
Network topology of neural systems supporting avalanche dynamics predicts
stimulus propagation and recovery

Harang Ju1,2, Jason Z. Kim2, Danielle S. Bassett2,3,4,5,6*,

1Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
2 Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania,
Philadelphia, Pennsylvania, USA.
3 Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of
Pennsylvania, Philadelphia, PA, 19104, USA.
4 Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia,
19104, USA.
5 Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
19104, USA.
6 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
19104, USA.

*dsb@seas.upenn.edu

1/25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504761doi: bioRxiv preprint 

https://doi.org/10.1101/504761
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Many neural systems display avalanche behavior characterized by uninterrupted sequences of
neuronal firing whose distributions of size and durations are heavy-tailed. Theoretical models of
such systems suggest that these dynamics support optimal information transmission and storage.
However, the unknown role of network structure precludes an understanding of how variations in
network topology manifest in neural dynamics and either support or impinge upon information
processing. Here, using a generalized spiking model, we develop a mechanistic understanding of
how network topology supports information processing through network dynamics. First, we show
how network topology determines network dynamics by analytically and numerically demonstrating
that network topology can be designed to propagate stimulus patterns for long durations. We
then identify strongly connected cycles as empirically observable network motifs that are prevalent
in such networks. Next, we show that within a network, mathematical intuitions from network
control theory are tightly linked with dynamics initiated by node-specific stimulation and can
identify stimuli that promote long-lasting cascades. Finally, we use these network-based metrics and
control-based stimuli to demonstrate that long-lasting cascade dynamics facilitate delayed recovery
of stimulus patterns from network activity, as measured by mutual information. Collectively, our
results provide evidence that cortical networks are structured with architectural motifs that support
long-lasting propagation and recovery of a few crucial patterns of stimulation, especially those
consisting of activity in highly controllable neurons. Broadly, our results imply that avalanching
neural networks could contribute to cognitive faculties that require persistent activation of neuronal
patterns, such as working memory or attention.

keywords linear dynamical systems, network control, mutual information
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Introduction

A central question in neuroscience is how connections between neurons determine patterns of
neurophysiological activity that support organism function. Networks of neurons receive incoming
stimuli and perform computations to shape cognition and behavior, such as the visual recognition of
faces in regulating social behavior [1]. While many studies laud the ultimate goal of determining how
brain network topology supports information processing [29,77], it remains challenging to empirically
study the direct interactions between neural dynamics, connectivity, and computation. Indeed,
neural connections and their underlying computational function have often been inferred through
neural dynamics, and formal studies probing mechanistic relations among the three components
have remained largely theoretical [8, 30,74].

A characteristic empirical feature of many neural systems is avalanche dynamics. Avalanches
comprise cascades of neural activity, in which groups of spikes occur uninterrupted in time. These
cascades often display heavy-tailed distributions of size, as given by the number of neurons that spike
in a cascade, and of duration, as given by the period of continuous activity [6]. Such distributions,
commonly reported to be power-law like, have been detected using a range of methods and have
been observed in vitro [6, 23], in vivo [7, 18, 49, 51, 59], and ex vivo [56] in a variety of organisms,
including humans. In a complementary line of theoretical work, power-law distributions in size
and duration have been linked to self-organized criticality [4], and systems of this type are said
to have optimal information storage [24], optimal information transmission [6], optimal dynamic
range [36,57], and computational power [9].

While neural dynamics can be easily characterized, often left implicit in the analysis of neuronal
networks are (i) the computational function of avalanches without the assumption of self-organized
criticality and (ii) the network structure that supports avalanche dynamics. The dynamics of long
cascades characteristic of avalanches have yet to be connected directly to information processing.
Instead, they are commonly treated as evidence for the criticality of avalanching neural networks,
although whether self-organized criticality is relevant for the brain is debated [16,52,71,72]. Moreover,
empirical evidence of strongly and bidirectionally connected pairs of neurons [37, 38, 75] and higher
order network motifs in local and macroscale circuits [42, 48, 60, 63] has yet to be linked to the
avalanching phenomenon that is purportedly supported by those same circuits. Although important
work addresses how a balance between excitation and inhibition is required for avalanching dynamics
in rat slices [40], cortical cell cultures during development [69], and computational models [50],
the actual network topology of systems that support avalanches remains largely unexplored. In
summary, it is not yet known which network topologies might produce avalanching dynamics, or
how those dynamics could lead to certain types of information processing.

Here, we address this gap in knowledge through a series of analyses and numerical simulations of
a stochastic model [6, 24,25,52] instantiated upon various network topologies. First, as a holistic
theoretical framework, we analyze activity propagation in the model via state transitions in a
Markov chain to show that sustained activity is required for a network to maintain information
about stimuli over time. We then present an analytical constraint of cascade duration by network
topology. A precise assessment of this relation in large neural systems is not numerically feasible,
and thus we develop further intuitions from estimation approaches. Given this topological constraint
of neural dynamics, we also find that cycles and strong connections in cycles – both of which are
empirically observed network motifs – are notable contributors to long cascade duration. Finally,
we use simulations on 4 commonly studied generative graph models to probe the relations among
network topology, cascade duration, and the information about stimuli that is maintained in a
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network. Using mutual information to measure information maintenance, we show that long cascade
durations allow recovery of stimuli via persistent network activity. Collectively, our findings show
that the network topology reported extensively in the empirical literature can produce complex,
avalanching dynamics in addition to the well-known attractor dynamics [3, 11,30]. Moreover, these
dynamics support the persistent activation of a cluster of neurons, which in turn allows for the
discrimination of stimulus patterns implicated in working memory [14,15,20].

