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Abstract  

Background 

Systemic inflammation, such as occurs during sepsis, bone fracture, infections or post-operative 

trauma, has been linked to synapse loss and cognitive decline in human patients and animal models. 

Organotypic hippocampal slice cultures (OHSCs) represent an underused tool in neuroinflammation; 

retaining much of the neuronal architecture, synaptic connections and diversity of cell types present 

in the hippocampus in vivo whilst providing convenient access to manipulate and sample the culture 

medium and observe cellular reactions as in other in vitro methods. Here we report the development 

of an OHSC model of synaptic disruption after aseptic inflammation and investigate the underlying 

mechanism. 

Methods 

OHSCs were generated from P6-P9 C57BL/6, the APP transgenic TgCRND8 model, or wild-type 

littermate mice according to the interface method. Aseptic inflammation was induced via addition of 

lipopolysaccharide (LPS) and cultures were analysed for changes in synaptic proteins via western blot. 

qPCR and ELISA analysis of the slice tissue and culture medium respectively determined changes in 

gene expression and protein secretion. Microglia were selectively depleted using the toxin clodronate 

and the effect of IL1β was assessed using a specific neutralising monoclonal antibody.  

Results 

Addition of LPS caused a loss of the presynaptic protein synaptophysin via a mechanism dependent 

on microglia and involving IL1β. Washout of LPS via medium exchange allows for partial recovery of 

synaptic protein levels after 2 weeks. TgCRND8 OHSCs do not show alterations in IL1β expression at a 

timepoint where they exhibit spontaneous synaptophysin loss, and LPS does not alter levels of APP or 

Aβ in wild-type OHSCs. This indicates that although synaptophysin loss is seen in both systems, there 

is likely to be distinct underlying pathogenic mechanisms between the neuroinflammatory and 

amyloid models.  

Conclusions 

We report the development of an OHSC model of LPS-induced synaptophysin loss and demonstrate a 

key role for microglia and involvement of IL1β. We propose that distinct molecular mechanisms lead 

to synaptophysin protein loss in LPS- exposed versus TgCRND8 OHSCs and provide a new experimental 

paradigm for assessing chronic changes in synaptic proteins, and synaptic plasticity, following acute 

inflammatory insults.  
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Background  

There is mounting evidence for a link between neuroinflammation, synapse loss and cognitive decline 

both in humans and in pre-clinical models. Systemic inflammatory events such as sepsis, periodontitis, 

infections, bone fracture and post-operative trauma can result in sustained high levels of circulating 

pro-inflammatory cytokines [1, 2] and have been linked with long-term cognitive impairment in 

patients [3–7]. In addition to seeding cognitive decline in previously healthy patients, systemic 

inflammation has also been shown to exacerbate neurodegenerative disease processes, being strongly 

associated with worse clinical outcome in multiple sclerosis [8, 9], accelerating cognitive decline in 

Alzheimer’s disease [2, 10–12] and inducing subacute motor deterioration associated with delirium in 

Parkinson’s disease [13].  

In pre-clinical models, investigating the link between systemic inflammation and changes in the central 

nervous system (CNS) can be achieved by inducing aseptic inflammation using bacterial 

lipopolysaccharide (LPS), a potent endotoxin found on the cell walls of gram negative bacteria [14] 

which is seen to be elevated in plasma samples from septic patients [15, 16]. In animal models, LPS 

treatment has been shown to induce deficits in spatial learning assessed using the Morris water maze, 

as well a decline in the presynaptic protein synaptophysin in the hippocampus [17, 18]. In agreement 

with observations in human patients, it is often reported that inflammatory events worsen 

neurodegenerative disease processes in animal models. Notably, LPS injection has been shown to 

increase accumulation of intracellular APP and Aβ in APPSWE mice [19], increase tau phosphorylation 

in rTg4510 mice [20] and accelerate motor and cognitive phenotypes in a mouse model of prion 

disease [21]. The ability of LPS to induce such changes in the CNS is believed to be due to its impact 

on the cytokine release profile of microglia. In vitro  experiments have shown that murine neuronal 
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cultures exposed to conditioned medium from LPS-treated microglia undergo a reduction in synaptic 

connections, likely due to an increase in IL1β production [22], whilst the ability of non-contact co-

cultured microglia to induce synapse formation via IL-10 release is inhibited upon LPS application [23]. 

Whilst there has been much progress in understanding the links between synaptic changes and 

inflammatory stimuli, progress in this field would be facilitated by a model system that is as amenable 

to environmental/ pharmacological manipulation as in vitro models but also retains all the relevant 

cell population and synaptic architecture found in vivo. Organotypic hippocampal slice cultures, where 

thin sections of hippocampus are maintained in culture for several weeks [24–26], represent an 

excellent compromise between in vivo and in vitro models and have been surprisingly underused in 

the field of neuroinflammation. Previous studies examining the effect of LPS in OHSCs have focussed 

primarily on cell death and cytokine production, with LPS shown to prime cultures to subsequent 

insults such as AMPA-induced toxicity [27] or oxygen-glucose deprivation [28] as well as altering the 

production  of pro-inflammatory cytokines [29] and growth factors [30]. Whilst synaptic disruption is 

commonly reported for both in vitro and in vivo LPS assays, there is currently only one publication 

examining these changes in OHSCs, which focussed on postsynaptic responses. It reported that 

application of high (1µg/ml) concentrations of LPS reduced the number of thin dendritic spines in CA1, 

resulting in a decreased frequency of excitatory post synaptic currents (EPSCs) [31].  As synaptic 

changes are likely to be clinically relevant to the cognitive decline seen in sepsis, or acceleration of 

neurodegenerative disease in human patients, there is great potential in expanding the OHSC model 

to further probe mechanisms of synaptic disruption, in particular presynaptic events, in response to 

inflammation. 

In this study, we demonstrate that LPS treatment of OHSCs results in the depletion of the presynaptic 

protein synaptophysin in a manner dependent on microglia and involving IL1β. This differs from the 

molecular changes seen in an OHSC model of amyloid pathology using tissue from TgCRND8 mice, 

indicating that synaptophysin loss can be induced by distinct pathogenic mechanisms. We also assess 

the ability of OHSCs to recover after a transient inflammatory insult and explore whether the 

presynaptic disruption previously reported in TgCRND8 cultures [25] renders them more vulnerable 

to additional inflammatory insults.  
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Methods 

Mice 

Wild-type animals (C57BL/6Babr) were obtained from the breeding colony at the Babraham Institute. 

