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To capture the emergent properties of neural circuits, high-speed volumetric 
imaging of neural activity at cellular resolution is desirable. But while 
conventional two-photon calcium imaging is a powerful tool to study population 
activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D 
while maintaining high spatiotemporal resolution appears necessary. Here, we 
developed a two-photon microscope with dual-color laser excitation that can 
image neural activity in a 3D volume. We imaged the neuronal activity of primary 
visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 
10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC 
projections and L2/3 somatas. Using this method, we map visually-evoked 
neuronal ensembles in 3D, finding a lack of columnar structure in orientation 
responses and revealing functional correlations between cortical layers which 
differ from trial to trial and are missed in sequential imaging. We also reveal 
functional interactions between presynaptic L1 axons and postsynaptic L2/3 
neurons. Volumetric two-photon imaging appears an ideal method for functional 
connectomics of neural circuits. 
 

Keywords: volumetric imaging; two-photon calcium imaging; beam multiplexing; 
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Highlights 

• Dual-color two-photon volumetric imaging of record numbers of neurons across 
cortical columns in vivo 

• Neuronal ensembles span across layers and are not detected in sequential 
imaging 

• Lack of columnar structures in orientation response in V1 
• Functional interaction between axonal projections and local population 
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Introduction 
High-speed volumetric imaging of neural activity at cellular resolution is an 

important method to decipher the function of microcircuits at a population level. As the 
mammalian cortex is organized into layers, the coordinated activity of neurons within 
and across layers likely contributes to emergent functional properties of circuit, making it 
necessary to measure neuronal activity in three dimensions in order to capture them 
(Alivisatos et al., 2012). Calcium imaging provides a powerful tool for recording the 
activity from a large population of neuron in vivo (Tian et al., 2009; Yuste and Katz, 
1991). In combination with two-photon imaging, it allows the observation of population 
activity from deep tissues (Denk et al., 1990; Helmchen and Denk, 2005; Yuste and 
Denk, 1995). However, conventional two-photon calcium imaging is constrained to 
imaging a single two-dimensional plane. To extend it to a three-dimensional volume 
while still maintaining cellular resolution and high temporal resolution, multiple strategies 
have been developed (Yang and Yuste, 2017). Fast z-scan devices such as spatial light 
modulators (SLMs) and electric tunable lenses (ETLs) are capable of switching focus at 
high speed over a relatively large depth range (up to ~500 μm), and have been 
demonstrated for fast sequential volumetric imaging (Grewe et al., 2011; Yang et al., 
2016). In addition, as holographic devices, SLMs can be used to generate multiple 
beamlets to simultaneously image multiple planes across >500 µm, with their signals 
demixed by statistical algorithms (Pnevmatikakis et al., 2016; Yang et al., 2016). Other 
volumetric imaging approaches such as remote focusing introduces an auxiliary 
objective and a scan mirror that allows fast switching of focal planes (Botcherby et al., 
2008, 2012).  
 Here we developed a new hybrid approach combining excitation-wavelength 
multiplexing and fast z-scan devices. We labeled superficial and deep neuronal 
population with two fluorophores of different colors, and simultaneously excited each 
population with a different laser. To minimize scattering effect, we chose GCaMP6 
(Chen et al., 2013) for superficial layers (layer 2/3), and the red-shifted jRGECO1b 
(Dana et al., 2016) for deep layers (layer 5) (Dana et al., 2016; Tian et al., 2009). We 
used an ETL for fast sequential z-scanning in superficial layers and an SLM for deep 
layers through wavefront shaping simultaneously. With these, we demonstrated imaging 
10 planes over 450 μm that spans from layer 1 to layer 5 in primary visual cortex (V1) of 
awake mice, while maintaining a high temporal resolution of 10 vol/sec. We further 
demonstrated volumetric imaging of layer 1 local dendrites with layer 2/3 somas, and 
long-range projections from PFC in layer 1 of V1 with local layer 2/3 population. We 
identified visually-evoked ensembles in 3D, showed a lack of columnar structures in the 
responses, and revealed that correlation between cortical layers varies from trial to trial 
which is missed by sequential imaging. 
 

Results 
Dual-color two-photon microscope 

Our microscope consists of two beam paths with two separate two-photon lasers, 
exciting green and red calcium indicators, correspondingly. The beam path for green 
indicator (GCaMP6) includes an ultrafast laser (920 nm), a telescope that expands the 
beam to fill the ETL, and an ETL for fast sequential defocusing. The beam path for red 
indicator (jRGECO), based on a previous design (Yang et al., 2016), has an ultrafast 
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laser (1064 nm), a telescope for beam expansion, and an SLM for generating 