Mathematical Framework

We begin with the stipulation of a network as well as a dynamical process that occurs atop the
network. We formalize the notion of a network as a directed graph G = (V, E) in which neurons are
represented as nodes V = {1, · · · , n} and neuron-to-neuron connections are represented as edges
E ⊆ V × V. The weighted and directed adjacency matrix A = [aij ] thus encodes the edge weights
from neuron j to neuron i. To model neuronal cascades, we next stipulate a stochastic version of
the McCulloch-Pitts neuron. In the McCulloch-Pitts model, a neuron receives inputs scaled by the
weights of the edges, whose sum is normalized to 1, and sums the scaled inputs to produce an output
via an activation function. Here, the activation function is a Bernoulli process, where probability p
is the sum of the scaled inputs. The model is similar to the branching model that has been applied
to networks to study neuronal avalanches, but limits the maximum firing at one time step to 1 to
ensure greater biological realism [6, 24, 25, 52]. The state of an n-neuron network is a binary vector
y(t) ∈ {0, 1}n such that each element indicates whether a neuron fired at time t and evolves as

yi(t) ∼ B(aiy(t− 1)), (1)

where B(r) is a Bernoulli process with probability r, and ai is the ith row vector of A.
The model that we consider can be represented as a Markov chain with states si ∈ {0, 1}n

representing all possible patterns of spikes in the network, and with state s1 = 0 representing
the zero state. The column vector p(t) = [p1(t); · · · ; p2n(t)] = [P (y(t) = s1); · · · ;P (y(t) = s2

n
)]

represents the probability that the network exists in any state si at time t. The transition matrix T
governs

p(t) = Tp(t− 1) = T tp(0), (2)

where each entry T = [Tlk] = P (
[
y(t) = sl

]
|
[
y(t− 1) = sk

]
) represents the transition probability

from state k to state l. See Methods for details regarding the computation of the matrix T .
The Markov representation above makes explicit the relationship between the network A and the

stimulus propagation and discrimination. The process stated in Equation 1 determines a unique
map from adjacency matrix A to transition matrix T . Given an initial distribution of states, i.e.,
the stimulus patterns, p(0) = [p0; p1; · · · ], the fraction of neuronal avalanches that terminate by
time t is simply given by the first entry of p(t) = T tp(0). Similarly, the discrimination between
network states propagated from stimulus y(0) = si and from y(0) = sj from some measurement
y(t) depends upon the similarity between probability vectors pi(t) = T tsi and pj(t) = T tsj . For
quickly decaying systems, pi(t) and pj(t) will both have a high probability of being in the zero state
s1, inherently reducing discriminability. Hence, the architecture of the network A constrains the
amount of persisting activity that permits discrimination of the initial spiking distribution p(0).

Because computing a Markov chain is intractable for large network sizes, we instead take
advantage of the linear relation in the process stated in Equation 1 to estimate stochastic behavior.
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Specifically, the average activity generated by the stochastic model can be written as x(t) = E[y(t)],
and it is straightforward to show that this average network state obeys

x(t) = Ax(t− 1). (3)

(see Methods for a formal proof). Equation 3 offers a natural intuition: the average behavior of the
stochastic branching model follows linear dynamics. Such a relationship allows the application of
rich mathematical principles of linear dynamical systems to describe average stochastic dynamics of
the model, especially in the context of neuronal avalanches.

To illustrate the linear relation, we perform numerical simulations of the model, and we compare
simulated cascades to the average network state estimated by a linear dynamical system. In both
cases, we instantiate the dynamics on a weighted random network comprised of 10 nodes (Figure
1) [17]. The important network parameters for all simulations are listed in the Supplemental
Materials. We simulate the branching model dynamics 1,000 times over 15 time steps starting with
the same initial condition y(0) (Figure 1b). Note that we can also consider this initial condition
to be the stimulus. We average the activity at each node and time step yj(t) across simulations
to generate a numerical estimate of the time-evolution of the average network state (Figure 1c).
Then using the linear dynamical system starting with the same initial condition x(0) = y(0), we
calculated the number of spikes per neuron per time step as a second estimate of the average network
state (Figure 1d). We find that the difference between the states predicted by the simulation of the
branching model and the states predicted by the linear system is consistently small across a range
of network sizes for fixed density (Figure 1e-f). These results illustrate the accuracy of the linear
estimation of the dynamics of the stochastic model.

Results

Network topology constrains cascade duration

As the first step towards uncovering relations between architecture and avalanche dynamics, we
provide an accurate relationship between network topology and cascade duration using intuitions
grounded in the theory of linear dynamical systems. To analytically describe cascade dynamics,
we take advantage of the linear relation in Equation 3. Because a cascade is alive if any neuron is
spiking, the probability that a cascade is alive at time t is given by

P (alive, t) = 1− p1(t), (4)

where p1(t) is the first element of the state probability vector p(t) = T tp(0) from Equation 2. Given a
stimulus pattern y(0) and a large number of trials, the fraction of cascades alive at time t approaches
P (alive, t) (Figure 2a). Because the transition matrix T is derived from A, the propagation of the
initial stimulus y(0) is determined by the network A.

To numerically assess P (alive, t), we simulated the 10-node, weighted random network used in
Figure 1 and observed little difference between the stochastic and predicted dynamics. For each of
1,000 trials, we stimulated single neurons at t = 1, and at each time step (from a maximum of 100),
we calculated the fraction of cascades alive and P (alive, t). We found that the root-mean-square
error (RMSE) between the linear prediction and the stochastic model was 0.0036 (Figure 2b). To
determine the generalizability of our observations, we extended this analysis to an ensemble of
120 networks, separated into 30 instantiations of four different graph topologies chosen for their
relevance to neuronal architectures: a weighted random graph, a ring lattice graph, a modular graph
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Figure 1. A linear dynamical system can be used to accurately estimate the average stochastic
spiking of neurons in a branching process model. a, An example schematic of the cascade generated
by an external stimulus shown in the leftmost portion of panel b. The red nodes indicate active nodes, and
the gray nodes indicate nodes that have already been active. b, Examples of different cascades generated
by stimulating the same node of a fixed weighted random network. In this case, we stimulate node 8 and
note that therefore node 8 is the only active node in the first time bin, but thereafter the cascades may
differ. c, The activity of each node and time step, averaged over 1,000 simulations on the same weighted
random network and with the same stimulation node used to produce the results shown in panel b. d, The
linear dynamical system with the same weighted random network produces an estimation for spike counts
of the stochastic branching model. e, A histogram of the difference between the cascades produced by the
simulation average shown in panel c and the spike counts stipulated by the linear dynamical system shown in
panel d. The normal fit has a mean of -6.4 × 10-4 and a standard deviation of 4.2 × 10-3. f, For weighted
random networks of size 50, 100, 150, 200, 250, and 300 nodes, all with fractional connectivity of 0.2, we
show the differences between the average cascade activity and the estimation via linear dynamics. The error
bars indicate standard deviations, and the means are 2.094× 10−4 (50 nodes), −6.76× 10−5 (100 nodes),
−9.7× 10−6 (150 nodes), −8.0× 10−5, 5.75× 10−5 (200 nodes), 5.75× 10−5 (250 nodes), and −2.05× 10−5

(300 nodes).

with 4 communities, and a Watts-Strogatz graph (see Methods). For the four graph topologies, we
observed that the average RMSEs were less than 8.5 × 10-3. Taken together, these results indicate a
tight link between network structure A and cascade duration derived from the network dynamics T .