TgCRND8 mice [32] (which overexpress human APP695 with Swedish (K670N/M671L) and Indiana 

(V717F) mutations) were maintained as heterozygotes on a 62.5:37.5 SV129:C57BL/6 background, 

producing both transgenic and wild-type littermates. Animal work was approved by the Babraham 

Institute Animal Welfare, Experimentation and Ethics Committee and was performed in accordance 

with the Animals (Scientific Procedures) Act 1986 under Project License PPL 70/7620 and P98A03BF9. 

All animals were bred in a specific pathogen free animal facility with strict temperature and humidity 

control. Both genders were used in experiments.  

Organotypic Hippocampal Slice Cultures 

OHSCs were cultured according to the interface method as described previously [24, 25]. Briefly, P6-

P9 mouse pups were humanely sacrificed by cervical dislocation and their brains rapidly transferred 

to ice-cold dissection medium (EBSS + 25mM HEPES + 1x Penicillin/Streptomycin). Brains were 

transected at the midline, and glued (Loctite) to a vibratome stage. 350µm sagittal slices were cut 

using a Leica VT1000S vibratome and the hippocampus and associated entorhinal cortex dissected 

out. Slices were plated on 0.4μm pore membranes (Millipore: PICM0RG50) sitting on top of 1ml of 

maintenance medium (50 % MEM with Glutamax-1 (Life Tech:42360-024), 25 % Heat-inactivated 

horse serum (Life Tech: 26050-070 ), 23 % EBSS (Life Tech: 24010-043), 0.65 % D-Glucose 

(Sigma:G8270) , 2 % Penicillin-Streptomycin (Life Tech: 15140-122) and 6 units/ml Nystatin (Sigma: 

N1638). 2-4 culture dishes per pup were made, depending on experimental protocol, with 2-3 slices 

plated per dish. 1 and 4 days after plating, cultures underwent a 100% medium exchange, before 

moving to a 50% weekly exchange thereafter. Cultures were maintained in an incubator under high 

humidity at 37°C and 5% CO2 for up to 5 weeks.  

Treatments 

At 2 weeks in vitro, OHSCs were treated with 200ng/ml lipopolysaccharide from E.Coli O55:B5 (LPS) 

(Sigma L5418) or 20ng/ml murine Interleukin-1β (IL-1β) (Sigma I9401) for an additional 7 days. For 

microglial-depletion experiments, OHSCs were pre-treated with 100µg/ml clodronate (VWR: 233183) 

for 24 hours prior, and throughout, LPS treatment. For IL1β neutralising experiments, OHSCs were 

pre-treated with either a murine-IL1β neutralising mouse monoclonal antibody (Invivogen: mabg-

mil1b) or a mouse IgG isotype control antibody specific to E.Coli β-Galactosidase (Invivogen: mabg1-

ctrlm) for 24 hours prior, and throughout LPS treatment. 
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Western Blotting 

OHSCs were scraped off the membrane into ice-cold RIPA buffer (50mM Tris-HCl, 500mM NaCl, 1% 

Triton-X, 10nM EDTA, pH 8.0) with protease and phosphatase inhibitors (Thermofisher Scientific: 

78442). Slices underwent probe sonication for 2 x 5 seconds to completely homogenise the tissue. 

Equal amounts of protein were denatured in Laemelli buffer (with 2-Mercaptoethanol) and loaded 

into 4-20% Tris-glycine gels for separation by SDS-PAGE. Proteins were transferred onto PDVF-FL prior 

to blocking in Odyssey blocking buffer for 1 hour at room temperature. Primary antibodies were 

diluted in 5% BSA in PBS-T with 0.05% sodium azide and membranes were incubated overnight at 4ᵒC 

on the shaker. After 3 PBS-T washes, membranes were incubated in 1:10,000 secondary IRDye anti-

mouse and anti-rabbit antibodies (Li-Cor) for 2 hours (protected from light), washed with PBS-T then 

imaged using a Li-Cor Odyssey CLX system. Band intensities were normalised to beta iii tubulin (Tuj1) 

to control for differences in neuron number. Primary antibodies were used as follows: 1:1,000 mouse 

synaptophysin (Abcam: ab8049), 1:500 rabbit PSD95 (Abcam: ab18258), 1:2,500 rabbit Tuj1 (Sigma: 

T2200). 

Immunohistochemistry 

Slices remained adhered to membranes while fixed for 20 minutes in 4% PFA and then washed 3 times 

in PBS. The membranes were then cut and slices were placed in a 24- well plate and blocked for 1 hour 

in blocking solution (PBS + 0.5 % Triton X-100 + 3 % Goat Serum). Slices were incubated with primary 

antibody (1:500 Iba-1 (Alpha Laboratories: 019-19741) diluted in blocking solution overnight with 

shaking at 4°C. After 3 PBS washes, OHSCs were incubated (2 hours, room temperature, protected 

from light) with Alexa488 or 568 conjugated secondary antibodies (Life Technologies) diluted 1:250 in 

blocking solution. Slices were counterstained with Hoechst (1:5000 in PBS), washed in PBS then 

mounted on slides to be imaged via confocal microscopy.  

Quantitative PCR 

RNA was extracted from OHSCs using the RNEasy Extraction Kit (Qiagen: 74104). From this, cDNA was 

synthesized using a Reverse Transcriptase Kit (Quantitect: 205310). Quantitative PCR was carried out 

using Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent Technologies: 600882). The 

following PCR program was used on a BIO-RAD CFX96 Real-Time PCR Detection System with c1000 

Touch Thermal cycler: 3 minutes at 95°C, 40 cycles of 5 seconds at 95°C, and 5 seconds minute at 60°C. 

