1	Sex differences in the relationship between social difficulties and executive dysfunction
2	in children and adolescents with autism spectrum disorder
3	
4	Tonje Torske ^{a,b*} , Terje Nærland ^{c,d} , Daniel S. Quintana ^d , Ruth Elizabeth Hypher ^{e,} Anett Kaale
5	^{c, f} , Anne Lise Høyland ^{g,h} , Sigrun Hope ^{d, i} , Jarle Johannessen ^{d, j} , Merete G Øie ^{b, k} and Ole A
6	Andreassen ^d
7	
8	
9	^a Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
10 11 12	^b Department of Psychology, University of Oslo, Norway
12 13 14	^c NevSom Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
14 15 16 17	^d NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo and Oslo University Hospital, Oslo, Norway
17 18 19	^e Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
20 21	^f Department of Special Needs Education, University of Oslo, Norway
22 23 24 25	^g Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
26 27	^h Department of Pediatrics, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
28 29	ⁱ Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
30 31	^j Autism Society Norway, Oslo 0609, Norway
32 33 34	^k Research Department, Innlandet Hospital Trust, Lillehammer, Norway
35 36 37	*Corresponding author E-mail: <u>tonje.torske@vestreviken.no</u> (TT)
38	

39 Abstract

40	The prevalence of autism spectrum disorder (ASD) in boys is nearly four times higher than in
41	girls, and the causes of this sex difference are not fully known. Difficulties in executive
42	function may be involved in development of autistic symptomatology. Here we investigated
43	sex differences in the relationship between executive function in everyday life and social
44	dysfunction symptoms in a sample of 116 children (25 girls) aged 5-19 years with IQ above
45	70 and with a diagnosis of ASD. They were assessed with the Behavior Rating Inventory of
46	Executive Function (BRIEF) and the Autism Diagnostic Interview Revised (ADI-R). We
47	found no significant differences in BRIEF or ADI-R scores between girls and boys after
48	correcting for multiple testing. Nested linear regression models revealed significant sex
49	differences in the relationship between executive function and both reciprocal social
50	interaction ($p < 0.001$) and communication ($p = 0.001$) over and above the main effects of age,
51	sex, IQ and comorbid attention deficit/hyperactivity disorder diagnosis. We did not find sex
52	differences in the relationship between executive dysfunction and restricted and repetitive
53	behaviors. Altogether, our results provide a greater understanding of the sex-specific
54	characteristics of ASD and may suggest that boys and girls can benefit from different
55	intervention strategies.

56 Introduction

57	Autism spectrum disorder (ASD) is overrepresented in boys compared to girls. Traditionally,
58	the male-to-female ratio is thought to be 4:1 ¹ . However, a recent meta-analysis of population
59	based ASD studies concluded that the male-to-female ratio is closer to 3:1, suggesting that
60	researchers and health professionals may currently overlook ASD in females ² . This sex
61	difference influences the identification of autistic symptoms and obtaining an accurate
62	diagnosis, as well as intervention options and the provision of suitable resources and services
63	for people with ASD ³ . Furthermore, the underlying causes of the difference in ASD
64	occurrence between boys and girls are not fully known. Research on females with ASD has
65	been limited, and most of the literature on ASD is based on boys and young men ⁴ . Thus,
66	there is a growing need for a better understanding of the sex differences in ASD and there is
67	an increased research focus on girls with ASD 1,3,5 .
68	
69	Some studies suggest that the sex difference in ASD prevalence can partially be due to sex-
69 70	Some studies suggest that the sex difference in ASD prevalence can partially be due to sex- differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the
70	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the
70 71	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked
70 71 72	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some
70 71 72 73	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some evidence for increased mutational burden in females and their families, which indicates an
70 71 72 73 74	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some evidence for increased mutational burden in females and their families, which indicates an elevated threshold for developing ASD in girls ⁷ . This has been interpreted as a female
70 71 72 73 74 75	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some evidence for increased mutational burden in females and their families, which indicates an elevated threshold for developing ASD in girls ⁷ . This has been interpreted as a female protective effect, in other words, a greater resistance to ASD from genetic causes in females ⁸ .
 70 71 72 73 74 75 76 	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some evidence for increased mutational burden in females and their families, which indicates an elevated threshold for developing ASD in girls ⁷ . This has been interpreted as a female protective effect, in other words, a greater resistance to ASD from genetic causes in females ⁸ . Even though there are no complete molecular explanations for this hypothesis ⁹ , studies
70 71 72 73 74 75 76 77	differential genetic and hormonal factors ⁶ . However, the genetic factors underlying the skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked variants since most known ASD risk genes are located in autosomal regions ⁶ . There is some evidence for increased mutational burden in females and their families, which indicates an elevated threshold for developing ASD in girls ⁷ . This has been interpreted as a female protective effect, in other words, a greater resistance to ASD from genetic causes in females ⁸ . Even though there are no complete molecular explanations for this hypothesis ⁹ , studies suggest that the male bias is most likely due to female protective factors rather than male-