To more generally describe cascade behavior given just the topology A, we can decompose the
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Figure 2. Network topology constrains cascade duration. a, The network activity of an example
cascade on a weighted random network. The cascade duration is defined as the number of time steps t between
the point at which the first spike occurs after a time step of quiescence, and the point at which the last spike
occurs, followed by a time step of quiescence. b, The dynamics of the stochastic model can be accurately
predicted by linear estimation. The plot shows the fraction of cascades alive at time t from 1,000 trials of
stimulating a node in a single instantiation of a 10-node weighted random graph. The root-mean-square error
between the stochastic simulation and the linear prediction is 0.0036. c, Networks with larger dominant
eigenvalues allow longer cascades. The plot shows the mean duration of cascades as a function of the dominant
eigenvalue of the network. Each of the 100 points reflects a single weighted random network composed of 10
nodes. The value of each point is the mean across the 1,000 values obtained from stimulating each of 1,000
randomly selected nodes from the graph. Note that because the network is composed of 10 nodes, and 1,000
selections are made, each node is selected multiple times. d, Networks with larger sum of eigenvalues allow
longer cascades. The plot shows the mean duration of cascades as a function of the sum of eigenvalues of the
network. Similar to panel c, each of the 100 points reflects a single weighted random network composed of 10
nodes. The value of each point is the mean across the 1,000 values obtained from stimulating each of 1,000
randomly selected nodes from the graph.

weight matrix A into eigenvalues and eigenvectors to identify the elementary modes of activity
propagation. One metric we can use to identify the maximum constraint on the dominant propagation
of activity is the dominant eigenvalue λ1, where

∀λi ∈ eig(A) : Avi = λivi. (5)

The dominant eigenvalue λ1 scales the dominant eigenvector v1, which constrains the most persistent
mode, or vector, of activity propagation in the network. In addition, other modes of activity
propagation can affect cascade dynamics. Thus, for a more holistic view of activity propagation
in the network, we can compute the sum of the absolute value of all eigenvalues, |λ|i. This sum
represents the rate of decay of all elementary modes of activity propagation. We present the
dominant eigenvalue and the sum of all eigenvalues as two metrics of estimating activity propagation
in a network.

To numerically demonstrate the utility of the two metrics in explaining cascade duration, we
simulated 100 networks with 10 nodes and weighted random graph topology. For each network, we
stimulated individual neurons at random, and the resultant cascade was allowed to propagate for 100
time steps. Because the graphs are randomly constructed, they had a range of dominant eigenvalues
from 0 to 1.0 (Figure 2c). The mean duration of cascades is approximately linearly correlated on
a log scale with the dominant eigenvalue and with the sum of eigenvalues (Pearson’s correlation
coefficients r = 0.7830 and r = 0.7073, respectively; Figure 2c,d). Notably, these relations can
inform how one would tune the network A to produce cascades of long duration.
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Network motifs: cycles and connection strength

Having demonstrated in the previous section that cascade duration can be predicted from the
network topology, we next turn to a deeper examination of which specific features of a network’s
topology and geometry can support a heavy-tailed distribution of cascade duration. Note that we
use the phrase network topology to indicate the arrangement of binary edges and we use the phrase
network geometry to indicate the distribution of edge weights [5]. The two candidate features that
we consider are (i) the presence of cycles and (ii) the strength of connections in cycles. We will
study these features through a rewiring process on an initial set of edges.

The presence of cycles. We begin by noting that cycles support temporally extended cascades. Given
a single initial stimulus or spontaneous spike, a cascade can have a duration greater than the number
of nodes in the graph if and only if there exists at least one cycle in the network. We demonstrate
this simple intuition with an acyclic 3-node network and a cyclic 3-node network, where each edge
in both networks has a weight of 0.5 (Figure 3a-b). In simulations of 104 cascades, we find that the
acyclic network produces a maximum cascade duration of 3 time steps, as expected. In contrast,
using the same number of simulations on the cyclic network, we find the much greater maximum
cascade duration of 13 time steps.

Next, we show that the cascade duration scales monotically with a network’s cycle density, which
we define as the number of simple cycles divided by the number of connected edges (Figure 3c).
To study the effect of cycle density, we begin with a 10-node, directed acyclic graph and randomly
rewire each edge with probability p to a different target node. The directed acyclic graph has the
maximum number of edges; that is, the weight matrix is an upper triangular matrix without the
diagonal entries. By sweeping over rewiring probabilities p = {0.0, 0.1, 0.2, ..., 1.0}, we generate
networks with different numbers of simple cycles, but the same number of edges and same edge
weights of 1

n . For each p, we simulate 104 cascades with a maximum duration of 104, and we measure
the slope of the linear tail of the distribution on a log-log plot. In these simulations, we find that
as a network is rewired to contain more cycles, the average cascade duration increases (Pearson’s
correlation coefficient r = 0.8180, p = 1.0835× 10−27). These examples illustrate the more general
rule that networks containing cycles can support longer cascades and can extend the tail of the
distribution of cascade duration.

The strength of connections in cycles. We now turn to a consideration of the distribution of edge
weights. To maximize the specificity of our inferences and to generally build our intuition, we
constrain ourselves initially to simple networks that only contain a small cycle (a 2-cycle) or that
also contain one relatively larger cycle (a 4-cycle). We probe the role of weight distributions in
the dynamics of the network by placing the strongest weights on edges comprising cycles and by
placing the weakest weights on edges not comprising cycles. Specifically, in both the 2-node and
4-node cycle networks, we take the strong weights initially placed on the cycle and redistribute some
of their weight by ∆w to randomly chosen edges that are not part of the original cycle (Figure
3d,h). See the Supplementary Materials for results obtained for different random selection of edges.
Upon these new networks, we simulate the stochastic model. We find that as the weight on the
original cycle is continuously redistributed away from the initial cycle and throughout the network,
we observe fewer and fewer cascades of long duration (Figure 3e,i).