Primers for each gene are listed in the table below. 
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Gene Name Forward Primer (5’-3’) Reverse Primer (5’-3’) 

Pgk1 CTATCATAGGTGGTGGAGAC ACACTAGGTTGACTTAGGAG 

Hprt AGGGATTTGAATCACGTTTG TTTACTGGCAACATCAACAG 

Ywhaz ACTTAACATTGTGGACATCG GGATGACAAATGGTCTACTG 

Synaptophysin (SYP) GATGTAATCTGGTCAGTGAAG TAGGGCTCAGACAGATAAATAG 

PSD95 (dlg4) ATTGGAAAGGGGTAACTCAG CTTGGTGATAAAGATGGATGG 

IL1β GCCACCTTTTGACAGTGATGAGA TGTGCTGCTGCGAGATTTGA 

APP CAAAAACTGGTGTTCTTTGC TGATGGATGGATGTGTACTG 

 

ELISA 

To determine the level of murine Aβ1-42 or IL1β in the culture medium, ELISAs were carried out using 

commercially available kits (Invitrogen: KMB3441 or R&D Systems: MLB00C). Medium was collected 

from slice cultures at various timepoints throughout LPS or IL-1β treatment. ELISA was carried out as 

per manufacturer’s instructions, with absorbance read using a PheraStar FS plate reader.  

Statistical Analysis 

Data was analysed using GraphPad Prism Software. Statistical tests were chosen to match the data set 

type, including paired and un-paired T-tests and two way ANOVA. Significance values are reported as 

follows: p<0.05= *, p<0.01**, p<0.001***, p<0.0001***. 

 

Results 

LPS treatment induces the loss of the presynaptic protein synaptophysin 

OHSCs were created from P6-P9 wild-type mice such that two separate culture dishes (each with 3 

hippocampal slices) were generated per animal. Cultures were aged for 14 days in vitro before 

treatment with 200ng/ml LPS. Slices were collected for western blot or qPCR analysis after 7 days of 

treatment. For all analysis, LPS treated cultures were directly compared to the untreated control from 

the same animal. Fig 1a shows a representative western blot where lysates were probed for the 

presynaptic protein synaptophysin (SYP), postsynaptic protein PSD95 and neuronal microtubule 

protein beta-iii tubulin (Tuj1). Synaptic protein levels were normalised to Tuj1, to control for any loss 

of neurons that may confound any specific vulnerability of the synapses. LPS treatment resulted in a 

significant loss of synaptophysin (p=0.01) (Fig 1b) but did not alter the levels of PSD95 (p=0.67) (Fig1c). 
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qPCR analysis revealed that both synaptophysin (Fig 1d) and PSD95 (p=0.037) (Fig 1e) mRNA 

transcripts were reduced, although not significantly (p=0.058) for synaptophysin, in LPS treated 

cultures when compared to 3 housekeeping genes (Pgk1, Ywhaz and Hprt). 

LPS-induced synaptophysin loss is microglial dependent  

To test whether the loss of synaptophysin protein in LPS-treated OHSCs was due to alterations in 

microglia phenotype, microglia were depleted from slice cultures using the specific toxin clodronate 

[33–35] at 13 days in vitro. 24 hours later, half of the cultures received a further treatment of 200ng/ml 

LPS resulting in four treatment groups: control (no treatments), LPS only, clodronate only, and 

clodronate + LPS. Cultures were harvested at 21 days in vitro (7 days after LPS treatment). 

Immunofluorescence staining for the microglial marker Iba1 revealed a change in morphology and 

increase in number of microglia after LPS addition (Fig 2a,b). Whilst the microglia detected in 

untreated (control) OHSCs were in a ramified, branched state (Fig 2a), LPS treatment (in the absence 

of clodronate) resulted in an increase in total area of Iba1 signal as well as a shift to an amoeboid 

morphology (Fig 2b). Pre-treatment with the microglial toxin clodronate resulted in almost complete 

depletion of microglia, even in the presence of LPS (Fig 2c,d). The effect of microglial depletion on LPS-

induced synaptophysin loss was assessed by western blot (Fig 2e) with the results showing that pre-

treatment with clodronate before LPS addition could block the loss of synaptophysin protein (Fig 2f). 

Whilst OHSCs treated with LPS in the absence of clodronate showed a significant reduction in 

synaptophysin (p=0.03), there was no difference between clodronate treated and clodronate + LPS 

treated synaptophysin levels (p=0.47). There was a significant rescue of synaptophysin levels when 

comparing LPS treated with clodronate + LPS treated cultures (p<0.001) This rescue indicates a role of 

OHSC microglia in the effect of LPS on presynaptic proteins. It is interesting to note that as well as 

preventing the LPS-induced synaptophysin loss, the addition of clodronate regardless of LPS treatment 

increase the levels of synaptophysin protein (two way ANOVA effect of clodronate P<0.0001) 

potentially indicating a role of microglia for reducing basal levels of synaptic protein in our OHSC 

model. 

IL1β is increased by LPS and is sufficient to induce synaptophysin depletion in OHSCs  

To determine whether the LPS-induced loss of synaptophysin protein could be due to the release of 

inflammatory cytokines, the concentration of IL1β in the OHSC medium was determined by ELISA. 

Whilst in untreated culture medium, the levels of IL1β were undetectable, in LPS treated cultures there 

was an average of 6pg/ml IL1β detected, representing a significant increase (p=0.0008) (Fig 3a). This 

observation occurs alongside a significant increase in IL1β mRNA in the slice tissue (p=0.016) (Fig 3b) 

indicating increased transcription of this inflammatory cytokine. To test whether the loss of 
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synaptophysin protein seen after LPS addition could be due to the downstream production of IL1β, 

murine IL1β protein was applied directly to OHSCs at 14 days in vitro. After 7 days of 20ng/ml IL1β, 

OHSCs were harvested for western blot analysis (Fig 3c) As with LPS treatment (see Fig 1 and Fig 2), 

there is a significant decrease in synaptophysin relative to Tuj1 (p=0.0029) (Fig 3d) and no significant 

change in PSD95 (p=0.16) (Fig 3e). This demonstrates that IL1β application is sufficient to induce 

synaptophysin loss in OHSCs. 

To determine whether IL1β is necessary for LPS to induce synaptophysin loss, 13 days in vitro OHSCs 

were treated with either a murine-IL1β neutralising mouse monoclonal antibody (α-IL1β) or a mouse 

IgG isotype control antibody specific to E.Coli β-Galactosidase (α-βGAL). 24 hours later, cultures were 

treated with 200ng/ml LPS. OHSCs were prepared such that the 4 different treatment conditions could 

be compared in tissue from the same animal, with synaptic protein levels in treated conditions 

compared relative to their tissue-matched LPS naïve α-βGAL control.  Slices were harvested at 21 days 

in vitro and analysed by western blot (Fig 4a). Whilst OHSCs treated with the isotype control antibody 

showed the expected loss of synaptophysin protein in response to LPS treatment (p=0.047), cultures 

treated with IL1β-neutralising antibody were not sensitive to the addition of LPS (p=0.52) (Fig 4b). 