Figure 1. Dual-color two-photon volumetric imaging microscope 
(A) Microscope design diagram. Two lasers at 920 nm and 1064 nm are expanded and modulated by 
an ETL unit and an SLM unit, correspondingly, then combined through a dichroic mirror and pass 
through a resonant scanner and a galvo scanner before exciting the sample through objective lens. 
Emission fluorescence is collected through two separate PMTs. The SLM path is also equipped with an 
offset lens that separates its focal plane (200 µm deeper) from that of the ETL path. (B) Details of the 
lens complex design. (C) Diagram of volumetric imaging. Two planes are excited and recorded at the 
same time: the shallower one from the ETL path, and the deeper one from the SLM path. The imaging 
depth of the dual planes cycles over time to record a 3D volume. (D-F) Measured signal (D), noise (E), 
and signal-to-noise ratio (SNR, F) from both green (Ch1) and red (Ch2) PMTs, with only 920 nm laser 
on. (G) Quantified signal strength with real noise in green channel (Ch1), with only 920 nm laser on. 
Real noise is computed as noise in (E) (green dots) + signal in (H) (red dots) + noise in (I) (red dots). 
(H-J) Measured signal (H), noise (I), and SNR (J) from both green (Ch1) and red (Ch2) PMTs, with only 
1064 nm laser on. (K) Quantified signal strength with real noise in red channel (Ch2), with only 1064 
nm laser on. Real noise is computed as noise in (H) (red dots) + signal in (D) (green dots) + noise in (E) 
(green dots). (n = 3 experiments) 
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holographic focal planes. The default focal plane of the SLM path is separated from the 
ETL path by 200 μm deeper, implemented by an offset lens at the conjugate plane of 
the imaging plane (Figure 1A). Placing the 1064 nm laser with red indicator in the deep 
layers benefits from less scattering of longer wavelength excitation and emission. The 
two lasers combine at a dichroic mirror, and are then scanned by a resonant scanner 
and a galvanometric scanner, and simultaneously excite the sample at different depths. 
The emitted fluorescence is separated by another dichroic mirror, and collected by two 
PMTs with filters optimized for corresponding fluorophores. Additionally, in order to 
optimize for large angle scanning, we adopted the lens complex design between the two 
scanners based on (Stirman et al., 2016) (Figure 1B). For volumetric imaging in vivo, 
two planes of ~200 μm apart are excited and recorded simultaneously; the dual focal 
planes are directed to a set of depths that covers two separate volumes in synchronous 
through ETL and SLM (Figure 1C). 

To optimize for deep layer imaging and to compensate for the optical aberrations 
in the system, we also implemented adaptive optics (AO) with the SLM in the 1064 nm 
excitation path. We modeled the wavefront aberrations with a combination of Zernike 
polynomials aberration modes, measured their coefficients using fluorescent beads 
(Love, 1997), and then corrected for the wavefront using the SLM (Figure S1). AO 
improves both the target intensity and the PSF over ±200 μm defocus range, reaching a 
minimum FWHM of 6 μm (Figure S2B, S2D). Wavefront correction for the ETL path is 
less critical as it images superficial layers. It has a minimum FWHM of 8 μm (Figure 
S2A, S2C). 

To ensure that the signals we recorded from the simultaneous dual planes do not 
interfere, we characterized the cross-channel contamination of our system. We imaged 
mice V1 in vivo by turning on the 920 nm laser only, or the 1064 nm laser only, while 
recording signals from both PMTs simultaneously. In this case, signals from the non-
exciting channel represent potential contamination. We then analyzed the signal and 
noise from both channels with single laser excitation. For both single laser excitations, 
the desired signal (green for 920 nm excitation in Figure 1D, red for 1064 nm excitation 
in Figure 1H) are much higher than the cross-channel contamination (red in Figure 1D, 
green in Figure 1H), while the noise exhibits similar patterns (Figure 1E, 1I). Overall, the 
signal to noise ratio (SNR) is much higher in the desired channel (Figure 1F, 1J). We 
further estimated the real noise from each channel, assuming that both lasers are 
exciting, by adding up the noise from desired channel with corresponding laser, and 
bleached through signal and noise in the same channel produced by the other laser. 
Under this estimation, the signal is still higher than the estimated real noise in both 
channels (Figure 1G, 1K). We conclude that our system has minimal cross-channel 
contamination and is optimized for simultaneous dual-color imaging. 

 
In vivo volumetric imaging of cortical columns 
 We applied our system to image the cortical activity of neurons from awake mice 
V1. We labeled the V1 neuron population with the green GCaMP6s (Chen et al., 2013) 
and the red jRGECO1b (Dana et al., 2016) through viral vectors. We used the ETL 
beam path to image GCaMP6s with 5 planes spanning from 150 μm to 350 μm in upper 
layers, and the SLM beam path to image jRGECO1b with 5 planes spanning from 400 
μm to 600 μm in lower layers, all spaced with intervals of 50 μm (Figure 2A). This 
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wavelength multiplexing strategy with two beam paths together achieved a total of 10 
imaging planes across 450 μm with a standard field of view (FOV) of around 500 μm × 
500 μm at each plane, covering from the top of layer 2 through layer 5, at a volume rate 
of 10.4 vol/sec. In the example shown in Figure 2A, we recorded the spontaneous 
activity over a 10-minute period from a population of 1497 cells in total. 

Figure 2. In vivo volumetric 
imaging of cortical columns. 
(A) Row 1: average images of 
recorded planes in Ch1 with 920 
nm laser, recorded from 150 μm 
to 350 μm, with a spacing of 50 
μm. Row 2: ROI contours 
extracted by the CNMF 
algorithm, overlaid with average 
images. Row 3: average images 
of recorded planes in Ch2 with 
1064 nm laser, recorded from 
400 μm to 600 μm, with a 
spacing of 50 μm. Row 4: ROI 
contours extracted by the CNMF 
algorithm, overlaid with average 
images. Scale bar: 100 μm. (B) 
Raw ΔF/F traces from all 
extracted ROIs in each plane, 
over 10 min spontaneous 
activity. (C) Two examples of raw 
(light color) and deconvolved 
(dark color) traces, from 920 nm 
and 1064 nm path. (D) Example 
traces from each plane. Light 
color: raw traces. Dark color: 
deconvolved traces. 
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 We then extracted the fluorescence traces from every neuron by a modified 
version of a constrained nonnegative matrix factorization (CNMF) algorithm 
(Pnevmatikakis et al., 2016). This version takes manual initialization of neuron locations, 
and the original CNMF algorithm further automatically optimizes the spatial components 
(shape of each potential neuron), extracts the raw fluorescence (Figure 2C-D, light 
traces), filters out the noise, and calculates the deconvolved traces which represents 
the noiseless estimation of firing probability (Figure 2C-D, dark traces). Extracted traces 
and neuronal region of interests (ROIs) are manually selected before further analysis. 
To exclude cross-channel contaminations from particularly “bright” neurons, trace pairs 
that are highly correlated and come from laterally overlapping ROIs in the 
simultaneously recorded dual planes (e.g. 150 μm and 400 μm planes) are kept using 
only the neuron with the highest SNR (Methods). Figure 2A shows examples of 
extracted (ROIs) from the 10 planes after the above pre-processing steps, and Figure 
2B displays their raw traces. 
 