Across empirical studies [6, 7, 16,23,41,49–51,56], the distributions of avalanche duration have
been fit by power law functions, where the exponent is known as the life time. Typical values vary
from -1.0 to -2.6. We seek to show how cycle density and edge weights in cycles together explain
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Figure 3. Cycles and strong connections support avalanching dynamics. a, The probability
distribution of cascade duration in an acyclic network where all edges have a weight of 0.5. In 104 trials,
the maximum cascade duration is 3 time steps. b, The probability distribution of cascade duration in a
cyclic network where all edges have a weight of 0.5. In 104 trials, the maximum cascade duration is 13
time steps. c, Networks with higher cycle density have longer cascades. The cycle density is the number of
simple cycles divided by the number of edges. A directed acyclic graph was randomly rewired to produce
networks of varying cycle density. The Pearson’s correlation coefficient is r = 0.8180, p = 1.0835× 10−27. d,
A schematic of a 2-node network. The weights are redistributed from the 2-cycle to self-loops by ∆w. e,
Three probability distributions of cascade duration for ∆w = 0.02, 0.24, and 0.46 in the 2-node cycle. The
distributions have slopes of −2.2551, −5.6259, and −6.4050, respectively. f, The slope of distributions (left)
decreases as ∆w → 0.5 and (right) increases again as ∆w → 1. The quadratic fit of the slope of duration is
y = 9.9509∆w2−10.1443∆w−2.9108. g, Network geometries producing longer duration can be characterized
by a larger sum of eigenvalues; note that these networks have the same dominant eigenvalues. The Pearson’s
correlation coefficient is r = 0.6926, p = 3.5190× 10−8. The y-axis is the slope of duration as in panel f. h,
A schematic of a 4-node network. The weights are redistributed from the 4-cycle to randomly chosen edges
that are not part of the original 4-cycle by ∆w. i, Three probability distributions of cascade duration for
∆w = 0.02, 0.24, and 0.46 in the 4-node cycle. The distributions have slopes of -1.0870, -2.6681, and -4.1164,
respectively. j, The slopes of distributions follow the same shape as in panel f. The quadratic fit of the slope
of duration is y = 6.7078∆w2 − 9.3683∆w − 1.0733. Note: The schematic (panel h) and simulations (panels
i-k) use one random selection of edges that are not part of the original cycle. k, The 4-node cycle shows
the same relationship between duration and sum of eigenvalues as in the 2-node cycle show in panel g. The
Pearson’s correlation coefficient is r = 0.7611, p = 2.1791× 10−10. The y-axis is the slope as in panel j.
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the topological and geometric differences in the networks underlying the various distributions of
avalanche duration. The distribution of longer versus shorter cascades can be quantified by the
slope of the power law distribution on a log-log plot. Cascades of longer duration would be expected
to produce a shallower, or less negative, slope while cascades of shorter duration would be expected
to produce a steeper, or less positive, slope. As we redistribute edge weight more uniformly in both
the 2-node and 4-node networks, we find that the slopes of the distributions of cascade duration
become increasingly negative, ranging from -2.26 to -6.41 for the 2-node network and from -1.09
to -5.11 for the 4-node network. Furthermore, as we redistribute away from the uniform geometry,
continuously increasing the range of edge weights, we again observe more and more cascades of long
duration (Figure 3f,j). These observations underscore the tight coupling between the range of edge
weights, and the heavy-tailed nature of the distribution of cascade duration.

Lastly, we seek to determine whether the distribution of edge weights along cycles contributing to
cascade duration is captured by the eigenvalue analysis presented in the previous section. Towards
this goal, we employ the same perturbative numerical experiments on the 2-node and 4-node cycle
networks. Specifically, we find that as the weights of the original cycle are redistributed, the duration
of cascades, as measured by the slope of the distributions, tracks monotonically with the sum of
eigenvalues of the network (Pearson’s correlation coefficients r = 0.6926, p = 3.5190 × 10−8 and
r = 0.7611, p = 2.1791× 10−10, respectively; Figure 3g,k). Because the dominant eigenvalues of the
networks in these simulations are all equal to 1, the sums of eigenvalues provide a more descriptive
estimation of activity propagation. Thus, this result suggests that edge weight constrains cascade
duration by determining the strength of activity propagation.

Node-specific dynamics

Even within a single network architecture, the range of cascade dynamics can vary depending on
the nodes that are stimulated, either spontaneously or exogenously. Thus, we now consider the role
of the stimulus pattern on cascade dynamics. We extend our eigenvalue analysis to estimate the
role of a stimulus pattern on cascade dynamics by calculating the magnitude of the eigenprojection
of the stimulus pattern. Because the average dynamics are explained by linear systems theory, we
then use network control theory to more accurately predict how stimulation of individual nodes
alters the dynamics of cascades.

The eigenprojection of the stimulus pattern. First, we tested whether the magnitude of the eigen-
projection of the stimulus pattern could predict cascade dynamics. Given a stimulus y(0), the
eigendecomposition of the weight matrix A into A = PDP−1 yields c = P−1y(0) as the coefficients
of the eigenmode excitation of y(0). The components of c determine how much the stimulus
y(0) projects onto the eigenvectors of A and describes the modes of average activity propagation
through the network A. Then, as a predictor for mean duration, we can compute the 1-norm, or the
sum of absolute values, of the eigenprojection of the stimulus pattern scaled by the corresponding
eigenvalues λ,

|c · λ|1. (6)