There was a non-significant, but trending, improvement in synaptophysin levels in IL1β-neutralising 

antibody +LPS OHSCs when compared to control antibody +LPS treated OHSCs (p=0.14). Therefore, 

while IL1β inhibition appears to partially rescue the LPS induced deficit in synaptophysin, a 

combination of factors, such as alternative inflammatory cytokines, are likely to be involved and may 

require further investigation.  

Assessing synaptic protein recovery after LPS removal  

A key advantage of the slice culture system is the ability to rapidly and accurately manipulate the 

extracellular environment in a way that is exceedingly difficult to achieve in vivo. We sought to 

determine whether complete removal of the inflammatory stimulus (LPS) after the depletion of 

synaptophysin has already taken place permits for the recovery of synaptic protein to un-treated 

levels. OHSCs were prepared such that 2 culture dishes were created per mouse (each with 3 slices). 

After 2 weeks in vitro all of the cultures underwent a 100% medium exchange, with 1 of the 2 dishes 

receiving 200ng/ml LPS. After a further week of treatment, one group of slices (those representing a 

0 week post-treatment timepoint) were harvested for western blot whilst all other cultures underwent 

a further 100% medium exchange, receiving untreated medium. Slices were then left to “recover” for 

a further 1 or 2 weeks in vitro (Fig 5a). Synaptophysin protein levels in OHSC lysates were analysed by 

western blot (Fig 5b). As expected, OHSCs harvested immediately after LPS treatment showed a 

reduction in synaptophysin protein when compared to untreated slices from the same animal 
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(p=0.014) (Fig 5c). At 1 week after LPS removal, synaptophysin levels were not significantly different 

in treated vs untreated controls (p=0.30) and, whilst there is a trend for a reduction at 2 weeks, this is 

not significant (p=0.13). This indicates that loss of synaptophysin in response to LPS is substantially 

reversible after the inflammatory insult is removed, although we cannot exclude the possibility of 

some limited longer-term effect at present. 

LPS induced synaptophysin loss does not work through an altered amyloid pathway in OHSCs 

In our previous work, we reported a progressive loss of synaptophysin protein in OHSCs from the 

Alzheimer’s disease mouse model TgCRND8 [25]. As inflammation is often linked to increased 

cognitive decline in people living with dementia [10], we tested the hypothesis that the effects of LPS 

on wild-type OHSCs may act through mechanisms related to those in Alzheimer’s disease. The main 

features of the TgCRND8 model are overexpression of amyloid precursor protein (APP) and 

subsequent overproduction of Aβ. We saw no change in APP mRNA in wild-type OHSCs treated with 

LPS (p=0.20) (Fig 6a) and treatment with LPS (p=0.053) (Fig 6b) or IL1β (p=0.56) (Fig 6c) did not 

increase the production of murine Aβ1-42 (as measured by protein concentration in the culture 

medium). Indeed LPS treatment significantly reduced the detectable level of Aβ in the culture medium 

over time. We next sought to determine whether the previously reported synaptophysin loss seen in 

TgCRND8 OHSCs could coincide with an increased production of IL1β, as reported here for our LPS 

treated OHSCs (Fig 3,4). There was no significant difference in IL1β mRNA levels in 5 weeks in vitro 

TgCRND8 OHSCs compared to wild-type littermate controls (p=0.37) (Fig 6d), despite this being a 

timepoint where there is known to be synaptophysin depletion [25]. 

Whilst LPS treatment does not alter the amyloid pathway in wild-type OHSCs, it is important to test 

whether TgCRND8 OHSCs are more sensitive to LPS-induced synaptophysin loss.  OHSCs were 

prepared from TgCRND8 and wild-type litter mates such that 2 cultures (with 3 slices per dish) were 

produced from each mouse. After 2 weeks in vitro one dish from each pair was treated with 200ng/ml 

LPS. At 3 weeks in vitro OHSCs were harvested and synaptophysin protein levels analysed by western 

blot (Fig 6e).  TgCRND8 cultures showed a strong trend for reduced synaptophysin levels when 

compared to wild-type OHSCs, regardless of LPS treatment (two way ANOVA p=0.076) (Fig 6f). 

Interestingly, whilst wild-type OHSCs showed a reduction in synaptophysin in response to LPS 

(p=0.027), this was not significant in TgCRND8 cultures (p=0.18). This indicates that, under this 

experimental paradigm, TgCRND8 cultures do not show enhanced sensitivity to LPS, although the 

possibility that the effects can be additive remains to be explored. 
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Discussion  

In this work, we have shown that LPS addition to organotypic hippocampal slice cultures results in the 

depletion of the presynaptic protein synaptophysin in a mechanism dependent on microglia and 

involving IL1β activity. We have also provided a new model for assessing synaptic recovery after an 

inflammatory insult, which we envisage will be of great utility as a tool to probe key questions relating 

to the impact of acute inflammatory events on long term synaptic health and plasticity. By comparing 

the effect of LPS on wild-type and TgCRND8 cultures, we explored whether tissue that is already 

undergoing synaptic disruption is rendered more vulnerable to inflammatory insults and whether 

there is a common mechanism of action. In this experimental paradigm, we found that TgCRND8 and 

LPS-treated cultures do not show similarities in their molecular changes, namely APP expression, Aβ 

production and upregulation of IL1β. Whilst, perhaps surprisingly, TgCRND8 cultures did not show a 

greater loss of synaptic protein in response to LPS, our experiments raise interesting questions about 

the mechanisms of synaptophysin loss in Alzheimer’s-like and inflammatory conditions and provide 

an excellent platform to develop future studies of both mechanism and therapeutic strategies. 

We have shown, for the first time in an OHSC model, that LPS treatment induces the loss of the 

presynaptic protein synaptophysin. This is in agreement with reports from in vivo and in vitro studies 

linking LPS administration with presynaptic protein depletion [17, 22] but, as demonstrated here, 

greatly facilitates mechanistic studies in the context of normal hippocampal circuits. Interestingly, a 

number of studies have shown strong correlations between the levels of synaptophysin and cognitive 

impairment after LPS exposure [17, 36, 37], identifying this as a clinically relevant pathogenic change. 