Orientation selective cells in cortical columns 

While conventional two-photon microscopes can image from one cortical layer at 
a time, our microscope provides a powerful tool for studying neural circuit dynamics 
across multiple cortical layers with high spatial temporal resolution. To demonstrate this, 
we recorded visually evoked activity from V1 volumes covering both L2/3 and L5 
simultaneously while presenting drifting gratings of 8 directions to the animals. It has 
been shown that subsets of mouse V1 population are tuned to orientation or direction of 
drifting gratings (Niell and Stryker, 2008; Rochefort et al., 2011). We indeed identified 
robust orientation selective cells across the cortical column, in both L2/3 and L/5 (Figure 
3A-C). For each orientation, we observed an average of 5%-8% orientation selective 
cells, in agreement with the characterization previously done by two-photon imaging of 
L2/3 (Rochefort et al., 2011), while L5 shows less orientation tuned cells of 3%-7%, 
supporting previous results with extracellular recordings (Niell and Stryker, 2008) 
(Figure 3D, n = 4 mice, 7 FOVs).  
 
Visually-evoked neuronal ensembles span superficial and deep layers 
 In a neuronal circuits, individual neurons cooperate to form larger ensembles of 
neurons that are functionally correlated. This emergent property of a population, rather 
than single neurons, is considered to be the functional units during sensory, behavioral 
and cognitive processes (Carrillo-Reid et al., 2017a; Cossart et al., 2003; Luczak et al., 
2007; Mao et al., 2001; Miller et al., 2014; Yuste, 2015). One advantage of our 
microscope is that we can image multiple cortical layers almost simultaneously, which 
enables us to define and study cortical ensembles across layers based on the 
correlation structure of the population. Several computational approaches have been 
proposed for ensemble detection (Avitan et al., 2017; Carrillo-Reid et al., 2015, 2017b; 
Lopes-dos-Santos et al., 2013); since we record from a relatively large population of 
neurons, we chose to use a fast graph-based community detection method [Louvain 
method (Blondel et al., 2008)] which aims at maximizing modularity measurement. To 
detect stable ensemble, we combined the Louvain method with consensus clustering 
that finds the best agreement between repetitions (Lancichinetti and Fortunato, 2012). 
Here we aimed to find visually-evoked ensembles due to their clear functional 
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correlation with the visual stimulus. We constructed similarity matrices from population 
activity during visual stimulation, detected and cross-validated neuronal ensembles with 
the hybrid approach of Louvain method and consensus clustering (Figure 4A; Methods), 
then evaluated the decoding performance of each ensemble against each visual 
stimulus. To do this, we generated population vectors from the ensembles, then 
calculated the cosine similarity between the population vectors and real data, then 
computed the standard ROC (receiver operating characteristic) curve and AUC (area 
under curve). We defined visually-evoked ensembles as ensembles that are predictive 
of visual stimulus with an empirically defined threshold (Figure 4C). For simplicity, we 
combined pairs of orientations that are shown in opposite directions, resulting 
ensembles for 4 orientations (Figure 4A-C). The detected ensembles exhibit higher 
decoding performance than random sampled controls, as well as higher internal 
pairwise correlation (Figure 4D-E; n = 16 ensembles; AUC control 0.500 ± 0.011 [SEM], 
ensemble 0.663 ± 0.051 p < 0.001; correlation control 0.092 ± 0.017, ensemble 0.478 ± 
0.078, p < 0.001, Wilcoxon signed rank test), indicating their coherent emergent activity 
as a group. 
 We then investigated the correlation structure of the ensembles between L2/3 
and L5 using recorded activity during all visual stimulation trials, or using L2/3 activity 

Figure 3. Orientation tuning cells in V1 columns. 
 (A-B) Fluorescence traces (left) and polar graphs (right) of example cell that are selective to 0º, 45º, 
90º, and 135º drifting gratings in layer 2/3 (A) and layer 5 (B). (C) 3D distribution of orientation 
selective cells in the imaged cortical column from an example dataset. (D) Percentage of orientation 
selective cells in layer 2/3 and layer 5 (n = 7 experiments). 
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during first half of all trials and L5 activity during second half of all trials. The former 
case represents simultaneous volumetric imaging, while the latter case represents 
sequential imaging sessions of each layer during repetitive trials, and aligning them with 
trial onsets. To reduce noise in correlation structures, we investigated functional 
correlations only within identified visually-evoked ensembles. We separated the 
ensemble constituent cells into L2/3 and L5 subsets, and computed the pairwise 
correlation between these two subsets during first and second half trials, or during full 
trials (Figure 4F). Results combined from 6 datasets show that correlation obtained from 
full trials are higher than those from half trials, and there is a lack of correlation between 
full trial correlation and half trial correlation (Figure 4G; R2 = 0.08; half trials -0.032 ± 