We numerically test the eigenprojection metric by simulating cascades on a 100-node, weighted
random network. The mean duration of cascades generated from the stimulation of a single node was
significantly positively correlated with the magnitude of the eigenprojection (Pearson’s correlation
coefficient r = 0.4213, p = 1.27 × 10−5; Figure 4a). To determine the generalizability of these
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findings, we expanded our simulation set to include 30 random instantiations of networks with the
same parameters. In this broader dataset, we found that the Pearson’s correlation coefficient was
highly variable (median r = 0.1967; Figure 4d). Thus, we can weakly estimate the role of a stimulus
pattern on cascade dynamics with eigenvalue analysis.
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Figure 4. Network controllability is tightly linked with dynamics. a-c, Scatter plots between mean
cascade duration and a the magnitude of the eigenprojection, b the modal controllability, and c the finite
average controllability. The network used here has 100 nodes with weighted random graph topology and
a fractional connectivity of around 0.2. Each point is the mean duration and metric for each node. d,
Pearson’s correlation coefficients for 30 random instantiations of networks with the same parameters as the
network used in panels a-c. e-g, Scatter plots between mean cascade duration and e the magnitude of the
eigenprojection, f the modal controllability, and g the finite average controllability. The network used here
has the same parameters as networks from panels a-c, but with 10% of connections normally distributed
with a mean of 0.9 and 90% of connections with a mean of 0.1, all with a standard deviation of 0.1, before
weight normalization. h, Pearson’s correlation coefficients for 30 random instantiations of networks with the
same parameters as the network used in panels e-g.

Network control theory. To more accurately predict the role of a stimulus pattern on cascade
dynamics, we adopt average and modal controllability metrics from linear control theory as we
expect control of a network from a node to require network activity. In the same set of simulations
reported above, we compared the mean cascade duration to the finite average controllability of each
node, defined as

Trace(WK), (7)

where WK =
∑F

τ=0A
τBKB

T
KA

τ is the finite controllability Gramian (see Methods for details).
We observed that the mean cascade duration and finite average controllability were significantly
positively correlated (Pearson’s correlation coefficient r = 0.7980, p = 1.27× 10−5; Figure 4c). In
contrast, modal controllability was not strongly correlated with mean cascade duration (Pearson’s
correlation coefficient r = −0.2668, p = 0.0073; Figure 4b). To determine the generalizability of
these findings, we expanded our simulation set to include 30 random instantiations of networks with
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the same parameters. In this broader dataset, we observed consistent effects (median Pearson’s
correlation coefficient r = 0.7483 and r = −0.2484 for finite average controllability and modal
controllability, respectively; Figure 4d). In comparing the predictions from linear control theory with
the predictions from eigendecomposition, we note that finite average controllability is consistently
more strongly correlated with the mean cascade duration than the magnitude of the eigenprojection
(Figure 4d).

Interestingly, networks with the same topological parameters as above, but with a bimodal
distribution of weights show even stronger correlations between network control statistics and
cascade dynamics (Figure 4f-h). Such a weight distribution reduces variance in the stochastic
process, which intuitively can serve to strengthen the correlation. We observed that the mean
cascade duration and finite average controllability were significantly positively correlated (Pearson’s
correlation coefficient r = 0.9067, p = 1.6×10−38; Figure 4g). Modal controllability became strongly
negatively correlated with mean cascade duration (Pearson’s correlation coefficient r = −0.5653,
p = 8.9× 10−10; Figure 4f). Again to determine the generalizability of these findings, we expanded
our simulation set to include 30 random instantiations of networks with the same parameters. We
observed consistent effects (median Pearson’s correlation coefficients between mean cascade duration
and finite average controllability, modal controllability, and magnitude of eigenprojection were
r = 0.8572, r = −0.5473, and r = 0.5765, respectively; Figure 4h). Again we note that finite average
controllability is consistently more strongly correlated with the mean cascade duration than the
magnitude of the eigenprojection (Figure 4h). These simulations suggest that the skewed weight
distributions, as identified in the previous section as network motifs that support long cascades, may
strengthen the relationship between network control and network dynamics. Collectively, the results
illustrate that the stimulus patterns and the network must be tailored for each other to produce the
desired neural dynamics. Our observations naturally lead to the question of how stimulation, either
endogenous or exogenous, can be used for information processing.

Cascade duration allows network discriminability and stimulus recovery

If certain network topologies and stimulus patterns can produce long-lasting cascades consistent
with avalanche dynamics, what role can lasting cascades contribute to information processing?
Intuitively, one cannot recover information about stimuli from cascades that have already termi-
nated. For lasting cascades, network states can be discriminated and can also provide information
about stimuli. Such delayed recovery of stimuli can allow the associative learning of stimuli across
temporal delays [14,15,20]. The intuition that lasting cascades allow network discriminability can
be formalized mathematically via Equation 3. Then, with simulations, we test the intuition that
cascade dynamics support stimulus recoverability.

Network discriminability. To analytically show the relationship between cascade duration and
discriminability, we first define network discriminability as the Euclidean distance between two
states d(y1(t),y2(t)) in n-dimensional space. Recall that E[y(t)] = x(t) for stimulus x(0) from
Equation 3. Then, given two stimuli, x1(0) and x2(0), we can calculate the expected network
discriminability as the distance between the expected network states d(x1(t),x2(t)) at time t. Given
that the dominant eigenvalue λ1 < 1, then x(t) approaches the zero vector 0 as t approaches ∞.
As described in previous sections, the decay in activity is constrained by the dominant eigenvalue
of the network and by the finite average controllability of the individual node being stimulated.
Thus, the rate at which both x1(t) and x2(t) decay to 0 determines the rate at which d(x1(t),x2(t))
approaches d(0,0) where discriminability between two network states is zero.
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Stimulus recovery. To numerically show the relationship between cascade duration and stimulus
recoverability, we first define stimulus recoverability as the mutual information I(S;Yt) between
stimulus patterns s ∈ S and network states y ∈ Yt at time t (see Methods for details and Figure 5a-d
for an intuitive schematic). Similar to discriminability, mutual information between the stimuli and
network states decreases with shorter cascade duration because the Shannon entropy of the network
states decreases. To probe this relation formally, we simulated cascades with 100-node networks
from 4 different graph topologies with 30 instantiations of each graph type. Consistent with our
intuition, we observe that mutual information is maintained longer when cascades last longer on
average (Figure 5e-h). We then quantified the decay in mutual information by first performing
linear regression on the mutual information as a function of time for the first 10 time steps. By
calculating the Pearson’s correlation coefficient between the slope of linear regression and the mean
cascade duration, we found that for all four graph topologies, mutual information decays faster when
the propagation of activity also decays faster (Figure 5i-j). Collectively, these results demonstrate
that stimulus recoverability is maintained longer when the cascades generated by stimulus patterns
last longer.