Whilst at the time of writing there are no studies examining the levels of synaptic protein in human 

brain after acute inflammatory insults, studies into Alzheimer’s disease [38–40], amyotrophic lateral 

sclerosis [41] and frontotemporal dementia [42] have all shown that the loss of synapses and synaptic 

protein is a strong correlate of clinical outcome. Understanding the mechanisms leading to 

synaptophysin depletion is therefore likely to be of great utility in identifying methods for treatment 

of patients at risk of cognitive decline after systemic inflammation.  

Previous work looking at synaptic alterations in OHSCs after LPS application reported a loss of dendritic 

spines and associated reduction in EPSPs [31]. This post-synaptic deficit is in contrast to our data 

showing that there is no alteration in the level of PSD95 protein in our OHSC model. These results, 

however, are not conflicting, and could raise interesting questions about the nature of pre- and post-

synaptic vulnerability. Of note, is their finding that there was a dose-dependent effect of LPS on 

dendritic spines, with the greatest loss seen using a dose 5 x higher than used in this study. The authors 

also do not report having examined the presynaptic compartment in their work, so it is feasible that 
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both a pre- and post-synaptic deficit is present in their model. Together with our finding that despite 

differences in the extent of protein depletion, both synaptophysin and PSD95 show reductions in 

mRNA, this could imply that whilst both compartments are sensitive to disruption by LPS, presynaptic 

disruption, potentially partially at the level of transcription, occurs earlier and under lower levels of 

inflammatory insult. This would align with previous reports that changes in presynaptic proteins occur 

prior to changes to post-synaptic proteins [43–45]. The reduction in PSD95 transcript without an 

associated change in protein could be due to PSD95 having a lower turnover in OHSCs, rendering it 

more resistant to alterations. Likewise, the presence of PSD95 in a western blot does not prove that 

this protein exists in structurally normal spines so we cannot rule out changes to the organisation of 

the post-synaptic compartment. Future work could examine if PSD95 concentration begins to fall after 

a longer exposure time, or higher dose, of LPS and test whether both compartments are affected 

directly or whether the effect on one is secondary to the other.  

Our finding that the LPS-dependent loss of synaptophysin in OHSCs is reliant on the presence of 

microglia agrees with a number of in vitro studies demonstrating that LPS-induced changes in 

microglial cytokine profile result in loss of synaptic proteins [22, 23] and that other supporting cells, 

such as astrocytes, do not respond to LPS as they lack the TLR4 receptor [46]. Most of these studies 

involve transfer of conditioned medium from LPS-treated microglia onto primary neuronal cultures 

which, although able to demonstrate that components released into the medium from microglia can 

be synaptotoxic, could be an over simplistic representation of the mechanisms at play in the CNS. The 

reaction of a primary cultured microglia in vitro may be different to microglia that are in an 

environment containing all the relevant CNS cell types in their normal cytoarchitecture. Cross talk 

between microglia, neurons and other supporting cells, including highly localised effects, is likely to 

be of key importance when examining how inflammatory insults can result in clinically relevant 

synaptic alterations [47]. As well as retaining the different cell types in a system that is more 

representative of the in vivo architecture, the amenability of OHSCs to pharmacological intervention 

allowed us to effectively and specifically deplete microglia using clodronate, something that would be 

difficult to achieve in vivo. This demonstrated that microglia are a vital component of LPS-induced 

synaptophysin loss in the OHSCs.  

Our data demonstrating that LPS-induced IL1β production likely contributes to the loss of 

synaptophysin in OHSCs also agrees with previous reports in vitro, where primary neuronal cultures 

treated with conditioned medium from LPS-exposed microglia were protected from synapse loss via 

inhibition of IL1 receptors [22]. Here, we pre-treated OHSCs with a neutralising antibody against IL1β 

prior to LPS application and found that, whilst this prevented alterations to synaptophysin when 

compared to LPS naïve anti-IL1β antibody OHSCs, it only afforded partial rescue of the phenotype 
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when compared to cultures exposed to a control antibody and LPS. This indicates that, whilst IL1β is 

sufficient to cause loss of synaptophysin and its inhibition may be therapeutically beneficial, future 

work will be required to determine if other LPS-induced factors (including a broader range of 

inflammatory cytokines) may need to be simultaneously targeted to completely prevent the loss of 

synaptophysin. In comparison to microglial depletion, the neutralisation of IL1β (or other cytokines) 

could be a more targeted method to protect synapses after an inflammatory insult in a clinical setting. 

As the production of IL1β increases after LPS addition, and can readily be detected by ELISA, it may be 

possible to test patient blood or CSF samples after a potential inflammatory insult to assess whether 

synaptic damage is likely to occur and treat accordingly. As our current work has only demonstrated 

efficacy of clodronate prior to LPS addition, further studies need to be carried out to determine at 

what point after an inflammatory insult inflammatory cytokines be neutralised to prevent loss of 

synaptic protein. 

Our observation that complete removal of LPS after synaptic protein loss has taken place permits 

recovery approaching un-treated levels, is of great interest. Firstly, it demonstrates the utility of the 

slice culture system in probing mechanistic questions in this field, including mechanisms of synaptic 

plasticity. The ability to rapidly and accurately manipulate the extracellular environment by way of the 

culture medium provides an experimental advantage over animal models, whilst retaining some in 

vivo-like advantages such as a representative cell populations and neuronal architecture. Secondly, it 

provides an indication that at least partial recovery of function is possible if the inflammatory insult is 

removed. Whilst studies in human patients often report long term cognitive deficits or worsening of 

neurodegenerative disease processes after acute inflammatory insults [4], it is often seen that these 

patients retain high levels of circulating inflammatory cytokines [1]. Devising treatments that could 

“reset” the extracellular environment to a non-inflammatory state could be of benefit when seeking 

to prevent cognitive decline. Alternatively, it may be that the recovery of synaptic proteins can occur 

in some circumstances and fail in others. A study by Hao et al. found that treatment of pregnant rats 

with LPS resulted in their offspring showing significant neurodevelopmental brain damage, resulting 

in reduced synaptic protein and cognitive deficits that continue to worsen as the animal aged [48]. In 

this case, the retention of the synaptic deficit may be explained by the damage occurring during a 

critical time in development. Conversely, advanced age or already damaged synapses may be more 

vulnerable to lasting damage after an inflammatory insult. One limitation of OHSCs in this regard is 

the need to generate them from neonatal brains. However, we sought to examine part of this question 

by asking whether TgCRND8 cultures, which show progressive depletion of presynaptic proteins, 

would be more sensitive to LPS addition. Whilst we confirmed that the TgCRND8 OHSCs had a lower 

level of synaptophysin regardless of treatment, we did not see a significant decline in response to LPS. 
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It could be that the synaptophysin loss was already at a maximal level potentially explaining the lack 

of significant additive effect. Future work could explore the difference between wild-type and 

TgCRND8 OHSCs in our recovery paradigm to answer the question of whether TgCRND8 slices (or 

transgenic OHSCs of interest) are less able to recover, and thus more susceptible to chronic or 

repeated damage as opposed to greater acute damage, after a single inflammatory insult. 