Figure 4. Correlation structure of visually-evoked ensembles. 
(A) Example of 3D structures of visually-evoked ensembles in the imaged cortical column identified 
with Louvain method and consensus clustering. (B) 3D view of all visually-evoked ensembles, from 
the same ensembles as (A). (C) Prediction performance of the example ensembles, of all directions. 
Color represents AUC - 0.5; red color represents high prediction performance. (D) Statistics of 
ensemble prediction performance, compared with random controls (p<0.001). Note the y axis 
represents AUC; 0.5 on AUC axis represents chance level. (E) Statistic of average correlation within 
ensembles, compared with random controls (p<0.001). Random controls were generated by random 
sample subsets of the population with the same number of neurons in corresponding ensembles, for 
10 times each ensemble. (F) Example correlation structure between ensemble cells in layer 2/3 and 
layer 5, using the first and second half of visual stimulus trials (left), and using the entire trials (right). 
(G) Scatter plot of pairwise correlation between layer 2/3 and layer 5 ensemble cells from half trials 
and full trials. Dashed line represents x = y; black dots represent data point correlations; red crosses 
represent background correlation from Ch1 and Ch2 in all experiments; black line represents the 
least-square linear regression result. (n = 7 experiments, 16 ensembles).  
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0.046, full trials 0.305 ± 0.080, p < 0.001, Wilcoxon signed rank test). Background 
activity obtained from non-ROI pixels, however, does not differ drastically (half trials -
0.005 ± 0.010, full trials 0.084 ± 0.014, p = 0.031, Wilcoxon signed rank test). This 
reflects the trial-to-trail variations, possibly due to the animals’ endogenous state 
(Carandini, 2004; Kiani et al., 2015; Kisley and Gerstein, 1999). When studying 
functional properties of neural circuits, it thus appears key to simultaneously capture the 
dynamics of the entire population of interest, since otherwise the trial-to-trial variability 
will dilute the correlational structure of the activity. 
 
Lack of correlated columnar structures in mouse V1 

The visual cortex of some mammalian species is organized into a columnar 
spatial map where neurons that has similar functional properties such as orientation 
preference are spatially close to each other (Bonhoeffer and Grinvald, 1991; Hubel and 
Wiesel, 1962). However, using 2D two-photon calcium imaging, the visual cortex of 
rodents have been characterized as having a salt-and-pepper structure, where neurons 
with similar functional properties are intermingled (Ohki and Reid, 2007; Ohki et al., 
2005). At the same time, recent studies have reported the existence of narrow (~40-120 
μm diameter) columns neurons with similar tuning properties in rodent V1 (Li et al., 
2012; Ringach et al., 2016; Yu et al., 2009). To investigate this controversy, we applied 
novel our volumetric method, since we could not only analyze the orientation preference 

Figure 5. Lack of columnar 
structures in V1 responses. 
(A) Example of the spatial 
locations of visually-evoked 
ensembles (top-projection views 
from all planes). (B) Example of 
spatial locations of orientation 
selective cells (top-projection 
views from all planes). Note the 
salt-and-pepper structure in both 
cases. (C) Scatter plot of pairwise 
lateral distance and correlation, 
among all cell pairs (left), among 
ensembles (middle), and among 
orientation selective cells (right). 
Red line shows mean ± S.D. Data 
pooled from 6 experiments. (D) 
Distribution of pairwise correlation 
within columns of 30, 50 and 100 
μm diameter. Red: real data; 
black: random controls. Random 
controls were generated by 
computing the correlation between 
cells within the column and a 
random set of cells with the same 
number outside of the column, 
repeated 50 times each column. 
n.s., not significant. Statistics was 
done by Wilcoxon rank-sum test in 
each correlation bin of individual 
datasets, comparing real data with 
random controls. All correlation 
bins above -0.3 were not 
significant, for all experiments. (n 
= 6 experiments) 
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map in 3D (Figure 5B), but also extend the analysis to the spatial organization of cells 
that share emergent properties, which are identified as ensembles (Figure 5A), and 
functional correlation within narrow columns from the entire population. We analyzed 
the correlation between lateral distance (distance of xy, ignoring depth) of cell pairs and 
their evoked activity correlation, among all cell pairs (Figure 5C, left), among visually-
evoked ensembles (Figure 5C, middle), and among orientation selective cells (Figure 
5C, right). If columnar structure exists, we expect to see higher correlation in cell pairs 
that are distributed closer laterally. However, all of the three groups show flat 
distribution, indicating uniform correlation regardless of lateral distance. We further 
analyzed the correlation values of cell pairs in narrow columns of 30, 50 and 100 μm 
during visually evoked activities. Compared with random controls where correlation was 
calculated between cells within the column and a random set of cells outside of the 
column, none of the column diameters give significant differences (Figure 5D; n = 6 
experiments; Wilcoxon rank-sum test on each correlation bin; statistics done with 
individual experiments). Our results thus indicate a lack of highly correlated column 
structure in mouse V1, extending to 3D the original 2D salt and pepper description of 
orientation responses (Ohki and Reid, 2007; Ohki et al., 2005),  but in disagreement 
with the reported existence of narrow vertical columns (Li et al., 2012; Ringach et al., 
2016). 

 
Volumetric imaging of interactions between long-range projection axons and 
local somas 