To link information retention back to network structure, we assessed the relation between stimulus
recoverability and the sum of eigenvalues of each network. Using the same 100-node networks from 4
different graph topologies with 30 instantiations of each graph type, we found a significant positive
correlation between the average decay rate in mutual information and the sum of eigenvalues,
implying that network structure supports the retention of information within the network (Pearson
correlation coefficient r = 0.9188, p = 1.8× 10−49; Figure 5k). Moreover, while all networks had
similar parameters, each graph type generated distinct ranges of decay rates and sums of eigenvalues,
suggesting that certain graph types may be better suited for information retention than others.
In particular, we observed lower decay rates in mutual information and lower sum of eigenvalues
in the weighted random and modular graphs, than in the random geometric and Watts-Strogatz
graphs. Collectively, these findings demonstrate the interplay among network architecture, network
dynamics, and information processing.

Discussion

Neural systems display strikingly rich dynamics that harbor the marks of a complex underlying
network architecture among units, from the small scale of individual neurons to the large scale of
columns and areas [46,76]. Avalanches are a quintessential example of such dynamics, and are thought
to allow for a diverse range of computations [6, 24,36,57]. Yet, precisely how a neuronal network’s
topology supports stochastic dynamics and the computations that can arise therefrom remains
unclear. Here, we seek to provide clarity using both precise analysis of mathematical formulations
and statistically rigorous assessments of numerical experiments. We consider a generalized spiking
model and demonstrate that the time-averaged activity of this model can be treated as a linear
dynamical system. From this observation, we derive intuitions for how network topology constrains
cascade duration. In subsequent numerical experiments, we use eigendecomposition and statistical
approaches from network control theory appropriate for linear dynamical systems to describe how
network structure and the stimulus pattern together determine the manner in which a stimulus
propagates through the network. We identify strongly connected cycles as prevalent network motifs
that promote long cascade duration in neuronal networks. Finally, we use mutual information to
demonstrate that long-lasting cascades can serve as a mechanism to allow for temporally delayed
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Figure 5. A stimulus can be well-recovered when it generates long-lasting cascades. a-b, A
schematic showing two cascades triggered by different stimuli. c, Recovery of the stimulus using an observation
of a network state during a cascade. d, Failed recovery of the stimulus using an observation of a network
state during a cascade. e-h, Decay in mutual information (MI) over time. When activity from a stimulus
pattern lasts longer, mutual information also persists for longer. Panels e-h show results from four graph
types: a weighted random graph, a random geometric graph, a modular graph with 4 communities, and
a Watts-Strogatz graph. We used a fractional connectivity of 0.05 to show a wide range of decay rates
in mutual information (see Supplemental Materials for simulations with other fractional connectivities). i,
The linear decay rate of mutual information over the first 10 time steps plotted against the mean cascade
duration in the example weighted random graph from panel e. j, A boxplot of the Pearson correlation
coefficients between the linear slope of decay in mutual information over time and the mean cascade duration.
The boxplot shows data from 30 instantiations of each graph type, each network containing 100 nodes and
characterized by a fractional connectivity of around 0.05. k, The mean decay rate in mutual information for a
network is correlated with the sum of eigenvalues of the network (Pearson’s correlation coefficient r = 0.9188,
p = 1.8× 10−49).

recovery of desired patterns of stimulation. Broadly, our work blends dynamical systems theory,
network control theory, information theory, and computational neuroscience to address the wide
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gap in the field’s current understanding of the relations between architecture, dynamics, and
computation.

Linear form of stochastic network dynamics. Because of the inherently stochastic nature of
neuronal avalanches, many previous studies have simply inferred properties about the underlying
network through statistical methods [6, 40]. An important innovation in this study was the
demonstration that the time-averaged activity of the stochastic system has an equivalent form
as a linear dynamical system. Such linear estimation of the dynamics makes available powerful
computational tools in matrix and linear systems theory, and allowed us to capitalize on recent
advances in network control [39, 47]. Network control theory is a formal approach to modeling,
predicting, and tuning the response of a networked system to exogenous input, and has been recently
applied to neural systems at both the cellular [73,78,80] and regional [13,22,31,67] scales (for a recent
review, see [66]). In these previous efforts, linear dynamics have been assumed, whereas here such
dynamics have been proven, to be relevant for the neural system under study. Extensions of linear
systems analysis, such as observability [12] and optimal control [10, 21, 68], follow immediately from
this work and could provide added insights into other dynamical and computational properties of
neural networks. Finally, it would be of interest to directly probe the effects of stimulation patterns
defined by network controllability statistics on information transmission in vitro or behaviors in
vivo, following work in a similar vein in large-scale human neuroimaging [34,43,45,65].

Topological constraints on dynamics and computation. Proving formally that network
topology affects dynamics and computation is important, but can be further complemented by
providing intuitions regarding the specific features of a network topology that are most relevant.
The identification of functionally relevant features of networked systems has a long history in
molecular biology [2], with notable efforts identifying structural motifs in transcription regulation
networks [55], protein-protein interaction networks [81], and cellular circuits [26], which are thought
to arise spontaneously under evolutionary pressures [33]. Significantly extending prior statistical
efforts in large-scale connectomes [64], here we demonstrate that specific structural motifs in the
form of strongly connected cycles are topological features that support long cascade dynamics. These
structural motifs form elementary units or building blocks of the network that can be combined
to create connectivity architectures that produce certain dynamical behaviors. Other theoretical
studies have also found strongly and bi-directionally connected neurons as motifs that produce
long-lasting memory [11], potentially as a mechanism for attractor dynamics [30]. Importantly,
empirical studies have shown that the network motifs identified here are observed in both cortical
microcircuits [37,38,42,48,63,75] and macrocircuits [60]. Future work is needed to better understand
the rules by which neurons connect to one another, and to determine whether those rules serve to
increase the memory capacity of cortical networks. It would also be interesting in the future to
determine whether higher-order structural motifs, such as those accessible to tools from algebraic
topology [19, 61], might also play a role in the relationships between topology, dynamics, and
computation [53,60].