Our finding that TgCRND8 slices do not overproduce IL1β at a time when they exhibit synaptophysin 

depletion, in addition to the absence of changes in the amyloid pathway upon inflammatory insults 

tested here, makes it likely that these different OHSC models represent different mechanisms of 

synaptic disruption. How systemic inflammation interacts with the amyloid pathway is a hotly debated 

topic, with studies demonstrating both enhancement [19, 49] and reduction [50, 51] of Aβ 

accumulation in response to LPS administration in vivo. Future work comparing how perturbations in 

the amyloid cascade or aseptic induction of neuroinflammation result in the loss of the same protein 

may help elucidate common or divergent pathways. Interestingly, virtually complete removal of 

microglia in an Alzheimer’s disease mouse model also did not alter the progression of cerebral 

amyloidosis, potentially providing further evidence for divergence in inflammatory and amyloidogenic 

pathogenesis that could be explored further in our slice culture system [52]. Targeting drug 

development to specific types of insult could help tailor treatments in patients, potentially affording 

greater efficacy with a reduction in unwanted side effects. The slice culture system represents an 

excellent tool to probe different mechanisms of presynaptic protein loss. 

Conclusions 

In summary, we have shown that the addition of LPS to OHSCs results in loss of the presynaptic protein 

synaptophysin coinciding with increased expression of IL1β. The depletion of synaptic proteins can be 

prevented by pre-treatment with the microglia-specific toxin clodronate prior to LPS exposure. 

Application of an IL1β neutralising antibody prevents significant loss of synaptophsyin upon additional 

LPS application and shows a trend for rescue when compared to control slices exposed to LPS. By 

treating TgCRND8 and wild-type littermate OHSCs with LPS, we explored whether ongoing synaptic 

disruption in an OHSC model of amyloid pathology would increase vulnerability to inflammatory 

insults. Whilst, in this work,  we did not find strong evidence for a significant additive effect of LPS 

when applied to TgCRND8 cultures, comparing LPS-exposed and amyloid transgenic OHSCs revealed 

differences in APP expression, Aβ generation and IL1β production that may indicate divergent 

pathogenic mechanisms leading to synaptophysin loss. We also report an experimental paradigm for 

assessing chronic synaptic changes after an acute inflammatory insult, demonstrating that LPS-

induced loss of synaptophysin is a partially reversible change in our OHSC model. 
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PSD95: Post synaptic density 95 

SYP: Synaptophysin 

 

Declarations 

Ethical approval and consent to participate 

Animal work was approved by the Babraham Institute Animal Welfare, Experimentation and Ethics 

Committee and was performed in accordance with the Animals (Scientific Procedures) Act 1986 under 

Project License PPL 70/7620 and P98A03BF9. 

Consent for publication 

Not applicable 

Availability of data and materials 

The datasets used and/or analysed during the current study are available from the corresponding 

author on reasonable request. 

Competing interests 

The authors declare that they have no competing interests 

Funding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

This work was funded by Alzheimer’s Research UK project grant ARUK-PG2015-24 and The John and 

Lucille Van Geest Foundation. The LI-COR Odyssey CLx blot imaging system was purchased with 

funding from Alzheimer’s Research UK ARUK-EG2017B-010. 

Author’s Contributions 

Study concept and design: OS, MC and CD. Acquisition of data: OS and CD. Statistical Analysis: OS and 

CD. Analysis and interpretation of the data: OS, MC and CD. CD, OS and MC co-wrote the manuscript. 

All authors read and approved the final manuscript. 

Acknowledgements 

We would like to thank the Babraham Biological Support Unit staff for their work involving the 

breeding and maintenance of mice used in this study.  

Author’s Information 

Claire Durrant was previously known as Claire Harwell. 

 

References 

1. Yende S, D’Angelo G, Kellum JA, Weissfeld L, Fine J, Welch RD, et al. Inflammatory markers at 
hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care 
Med. 2008;177:1242–7. 

2. Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, et al. Periodontitis and Cognitive 
Decline in Alzheimer’s Disease. PLOS ONE. 2016;11:e0151081. 

3. Annane D, Sharshar T. Cognitive decline after sepsis. Lancet Respir Med. 2015;3:61–9. 

4. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term Cognitive Impairment and Functional 
Disability Among Survivors of Severe Sepsis. JAMA. 2010;304:1787–94. 

5. Benros ME, Sørensen HJ, Nielsen PR, Nordentoft M, Mortensen PB, Petersen L. The Association 
between Infections and General Cognitive Ability in Young Men – A Nationwide Study. PLoS ONE. 
2015;10. doi:10.1371/journal.pone.0124005. 

6. Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, Swieten JC van, et al. Inflammatory 
Proteins in Plasma and the Risk of Dementia: The Rotterdam Study. Arch Neurol. 2004;61:668–72. 

7. Tsai C-H, Chuang C-S, Hung C-H, Lin C-L, Sung F-C, Tang C-H, et al. Fracture as an Independent Risk 
Factor of Dementia. Medicine (Baltimore). 2014;93. doi:10.1097/MD.0000000000000188. 

8. Buljevac D, Flach HZ, Hop WCJ, Hijdra D, Laman JD, Savelkoul HFJ, et al. Prospective study on the 
relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125:952–60. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

9. Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic 
neurodegeneration. Nat Rev Immunol. 2007;7:161–7. 

10. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al. Systemic inflammation and 
disease progression in Alzheimer disease. Neurology. 2009;73:768. 

11. Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer’s disease: relevance 
to pathogenesis and therapy. Alzheimers Res Ther. 2010;2:1. 

12. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s 
disease. Neurobiol Aging. 2000;21:383–421. 

13. Umemura A, Oeda T, Tomita S, Hayashi R, Kohsaka M, Park K, et al. Delirium and High Fever Are 
Associated with Subacute Motor Deterioration in Parkinson Disease: A Nested Case-Control Study. 
PLOS ONE. 2014;9:e94944. 