As a final demonstration of the biological utility of our method, we sought to 
capture the input-output response of a circuit, by simultaneously imaging an incoming 
presynaptic axonal population and the responses of a postsynaptic population of cells. 
Indeed, the simultaneous dual-color excitation with two lasers in our system not only 
expands the volume that can be imaged at once through wavelength multiplexing, but 
also provides a tool to image and identify two distinct populations simultaneously. Using 
this microscope, we studied the functional interactions between the long-range axonal 
projections from PFC to L1 volume in V1 (labeled with GCaMP6s) and local neurons in 
L2/3 of V1 (labeled with jRGECO1b) (Figure 6A). We imaged the spontaneous activity 
of both structure with 4 planes from 25 μm to 100 μm in L1, and 4 planes from 150 μm 
to 300 μm in L2/3, achieving a volume rate of 13.0 vol/sec (Figure 6B). ROIs and 
fluorescence traces in L2/3 were extracted using CNMF algorithm as described above, 
and ROIs and traces in L1 were extracted using a recently developed simultaneous 
denoising, compression and demixing (PMD) algorithm with penalized matrix 
decomposition (Buchanan et al., 2018) (Figure 6C-D). The latter results in fragmented 
ROIs that represent putative axonal fragments and boutons with an improved SNR 
through denoising techniques. To group these putative ROI fragments that are 
potentially from the same projection, we clustered the activity traces using affinity 
propagation (Dueck, 2009), which does not require a cluster number input, but could 
identify clusters of ROIs that exhibit highly correlated activity patterns (Figure 6E, four 
examples shown on right). Examples of these super ROI groups are shown in Figure 6F. 
These ROI clusters show higher internal correlation than randomly sampled controls, 
indicating functional correlation (Figure 6G; n = 11 experiments; control 0.173 ± 0.005, 
data 0.636 ± 0.007). As the activity of long-range axonal projections and local somas 
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Figure 6. Volumetric imaging of layer 1 long-range axonal projections from PFC and local layer 
2/3 somas. 
(A) Schematic of experiment design. In this experiment, the 920 nm laser path covers 4 planes in 
layer 1, and the 1064 nm path covers 4 planes in layer 2/3. (B) Examples of average images from the 
recorded planes, from 25 μm to 100 μm with a spacing of 25 μm in layer 1, and from 150 μm to 300 
μm with a spacing of 50 μm in layer 2/3. Scale bar: 100 μm. (C) Examples of extracted ROIs in each 
plane. (D) Example traces from each plane. (E) Example of clustered correlation matrix of all ROIs in  
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are near-simultaneously recorded, we could further use the collected dataset to 
investigate the correlation structure of the interactions between these two populations 
(Figure 6H). While the overall population correlation is distributed around zero (Figure 
6J; n = 11 experiments; mean correlation 0.006 ± 0.012, p = 0.617, t-test), we could 
identify ROI pairs from L1 PFC projection and L2/3 V1 soma that are highly correlated 
(Figure 6I), revealing functional relationships between these two populations. 

Similarly, our system also enables volumetric imaging of L1 apical dendrites with 
L2/3 somas from the same population at the same time. To do so, we labeled the V1 
population with a co-injection of GCaMP6s and jRGECO1b, and simultaneously imaged 
the spontaneous activity of apical dendrites with the green path with 4 planes from 25 
μm to 100 μm, and somas with the red path with 4 planes from 150 μm to 300 μm, at a 
volume rate of 13.0 vol/sec (Figure S3A-B). ROIs and traces were extracted as above 
(Figure S3C-D). The correlation between L1 and L2/3 is distributed slightly higher than 
zero (Figure S3E-F; n = 10 experiments; mean correlation 0.061 ± 0.011, p < 0.001, t-
test), indicating a stronger spontaneous functional correlation within the same local 
population.  
 

Discussion 
Volumetric imaging through wavelength multiplexing 

In this work, we extended the conventional two-dimensional two-photon imaging 
system to a three-dimensional volume through wavelength multiplexing, combining dual 
color excitation and emission with ETL/SLM-based fast z-scan approaches. By using a 
red calcium indicator, jRGECO1b, that reduces the loss of photons from tissue 
scattering, and an SLM as a z-scan device that can also implement adaptive optics to 
correct system aberration, we optimized our system for deep layer imaging. We 
demonstrated successful volumetric calcium imaging in vivo of 10 planes at 10.4 vol/sec, 
spanning across layer 2/3 to layer 5, as well as 8 planes imaging at 13.0 vol/sec of layer 
1 dendritic or axonal activity with layer 2/3 somatic activity. To our knowledge, our 
approach currently provides the most extensive method to sample a large number of 
neurons per second across cortical columns (up to ~21,000 total sample/sec over 10 
planes across a depth of 450 μm, with a field of view of 500 μm × 500 μm per plane). 
Further improvement can be expected with optimization of virus transfection. Our 
approach, introducing excitation-wavelength-multiplexing to parallelize the scanning 
process, provides a new alternative to the volumetric imaging toolbox. 
 Comparing with current volumetric imaging techniques that depends on a single 
defocusing strategy such as ETLs (Grewe et al., 2011) and remote focusing systems 

layer 1, sorted by cluster identity (left), and four examples of ROIs that are identified in the same 
clusters with corresponding traces (right). Note that the imaging depth of the example ROIs on the 
right might be different. (F) Clustering result in each plane. ROIs belonging to the same cluster are 
shown with the same color. (G) Correlation within clusters, compared with random controls (p<0.001). 
(H) Example of correlation between layer 1 ROIs and layer 2/3 ROIs. (J) Distribution of correlation 
between layer 1 and layer 2/3 ROIs. Upper right curve shows the cumulative distribution. (n = 11 
experiments; mean correlation 0.006 ± 0.012, p = 0.617, t-test). (I) Two examples of ROI pairs from 
layer 1 (green) and layer 2/3 (red) that are highly correlated. The lateral locations of ROI pairs are 
shown on the left, and their traces shown on the right.  
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(Botcherby et al., 2012), our approach is equipped with two independent modules that 
covers two separate volumes simultaneously, thus expanding the recorded volume to 
twice as much as the single strategy based systems. These two volumes are separated 
by their excitation and emission properties, making them truly independent of each 
other. Comparing with our recent SLM-based holographic multiplexing approach (Yang 
et al., 2016), the current approach has the same advantage of simultaneously recording 
from two separate planes, but also extends the recorded volume while keeping both 
volumes at the best performance range for each z-scan device (within ± 200 μm for 
both), avoiding the performance decay at higher defocus planes. Additionally, through 
wavelength multiplexing, depth information is encoded by wavelength, and the 
simultaneously-recorded dual planes are collected by two separate PMTs, avoiding the 
post-hoc source separation and signal demixing problem. Comparing with another 
multiplexing approach, temporal multiplexing, where the laser beam is split into multiple 
beams with their laser pulses interleaved in time and focused at different positions 
(Cheng et al., 2011; Stirman et al., 2016), our approach does not require complex data 
acquisition scheme. Our approach also makes full use of both lasers, and is therefore 
more effective when imaging a large number of planes. We note many of these 
techniques are not mutually exclusive and that the wavelength multiplexing scheme can 
be combined with other volumetric imaging approach to further increase the imaging 
throughput.  
 Due to the excitation spectrum overlap of GCaMP6 and RCaMP or jRGECO, it 
has been demonstrated that a single laser, tuned between 1020 nm and 1030 nm, can 
be used to simultaneously image GCaMP6 and RCaMP (Inoue et al., 2015). However, 
since the GCaMP excitation efficiency is best around 940 nm, and RGECO/RCaMP 
between ~1060 nm and ~1150 nm (Dana et al., 2016), using a single laser to excite 
both indicators would compromise the fluorophore efficiency for both indicators. Our 
system, through two lasers set at 920 nm and 1064 nm respectively, optimizes the 
fluorophore performance for simultaneous dual-color imaging. 
 