Information theory as a performance measure. To measure information retention, we use
mutual information between stimulus patterns and network states. Mutual information, originally
developed to study communication channels [54], has proven to be a powerful tool for the study of
information transmission in avalanching neural networks [6, 58]. While previous studies of neuronal
avalanches use power law statistics that suggest criticality as the theoretical link between dynamics
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and information processing [6, 9, 24, 36,56,57, 59], we take a more mechanistic approach embedded
in dynamical systems theory to study the relationships between network structure, dynamics, and
mutual information. In light of recent evidence for the subcriticality of cortical networks and the
difficulty of establishing criticality from power laws [52,71,72], the direct approach that we take
here may prove useful in future studies. Nevertheless, we also acknowledge that our approach has
some limitations. Despite its utility in studying information channels, mutual information is unlikely
to be the only useful performance measure for a neural system, given the numerous purported
computations of cortical networks [57,70]. Indeed, the explanation posited here for the prevalence of
strongly connected neurons does not account for the information faculties of the rest of the neural
system. Such considerations compel further investigation into how network structure supports other
types of information processing accessible to other information theoretic measures.

Methodological considerations. A few remarks are warranted on the topic of linear dynamics
in neural systems. Linear dynamics accurately predicts stochastic, cascade dynamics, and its rich
mathematical properties have been used to study neural dynamics in many organisms across a wide
range of temporal and spatial scales [22, 35, 39, 80]. At the neuronal level, however, neural dynamics
are non-linear [28]. Efforts analytically demonstrating properties about non-linear systems are more
limited [44], and thus, further study is required to more thoroughly demonstrate the relationships
shown here in a non-linear system.

Future directions. In closing, we note that the natural direction in which to take this work will
be to consider other types of information processing and to identify network structures that produce
dynamics that support such computations. Moreover, it would be apt to apply this framework to
cortical networks from functional, structural, and effective connectivities and to measure memory
performance in terms of the network topology and dynamics. It would be interesting to measure
differences in memory performance across brain regions, and to test for relationships between
topological features and performance. Third and finally, studying well-known network learning
rules—such as Hebbian plasticity [27] and spike-timing dependent plasticity [62]—in a dynamical
systems and information theoretic framework may shed further light on the functional purpose of
these rules.
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Methods

Network generation. We study a recurrent, excitatory network of n neurons connected by
connectivity matrix A. A network is formally represented by directed graph G = (V, E), where
V = {1, · · · , n}, and E ⊆ V × V are the sets of network vertices and directed edges. Let A = [aij ]
be the weighted and directed adjacency matrix of G, where aij is the connection from neuron j to
neuron i and 0 ≤ aij ≤ 1. At each time point t ∈ Z≥0, we associate each node i with a discrete
non-negative random variable yi(t).

We use four different commonly studied graph models from network science in our analyses [79].
The first graph model is the Weighted Random Graph model (WRG), which is a weighted version of
the canonical Erdos-Renyi model. The weight of an edge is distributed as a geometric distribution
with probability of success p. Second, we use a Random Geometric model (RG) that is embedded
in a unit cube, where the edge weights are equal to the inverse of the Euclidean distance between
two nodes. We kept only a fraction of the shortest edges in order to achieve a desired edge density
p. Third, we use a Modular Graph with 4 Communities model (MD4). Pairs of nodes within
communities have an edge density of 0.8, and nodes across communities are connected to achieve a
desired edge density of p. The edges of nodes in the same community and across communities are
weighted according to a geometric distribution with probability of success p and 1− p, respectively.
Fourth, we use a Watts-Strogatz model (WS). The model builds a ring lattice and then uniformly
rewires the network, creating a small-world architecture with a random probability of r = 0.1. After
a graph is generated, we normalize the weights so that the sum of each row is equal to 1.

To calculate the cycle density of a graph, we compute the number of simple cycles divided by the
number of connected edges. A simple cycle is defined as the set of edges in a closed walk with no
repetitions of vertices and edges, other than the starting and ending vertex. The number of simple
cycles was calculated using the NetworkX software package (version 2.1) on python v2.7.10.

Stochastic McCulloch-Pitts model. We model cascades as spikes propagating through a
recurrent network. To model neuronal cascades, we next stipulate a stochastic version of the
McCulloch-Pitts neuron. In the McCulloch-Pitts model, a neuron receives inputs scaled by the
weights of the edges and sums the scaled inputs to produce an output via an activation function.
Here, the activation function is a Bernoulli process, where probability p is the sum of the scaled
inputs. The model is similar to the branching model that has been applied to networks to study
neuronal avalanches [6, 24, 25, 52]. The network starts at some non-random initial state y(0), which
can also be interpreted as a stimulus received at t = 0. Activity in the form of binary spikes {0, 1}
propagates through the network as y(t). For neuron i, yi(t) is defined as

yi(t) ∼ B(aiy(t− 1)),

where B(p) is a Bernoulli process with probability p, aij is the weight from neuron j to neuron i,
and 0 ≤ aij ≤ 1. For computational tractability, we set a maximum time step K for the simulations.
The simulated spike counts y(t) are stored as a n-by-K matrix. All simulations and calculations
were run on MATLAB (version 2018a) provided by The MathWorks, Inc.

We prove by induction that linear dynamics estimates average stochastic behavior, i.e., E[yj(t)] =
xj(t). At t = 0, both yj(0) and xj(0) are set as the stimulus pattern, and so, E[yj(0)] = xj(0). Now,
assume E[yj(t− 1)] = xj(t− 1), and see that xj(t) = aTj x(t− 1) = aTj E[y(t− 1)] = E[aTj y(t− 1)] =
E[yj(t)] and thus, E[yj(t)] = xj(t). To demonstrate this relation numerically, we take the average
cascades that begin with the same initial state by taking the mean of yki (t) for all cascades k at
each time step t. All cascades start with the same initial condition y(0).
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Eigenvalue analysis. In our analysis of networks, we decompose the weight matrix A into
eigenvalues and eigenvectors. Such an eigendecomposition is formalized as

A = PDP−1, (8)

where P is a matrix of eigenvectors as columns and D is a diagonal matrix of corresponding
eigenvalues. According to the Perron-Frobenius theorem, the real, square, and non-negative
adjacency matrices used here all have a largest real eigenvalue, and the corresponding eigenvector
can be chosen to have strictly non-negative components.