14. Andersson PB, Perry VH, Gordon S. The acute inflammatory response to lipopolysaccharide in 
CNS parenchyma differs from that in other body tissues. Neuroscience. 1992;48:169–86. 

15. Opal SM, Scannon PJ, Vincent J-L, White M, Carroll SF, Palardy JE, et al. Relationship between 
Plasma Levels of Lipopolysaccharide (LPS) and LPS-Binding Protein in Patients with Severe Sepsis and 
Septic Shock. J Infect Dis. 1999;180:1584–9. 

16. Opal SM. Endotoxins and Other Sepsis Triggers. In: Contributions to Nephrology. 2010. p. 14–24. 
doi:10.1159/000315915. 

17. Deng X-H, Ai W-M, Lei D-L, Luo X-G, Yan X-X, Li Z. Lipopolysaccharide induces paired 
immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning–memory deficit 
in rats. Neuroscience. 2012;209:161–70. 

18. Shaw KN, Commins S, O’Mara SM. Lipopolysaccharide causes deficits in spatial learning in the 
watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res. 2001;124:47–54. 

19. Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-
neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β 
peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14:133–45. 

20. Lee DC, Rizer J, Selenica M-LB, Reid P, Kraft C, Johnson A, et al. LPS- induced inflammation 
exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation. 2010;7:56. 

21. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JFC, Deacon RMJ, et al. Systemic 
inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative 
disease. Biol Psychiatry. 2009;65:304–12. 

22. Moraes CA, Santos G, de Sampaio e Spohr TCL, D’Avila JC, Lima FRS, Benjamim CF, et al. 
Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive 
Impairment in Sepsis. Mol Neurobiol. 2015;52:653–63. 

23. Lim S-H, Park E, You B, Jung Y, Park A-R, Park SG, et al. Neuronal Synapse Formation Induced by 
Microglia and Interleukin 10. PLOS ONE. 2013;8:e81218. 

24. De Simoni A, MY Yu L. Preparation of organotypic hippocampal slice cultures: interface method. 
Nat Protoc. 2006;1:1439–45. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

25. Harwell CS, Coleman MP. Synaptophysin depletion and intraneuronal Aβ in organotypic 
hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener. 2016;11:44. 

26. Croft CL, Noble W. Preparation of organotypic brain slice cultures for the study of Alzheimer’s 
disease. F1000Research. 2018;7:592. 

27. Bernardino L, Balosso S, Ravizza T, Marchi N, Ku G, Randle JC, et al. Inflammatory events in 
hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 
receptor-mediated IL-1beta release. J Neurochem. 2008;106:271–80. 

28. Markus T, Cronberg T, Cilio C, Pronk C, Wieloch T, Ley D. Tumor Necrosis Factor Receptor-1 is 
Essential for LPS-Induced Sensitization and Tolerance to Oxygen—Glucose Deprivation in Murine 
Neonatal Organotypic Hippocampal Slices. J Cereb Blood Flow Metab. 2009;29:73–86. 

29. Fu X, Zunich SM, O’Connor JC, Kavelaars A, Dantzer R, Kelley KW. Central Administration of 
Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 
Dioxygenase In Murine Organotypic Hippocampal Slice Cultures. J Neuroinflammation. 2010;7:43. 

30. McCusker RH, Park S, Lawson MA, Dantzer R, Kelley KW. 87. Insulin-like growth factor (IGF)-I 
interaction with lipopolysaccharide (LPS) on organotypic hippocampal slice cultures (OHSCs). Brain 
Behav Immun. 2012;26:S24–5. 

31. Chang PK-Y, Khatchadourian A, McKinney RA, Maysinger D. Docosahexaenoic acid (DHA): a 
modulator of microglia activity and dendritic spine morphology. J Neuroinflammation. 2015;12. 
doi:10.1186/s12974-015-0244-5. 

32. Chishti MA. Early-onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing 
a Double Mutant Form of Amyloid Precursor Protein 695. J Biol Chem. 2001;276:21562–70. 

33. Kohl A, Dehghani F, Korf H-W, Hailer NP. The bisphosphonate clodronate depletes microglial cells 
in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol. 2003;181:1–11. 

34. Kumamaru H, Saiwai H, Kobayakawa K, Kubota K, van Rooijen N, Inoue K, et al. Liposomal 
clodronate selectively eliminates microglia from primary astrocyte cultures. J Neuroinflammation. 
2012;9:116. 

35. Han J, Harris RA, Zhang X-M. An updated assessment of microglia depletion: current concepts 
and future directions. Mol Brain. 2017;10. doi:10.1186/s13041-017-0307-x. 

36. Chen Y-Y, Zhang L, Shi D-L, Song X-H, Shen Y-L, Zheng M-Z, et al. Resveratrol Attenuates Subacute 
Systemic Inflammation-Induced Spatial Memory Impairment via Inhibition of Astrocyte Activation 
and Enhancement of Synaptophysin Expression in the Hippocampus. Ann Clin Lab Sci. 2017;47:17–
24. 

37. Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, et al. Galantamine improves cognition, 
hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in 
mice. J Neuroinflammation. 2018;15:112. 

38. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive 
alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann 
Neurol. 1991;30. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

39. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ. Synaptic alterations in CA1 in mild 
Alzheimer disease and mild cognitive impairment. Neurology. 2007;68. 

40. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation 
with cognitive severity. Ann Neurol. 1990;27. 

41. Henstridge CM, Sideris DI, Carroll E, Rotariu S, Salomonsson S, Tzioras M, et al. Synapse loss in 
the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta 
Neuropathol (Berl). 2018;135:213–26. 

42. Lipton AM, Cullum CM, Satumtira S, Sontag E, Hynan LS, Iii CLW, et al. Contribution of 
Asymmetric Synapse Loss to Lateralizing Clinical Deficits in Frontotemporal Dementias. Arch Neurol. 
2001;58:1233–9. 

43. Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S, Yao I, et al. DHA-PC and PSD-95 decrease after loss 
of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep. 
2014;4:7130. 

44. Love S, Siew LK, Dawbarn D, Wilcock GK, Ben-Shlomo Y, Allen SJ. Premorbid effects of APOE on 
synaptic proteins in human temporal neocortex. Neurobiol Aging. 2006;27:797–803. 