Simultaneous recording of large neuronal population for studying single-trial 
dynamics 
 The mammalian cortex is organized into six layers, and sensory information is 
transformed through the interaction between different layers (Constantinople and Bruno, 
2013; Douglas and Martin, 2004). Conventionally, to study the cortical dynamics in 
different layers or different cortical regions during sensory perception or behavioral 
tasks, a standard approach is to record from each layer or region of interest during 
repetitions of the task trials, then align the neuronal activity with the trial start (Allen et 
al., 2017; Chen et al., 2017; Heindorf et al., 2018). Although trial structures provide an 
important reference for the underlying cortical activity, the nervous system is intrinsically 
noisy and variable, and it is still challenging to study the correlation structure between 
layers or areas with non-simultaneous recordings. One advantage of our volumetric 
imaging system is we could simultaneously record from a large population across 
multiple layers until layer 5, providing an important tool to study cross-layer computation. 
As demonstrated in Figure 4, simultaneous volumetric imaging reveals a distinct layer-
layer correlation structure than that could be described using separated trials. We 
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expect that our system will provide a powerful tool for studying cortical-cortical 
interactions in the future. 
 
Lack of orientation columns in mouse V1 
 As a proof of the utility of the method to reveal spatial interaction in functional 
responses, we analyzed the correlational structure of the orientation response across 
layers. This is a controversial issue, since the original description of unstructured 
orientation responses in mouse primary visual cortex (“salt and pepper” patterns of 
orientation) (Ohki and Reid, 2007; Ohki et al., 2005)., has been questioned by reports of 
the existence of clonally related neurons that are arranged in narrow vertical strips and 
that have similar orientation responses (Li et al., 2012; Ringach et al., 2016; Yu et al., 
2009). With our volumetric method, we could, as a third party, independently examine 
the validity of these claims. In our analysis, however, we find no statistically significant 
vertical correlations in the orientation responses. While we did not ascertain the clonal 
relation among neurons, and we cannot comment on these data are in principle 
inconsistent with the presence of vertical narrow “minicolumns” of orientation and 
suggest that orientation selectivity is map in 3D also in a disorganized fashion, in 
primary visual cortex of the mouse. Our method and analysis could be extended to the 
study of the spatial structure of other functional properties in the cortex or other neural 
circuits. 
 
Imaging the interaction between pre and postsynaptic populations 
 Besides doubling the recorded volume that could be simultaneously imaged, our 
dual-color design goes beyond the conventional volumetric imaging, and provides a tool 
to image distinct neuronal population labeled with different colors, at the same time. 
This includes examples of layer 1 long-range projections from other regions with local 
somas (Figure 6), as well as excitatory neurons with interneuron populations. Combined 
with the volumetric imaging ability, our system provides a tool for studying the 
interaction of large population of distinct subnetworks and to functionally dissect out the 
input-output properties of neural circuits.  

In closing, we present a novel volumetric imaging method that combines 
wavelength and spatial multiplexing of light. As the study of neural circuits becomes 
increasing more sophisticated, it is likely that there will not be a single “one shoe fits all” 
method to functionally dissect the interactions between many different types of neurons. 
Instead, we imagine a hybrid future, where different methods and probes and analysis 
could be flexibly combined, and be properly targeted to the specific question of study.  
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Methods 
Experimental models 
Experiments were performed on C57BL/6 wild-type mice, on both males and females. 
Experimental animals were typically postnatal (P) day P60-P120 at the time of 
experiments. Animals were housed on a 12h light-dark cycle with food and water ad 
libitum. All experimental procedures were carried out in accordance with the US 
National Institutes of Health and Columbia University Institutional Animal Care and Use 
Committee. 
Virus injection and surgery 
Virus injection was performed between P30 and P60. For virus injection, a mixture of 
200 nl AAV9.hSyn.GCaMP6s.WPRE.SV40 (UPenn Vector Core) and 700 nl 
AAV1.Syn.NES-jRGECO1b.WPRE.SV40 (UPenn Vector Core, 19279) was injected into 
both layer 2/3 and layer 5 on left V1 (from lambda: X = -2500, Y = 500, Z = -250/-500 
μm, 400/500 nl per site). Virus was injected with glass micropipets, at a rate of 80 nl/min. 
For PFC injections, 700 nl AAV1.Syn.NES-jRGECO1b.WPRE.SV40 with 200 nl buffer 
was injected at the same location on left V1 (Z = -300 μm) between P30 and P60; two 
weeks after the GCaMP injection, 400 nl AAV9.hSyn.GCaMP6s.WPRE.SV40 with 200 
nl buffer was injected into left PFC (from bregma: X = 300, Y = 500, Z = -900 μm). 