Stimulus pattern generation. We investigate the propagation of activity through a network
initiated by stimulus patterns. The stimulus pattern is set as the initial state y(0) or x(0) of a
network and then propagated forward in time according to either a branching process or linear
dynamics, respectively. In our study, we consider two ways to generate stimulus patterns. In the
analysis of cascade duration and controllability, we stimulate individual nodes by creating a set
of vectors in which the ith element of the ith vector is set at 1 and all other elements are set at
0. In the mutual information analysis, we create a set of column vectors such that their finite
average controllability values evenly span the range of controllability values (see later section of this
Methods for definition of finite average controllability). In each of the n

m = 25 vectors, we choose
m = 4 nodes from n = 100 total nodes to stimulate such that each node that we select is increasing
in its finite average controllability value. Because finite average controllability is highly correlated
with cascade duration, such input vectors will evenly span the possible duration of cascades.

Predicting cascade dynamics. We can predict the exact fraction of cascades alive at time t by
computing a state transition matrix from any state k to any state l. For k, l ∈ {1, ..., n}, the state
transition matrix T ∈ Rl×k can be constructed by

P
([
y(t) = sl

]
|
[
y(t− 1) = sk

])
=

n∏
j=1

P
([
yj(t) = slj

]
|
[
y(t− 1) = sk

])
=

n∏
j=1

(ajs
k if slj = 1 and 1− ajsk if slj = 1)

=

n∏
j

(1− slj) + (−1)s
l
j+1ajs

k.

Then, at t for all l, the probability of the network being in any state is given by P (y(t) = sl) =∑n
k=1 P (

[
y(t− 1) = sk

]
)P (
[
y(t) = sl

]
|
[
y(t− 1) = sk

]
).

Network control theory and associated controllability statistics. Network control theory
is a formulation of control theory for networks of interacting components. This formulation typically
consists of a set of n component nodes V = {1, · · · , n}, where the vector x(t) ∈ Rn represents the
state of node activities at time t ≥ 0. These nodes are connected by a set of edges E ⊆ V ×V , where
the adjacency matrix A ∈ Rn×n has elements aij as the strength of the connection from node j to
node i. Here, control typically refers to a set of k inputs u(t) ∈ Rk at time t ≥ 0 that drive the
evolution of system states according to B ∈ Rn×k. In linear control theory, the system states evolve
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as

x(t+ 1) = Ax(t) +Bu(t).

Motivated by a desire to understand how network architecture affects its control properties,
recent work iterates network-based metrics for control of such linear systems [47]. Particularly
germane to our discussion of avalanche duration is average controllability [22, 32], defined as the H2

norm of the system’s infinite impulse response given by

Trace[WK ] = Trace

[ ∞∑
τ=0

AτBBTATτ

]
.

Here, we set B as a binary column vector where vector elements corresponding to the nodes of
interest are set to 1 and the remaining vector elements are set to 0; this formulation represents
an impulse of magnitude 1 to the nodes of interest. The finite average controllability is similarly
defined by taking the sum to some finite positive integer F instead of infinity, and represents the
norm of the system’s impulse response over F time steps. Because avalanches are expected to last
for a finite number of time steps, we use F = 10 in the main text, and in the supplement we show
that larger values of F produce similar results.

Another network-based control metric we use here is modal controllability [22, 47]. While modal
controllability was originally formulated for symmetric matrices, here we extend the definition to
include asymmetric matrices. To do this, we take the absolute value of both the eigenvalues and the
eigenvector components, which can be complex numbers in an asymmetric matrix. Thus, we define
the version of modal controllability of node i for asymmetric matrices as

φi =
n∑
j=1

(1− |λj |2)|vij |2.

Mutual information calculation to probe stimulus recovery. To measure the capacity of a
network to transfer information during an avalanche, we calculated the mutual information I(X;Y ),
which quantifies the amount of information, in bits, that one random variable X reveals about
another random variable Y . Here, the two random variables of interest are the initial stimulus
patterns y(0) = s ∈ S and the measured network states y(t) ∈ Yt at each time step t. With mutual
information, we measure the amount of information that the network states Yt reveal about which
stimulus pattern y(0) ∈ si or S′ was presented. To obtain a reasonable set of stimulus patterns, we
generated the set S′ = {sj |j 6= i} of |S′| = n− 1 unique stimulus patterns. Both P (y(0) = si) and
P (y(0) ∈ S′) are equally probable at 0.5 such that H(y(0)) ≈ 1 bit for all patterns i. We generated
the stimulus patterns such that they evenly spanned the range of average controllability values (see
earlier Methods section on “Stimulus pattern generation”). All mutual information calculations
were run using the MIToolbox (v3.0.1) for MATLAB (https://github.com/Craigacp/MIToolbox).

In the analysis of the relationship between the average cascade duration and the mutual infor-
mation, we quantify the decay in mutual information over time. We also calculate the correlation
between the decay rate of the mutual information and the predicted mean cascade duration. For
this latter calculation, first we perform a linear regression of the decay in mutual information with
respect to time. Then, we calculate the Pearson correlation coefficient between the slope of the
linear regression and the mean cascade duration.

19/25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504761doi: bioRxiv preprint 

https://doi.org/10.1101/504761
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. R. Adolphs. Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience,
4:165 EP –, 03 2003.

2. U. Alon. Network motifs: theory and experimental approaches. Nat Rev Genet, 8(6):450–461,
2007.

3. D. J. Amit and N. Brunel. Model of global spontaneous activity and local structured activity
during delay periods in the cerebral cortex. Cereb Cortex, 7(3):237–252, Apr-May 1997.

4. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of the 1/f
noise. Physical Review Letters, 59(4):381–384, July 1987.

5. D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha.
Robust detection of dynamic community structure in networks. Chaos, 23(1):013142, Mar
2013.

6. J. M. Beggs and D. Plenz. Neuronal avalanches in neocortical circuits. Journal of Neuroscience,
23(35):11167–11177, 2003.

7. T. Bellay, A. Klaus, S. Seshadri, and D. Plenz. Irregular spiking of pyramidal neurons
organizes as scale-invariant neuronal avalanches in the awake state. eLife, 4:e07224, jul 2015.

8. R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in visual
cortex. Proceedings of the National Academy of Sciences, 92(9):3844–3848, 1995.
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