45. Trujillo-Estrada L, Dávila JC, Sánchez-Mejias E, Sánchez-Varo R, Gomez-Arboledas A, Vizuete M, 
et al. Early Neuronal Loss and Axonal/Presynaptic Damage is Associated with Accelerated Amyloid-β 
Accumulation in AβPP/PS1 Alzheimer’s Disease Mice Subiculum. J Alzheimers Dis. 2014;42:521–541. 

46. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic 
reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7. 

47. Takeuchi H. Roles of glial cells in neuroinflammation and neurodegeneration. Clin Exp 
Neuroimmunol. 4:2–16. 

48. Hao LY, Hao XQ, Li SH, Li XH. Prenatal exposure to lipopolysaccharide results in cognitive deficits 
in age-increasing offspring rats. Neuroscience. 2010;166:763–70. 

49. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by 
lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J 
Neuroinflammation. 2008;5:37. 

50. DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D. Intrahippocampal LPS injections 
reduce Abeta load in APP+PS1 transgenic mice. Neurobiol Aging. 2001;22:1007–12. 

51. Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D, et al. Time-dependent reduction 
in Aβ levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245–
53. 

52. Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, et al. Formation and 
maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci. 
2009;12:1361–3. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Figures 

 

 

Figure 1) LPS addition causes reduction of synaptophsyin protein with no change in PSD95  

14 days in vitro organotypic hippocampal slice cultures were challenged with 200ng/ml LPS for a 

further 7 days. Slice cultures were harvested and synaptic proteins examined by western blot (a). 7 

days of LPS treatment result in loss of the presynaptic protein synaptophysin (p=0.0104*) (b) but with 

no change in the postsynaptic protein PSD95 (p=0.67) (c). There is a strong trend for a reduction in 

synaptophysin mRNA (p=0.058) (d) and a significant decrease in PSD95 mRNA (p= 0.037*) (e). All 

statistics were conducted using a paired t-test to account for matched control and treated OHSCs from 

the same animal. 
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Figure 2) Pre-treatment with clodronate selectively kills microglia and prevents LPS-induced 

synaptophsyin loss 

(a-d) Immunostaining of LPS and clodronate treated OHSCs (Green= Iba1, Blue= Hoechst). Whilst 

microglia in control conditions appear ramified (a) addition of LPS results in a striking alteration of 

microglial phenotype to an amoeboid morphology (b). Pre-treatment of OHSCs with clodronate 

significantly reduces the number of microglia in LPS-naïve cultures (c) and LPS-exposed cultures (d).  

Western blot of LPS and clodronate treated cultures (e,f) shows that  whilst clodronate- naïve cultures 

show a reduction in synaptophysin when treated with LPS (p=0.03*) there is no difference between 

clodronate pre-treated cultures upon additional LPS application (p=0.47). There is a significant rescue 

seen when comparing the effect of clodronate pre-treatment on cultures treated with LPS 

(p=0.0009***) There is a significant overall effect of clodronate treatment regardless of LPS addition 

(p=<0.0001****). All statistics were conducted using a two-way ANOVA. 
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Figure 3) IL1β production is induced by LPS and addition of IL1β results in synaptophysin loss 

 LPS treated OHSCs show increased IL1β levels in the culture medium after 24 hours (p=0.0008) (a). 

IL1β mRNA is also elevated in 3 weeks in vitro wild-type cultures treated with LPS for the last week in 

vitro (p=0.016) (b). Treatment with 20ng/ml IL1β (c) results in reduced synaptophysin protein 

(p=0.0029) (d) with no significant change in PSD95 (p=0.16) (e). All statistics were conducted using a 

paired t-test to account for matched control and treated OHSCs from the same anima 
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Figure 4) Application of anti-IL1β neutralising antibody alters the OHSC response to LPS    

Western blot of antibody and LPS treated cultures (a) shows that whilst OHSCs pre-treated with anti-

βGAL (control) antibody show a reduction in synaptophysin when treated with LPS (p=0.047*) cultures 

pre-treated with anti-IL1β neutralising antibody are resistant to LPS addition (p=0.52) (b). There is a 

non significant trend for improvement of synaptophysin levels when comparing control antibody +LPS 

and anti-IL1β antibody +LPS (p=0.135). All analysis was conducted using a two way ANOVA with 

samples normalised to their tissue-matched Control antibody -LPS control. 
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Figure 5) Synaptophysin protein levels undergo recovery after LPS removal 

A diagrammatic representation of the LPS recovery experiment (a). OHSCs are aged for 2 weeks in 

vitro before undergoing 1 week of 200ng/ml LPS. At 3 weeks in vitro some slices are harvested to 

represent a 0-weeks after LPS removal timepoint. All other cultures undergo a 100% medium 

exchange to LPS-free medium. Slices are then harvested at either 1 week or 2 weeks after LPS removal 

and synaptophysin protein levels assessed by western blot (b). Slices harvested with no recovery after 

LPS removal showed a reduction in synaptophysin levels when compared to untreated samples 

(p=0.014). At 1 week (p=0.30) or 2 weeks (p=0.13) after LPS removal, there is no significance between 

LPS-exposed and untreated OHSCs.  (c). Analysis was conducted using a two way ANOVA.  
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Figure 6) LPS does not interact with the amyloid pathway in OHSCs 

LPS treatment does not alter APP mRNA expression levels (p=0.20)(a). ELISA analysis of OHSC medium 

reveals that LPS treatment reduces the production of Aβ1-42 (Two way ANOVA: effect of treatment 

p=0.053) (b) whilst IL1β application does not influence Aβ1-42 accumulation ( Two way ANOVA effect 

of treatment p=0.56) (c). 5 week in vitro TgCRND8 cultures do not show increased IL1β mRNA levels 

when compared to wild-type littermate controls (p=0.37) (d).  Representative western blot of 3 week 

in vitro wild-type and TgCRND8 OHSCs after 1 week of LPS (e). There is a strong trend for TgCRND8 

cultures to have lower synaptophysin protein levels regardless of LPS addition (two way ANOVA effect 

of genotype p=0.076). Whilst LPS addition to wild-type OHSCs reduces synaptophysin levels 

(p=0.027*), this was not significant in TgCRND8 cultures (p=0.18) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502559doi: bioRxiv preprint 

https://doi.org/10.1101/502559
http://creativecommons.org/licenses/by-nc-nd/4.0/