Approximately 4-6 weeks after the initial injection, headplate implementation and 
craniotomy surgery were performed on the mice. Mice were anesthetized with isoflurane 
(1%-2%), injected with dexamethasone (2 mg/kg body weight, subcutaneous), 
enrofloxacin (4.47 mg/kg, subcutaneous), and carprofen (5 mg/kg, intraperitoneal). A 
custom made titanium headplate was mounted on the skull centered on V1 using dental 
cement. A 2 mm diameter circular cranial window was made around the injection site on 
left V1 with a dental drill, and the cranial window was covered by a 3 mm circular glass 
coverslip, sealed with cyanoacrylate adhesive. The mice were allowed to recover for at 
least one day before experiment, and were habituated with head-fixation prior to 
experiments. Mice were monitored and given analgesics (5mg/kg carprofen 
intraperitoneal) for two days post-procedure. 
Visual Stimulation 
Visual stimuli were generated using MATLAB and the Psychophysics Toolbox 
(Mathworks) and displayed on a monitor (Dell; P1914Sf, 19-inch, 60-Hz refresh rate) 
positioned 28 cm in front of the right eye. Each animal was presented two consecutive 
visual stimulation sessions, each session with 15 trials, and each trial with a random 
order of 8 drifting gratings separated by 45º. In each trial, drifting gratings (100% 
contrast, 0.04 cycles per degree, 2 cycles per second) were shown for 4 seconds, 
followed by a 6-second interval with mean luminescence gray screen. 
Dual-color volumetric imaging microscope 
The microscope is designed as shown in Figure 1. Two excitation lasers were used: a 
tunable Ti:Sapphire laser (Chameleon Ultra II, Coherent) tuned to 920 nm with a 
maximum output power of ~1.6W (140-fs pulse width, 80-MHz repetition rate), and an 
amplified fiber laser (Fianium) with a fixed wavelength at 1064 nm with a maximum 
output power of ~6W (200-fs pulse width, 80-MHz repetition rate). Each laser power is 
controlled with separate Pockels cells: a Conoptics EO350-160-BK Pockels cell with a 
275 driver for 920 nm laser, and a Conoptics EO350-105-BK Pockels cell with a 302 
RM driver for 1064 nm laser. For 920 nm path, the beam is first expanded with a 1:7.5 
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telescope (focal length f1 = 40 mm, f2 = 300mm). Then, the beam passes an ETL (EL-
10-30-C-NIR-LD-MV, Optotune), and is rescaled by a 4:1 telescope (f3 = 400 mm, f4 = 
100 mm). For the 1064 nm path, an l/2 λ waveplate (Thorlabs; AHWP05M-980) is used 
to rotate the laser polarization, and the beam is expanded with a 1:4 telescope (f5 = 100 
mm, f6 = 400 mm) to fill the active area of SLM. Then, the focal plane is delayed with an 
offset lens set [composed of two lenses (f = 500 mm, -100 mm) that contact together] 
with an equivalent offset of ~200 μm at imaging plane. The beam is relayed by a 1:1 
telescope (f7 = 200 mm, f8 = 200mm) before being modulated by an SLM (Meadowlark 
Optics; HSP512-1064; 7.68 × 7.68-mm2 active area, 512 × 512 pixels). The beam is 
then rescaled by a 3:1 telescope (f9 = 300 mm, f10 = 100 mm). Then, both beams are 
combined through a dichroic mirror, scanned first by a resonant scanner (CRS 8K 
resonant scanning system), then delayed by a telescope that is composed by two 
equivalent lens complexes (Fig. 1B) (Stirman et al., 2016) installed in the opposite 
direction, then scanned by a galvanometric scanner (6215HM40B, Cambridge 
Technology). Both scanners are positioned at the conjugate plane to the objective pupil. 
The scan lens (Olympus pupil transfer lens, fscan = 50 mm) and tube lens (ftube = 180 mm) 
are from a modified Olympus BX-51 microscope. Imaging was done with an Olympus 
253 N.A. 1.05 XLPlan N objective. The single frame rate is 60 Hz (256x256 pixels). 
Emission fluorescence was collected through two separate photomultiplier tubes (PMTs; 
Hamamatsu; H7422P-40) and two low noise amplifiers (FEMTO DHPCA-100), with a 
collection bandpass filter of 510 ± 40 nm (Chroma, ET520/40m) for the green path, and 
a 630 ± 75 nm bandpass filter (Chroma, ET630/75m) for the red path. ScanImage 2016 
(Pologruto et al., 2003) was used to control the Pockels cells, the focus of the ETL and 
SLM, the scanning mirrors and the digitizer for data storage. Locomotion of the animals 
was recorded with an infared LED/photodarlington pair (Honeywell S&C HOA1877-003), 
which consists of a small c-shaped device positioned at the edge of the rotating wheel 
(striped with black tape) connected to the imaging computer as an analogue input. 
Locomotion was detected as voltage changes in the photodarlington readout. The 
typical imaging power ranges from ~10 mW to ~200 mW, depending on the depth. 
Adaptive optics 
As SLM is a natural choice for correcting wavefront aberration for both system and 
samples, the excitation efficiency of the SLM path in our system can be improved by 
implementing adaptive optics (AO) through SLM (Ji et al., 2012; Love, 1997). Here we 
implemented system correction by modeling the wavefront aberration with the first 30 
modes of Zernike polynomials. This includes common aberrations such as spherical 
aberration, astigmatism, coma, etc. We measured the coefficient for each Zernike 
polynomial using 0.5 μm fluorescent beads, and the final correcting wavefront on SLM is 
a combination of weighted Zernike polynomials with measured coefficients. 
Image processing and signal extraction 
The raw imaging datasets were first motion corrected using an ImageJ plugin Moco 
(Dubbs et al., 2015). All imaging planes in the same datasets were registered using the 
same motion profile estimated from the most representative plane. Then, for somatic 
imaging datasets, putative neuronal regions of interest (ROIs) were initialized manually 
by playing through each plane of the datasets and generating a list of centroid locations 
using an ImageJ plugin Time Series Analyzer, in order to obtain an accurate guess of 
cell locations. The ROIs were then segmented by a modified version of a constrained 
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nonnegative matrix factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) that 
initializes with the manual list of ROI locations, and the algorithm automatically 
estimates the raw fluorescence signals, the denoised (filtered) signals, and the 
deconvolved signals. Then, all ROIs are manually selected using a custom Matlab GUI 
that displays both the shape of ROIs and the corresponding traces. ROIs that exhibit 
reasonable shape and active (not silent through the entire imaging session) were kept. 

