, we used randomly 709 

generated paths throughout the experiment. By investigating the generalization of the path 710 

tracking skill to novel paths we could reveal an increasing planning horizon with learning.  711 

 712 

Conclusion 713 

In conclusion, we have established that people are able to learn the skill of path tracking and 714 

improve their skill over 5 days of training. This increase in motor skill is associated with the 715 

increased planning horizon. The dynamics of preplanning can be well described by a receding 716 

horizon control model. 717 
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