To remove potential duplicated cells that show up in adjacent planes or 
contaminated from the other imaging channel, ROI pairs that (1) have a Pearson 
correlation coefficient higher than 0.75, (2) are within 30 μm apart laterally, and (3) are 
within 50 μm apart axially (potential contamination from adjacent planes), or (4) come 
from simultaneous recorded dual planes of two channels, were kept only the ROI with 
highest signal-to-noise ratio (SNR).  

For dendritic and axonal imaging datasets, a penalized matrix decomposition 
(PMD) algorithm was used to automatically denoise and demix the datasets, which 
improved the resulting SNR for noisy dendritic/axonal imaging (Buchanan et al., 2018). 
Then, dendritic or axonal ROIs were automatically segmented, and fluorescence traces 
were extracted by the algorithm. The traces were then filtered by trend filtering as 
described in the above reference. After that, ROIs were manually selected using the 
custom Matlab GUI as described above. 
Orientation tuning analysis 
Orientation tuning curves were calculated by averaging the ΔF/F response traces of all 
grating stimulus sessions. This gives the polar plots. Orientation selectivity indices were 
calculated using circular statistics, defined as OSI = 	 |∑ 푅 exp(2푖휃 ) /∑ 푅 |, where Rk 
is the response to each orientation (k = 1-8), i is the imaginary unit, and θk is the 
orientation in radians (Tzvetanov, 2016). Neurons with OSI > 0.2 were defined as 
orientation selective cells. The preferred orientation was determined by the orientation 
that evoked the strongest ΔF/F response. 
Ensemble identification 
Ensembles were detected using a graph-based community detection method, the 
Louvain method (Blondel et al., 2008). This method aims at detecting community 
structures in graphs, which are subsets of highly interconnected nodes. To apply this 
method, we first computed the pairwise similarity matrix using the inferred (deconvolved) 
fluorescence traces. Running epochs were excluded in order to reduce correlation 
artifact. This results in a Nneuron-by-Nneuron correlation matrix. Then, to further reduce 
noise, weak correlation values that are below mean + 3S.D. were zeroed. A Matlab 
module was used to perform Louvain community detection (Rubinov and Sporns, 2010). 
This method does not require a cluster number input, however, a resolution parameter γ 
was used to control the size of output communities, with γ = 1 resulting in classic 
communities, γ < 1 detecting larger communities, and γ > 1 detecting smaller 
communities. We ranged γ between 1 and 1.5 with an interval of 0.05, performed 
community detection with each γ, and cross-validated using the visual stimulus 
prediction performance of the resulting communities, taking the γ that gives best overall 
prediction performance. To calculate visual stimulus prediction performance, we 
considered the detected communities as Nneuron-by-1 population vectors, where entries 
corresponding to the constituent neurons in the communities are 1, and others are 0. 
We computed the cosine similarity between these community population vectors and 
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real data, and used the output similarity values to compute the standard receiver 
operating characteristic (ROC) curves and the area under curve (AUC). AUC = 0.5 
represents chance level, while larger than 0.5 represents positive predictions, and 
smaller than 0.5 represents negative predictions. For each detected community, we 
summed the AUC values for each grating direction, and combined the opposite 
directions to be a single orientation. For each orientation, communities that have an 
average AUC higher than 10% above chance level (0.55) were considered to be 
visually-evoked ensembles.  
Clustering of axonal activity 
We used affinity propagation to cluster axonal activity in layer 1 (Dueck, 2009). This 
method operates on the pairwise similarity matrix between all pairs of data points, and 
identify the exemplers based on an input preference vector, then automatically 
determines the number of clusters. The preference vector was set to 95% quantile of 
the similarity matrix here. The Matlab module used is available at 
[https://www.psi.toronto.edu/index.php?q=affinity%20propagation] (without sparsity). 
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Supplemental Information 
 

 
Supplemental Figure 1. Corrective wavefront of SLM imaging path using adaptive 
optics. 
Final corrective wavefront compensated by SLM using adaptive optics, at -200 μm, -100 
μm, 0 μm, 100 μm, and 200 μm SLM defocus.  
 

 
Supplemental Figure 2. System characterization. 
(A) Intensity profile of the ETL path over a defocus range of -200 μm to 200 μm, 
measured at the center and edge of the field of view (FOV). (B) Intensity profile of the 
SLM path over a defocus range of -200 μm to 200 μm, measured at the center and 
edge of the FOV, with or without adaptive optics (AO). (C) Full-width-at-half-maximum 
(FWHM) of the ETL path, measured at the center and edge of FOV. (D) FWHM profile 
of the SLM path, measured at the center and edge of FOV, with or without AO. Note 
that AO improves both intensity profile and FWHM for the SLM path. 
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Supplemental Figure 3. Volumetric imaging of layer 1 apical dendrites and layer 
2/3 soma in V1. 
(A) Schematic of experiment design. The 920 nm laser path covers 4 planes in layer 1, 
and the 1064 nm path covers 4 planes in layer 2/3. (B) Examples of average images 
from the recorded planes, from 25 μm to 100 μm with a spacing of 25 μm in layer 1, and 
from 150 μm to 300 μm with a spacing of 50 μm in layer 2/3. Scale bar: 100 μm. (C) 
Examples of extracted ROIs in each plane. (D) Example traces from each plane. (E) 
Example of correlation between layer 1 ROIs and layer 2/3 ROIs. F) Distribution of 
correlation between layer 1 and layer 2/3 ROIs. Upper right curves shows the 
cumulative distribution. (n = 10 experiments; mean correlation 0.061 ± 0.011, p < 0.001, 
t-test). 
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