81

82	An important factor in the prevalence ratio in ASD seems to be related to cognitive level;
83	lower IQ is associated with a lower male-to-female ratio ^{2,5,11} . However, this finding needs to
84	be treated with caution, since only about half of the studies included in Loomes and
85	colleague's recent review included sufficient information regarding IQ 2 . It has also been
86	recognized that the autistic symptoms are less apparent in girls than boys. This phenomenon
87	might be due better learning of compensatory behaviors and skills to mask their social
88	challenges ^{12,13} and that parents, teachers, and clinicians are less able to recognize autistic
89	symptoms in girls ¹⁴ . Girls with ASD tend to have better social skills and less behaviour
90	problems than boys with ASD, which might make it harder to recognise their autistic
91	characteristics ¹⁰ . Furthermore, some have found that girls with ASD have less repetitive
92	behavior and interests compared to boys with ASD ^{1,15} .
93	
94	EF deficits constitute one of the main cognitive theories of ASD ¹⁶⁻¹⁸ , together with Theory of
94 95	EF deficits constitute one of the main cognitive theories of ASD ¹⁶⁻¹⁸ , together with Theory of Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with
95	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with
95 96	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF
95 96 97	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional
95 96 97 98	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional control, initiation, planning, organization, monitoring and self-control ^{17,22} . These components
95 96 97 98 99	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional control, initiation, planning, organization, monitoring and self-control ^{17,22} . These components enable the individual to disengage from the present context to effectuate future goals.
95 96 97 98 99 100	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional control, initiation, planning, organization, monitoring and self-control ^{17,22} . These components enable the individual to disengage from the present context to effectuate future goals. Demetriou and colleagues ²⁰ found consistent evidence of an overall moderate effect size
95 96 97 98 99 100 101	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional control, initiation, planning, organization, monitoring and self-control ^{17,22} . These components enable the individual to disengage from the present context to effectuate future goals. Demetriou and colleagues ²⁰ found consistent evidence of an overall moderate effect size (Hedges' $g = 0.48$) of executive dysfunction in ASD, that the deficits are relatively stable
95 96 97 98 99 100 101 102	Mind and Central Coherence ¹⁹ . Recent meta-analyses confirm that on average, people with ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21} . EF comprises several components including inhibition, working memory, flexibility, emotional control, initiation, planning, organization, monitoring and self-control ^{17,22} . These components enable the individual to disengage from the present context to effectuate future goals. Demetriou and colleagues ²⁰ found consistent evidence of an overall moderate effect size (Hedges' $g = 0.48$) of executive dysfunction in ASD, that the deficits are relatively stable across development, with few differences across subdomains ²⁰ . In a meta-analysis that also

105 executive dysfunction with small to moderate effect sizes (Hedges' g = 0.41-0.67), and that

106	this was not solely accounted for by the effect of comorbid ADHD or general cognitive
107	abilities. Further, the questionnaire Behavior Rating Inventory of Executive Function
108	(BRIEF) was found to be a better clinical marker of ASD than performance based tests 20 .
109	This is probably because it can be difficult to generalize from EF assessed in highly structured
110	laboratory settings, and that questionnaires regarding everyday functioning have a higher
111	ecological validity and thus also a better clinical utility than neuropsychological tests ^{20,23} . In
112	addition, intelligence and age are factors that might influence EF in children with ASD 24 .
113	
114	Sex differences in the relationship between EF and social function might contribute to the
115	skewed sex distribution in ASD. If girls who reach a clinical diagnosis of ASD tend to be
116	more impaired and have a higher genetic burden than boys ¹⁰ , the relationship between EF
117	deficits and social difficulties may also be different in girls. Studies investigating this
118	relationship have focused on specific subdomains of EF examined mainly by
119	neuropsychological tests ^{11,25-27} . Since some EF difficulties may not be observable in a
120	laboratory setting, informant based measures and questionnaires like the BRIEF might add
121	valuable information ²³ . In addition to EF, there are indications that there also may be sex
122	differences in people with ASD within domains such as mentalizing, emotion perception,
123	perceptual attention to detail, and motor function ⁴ .
124	
125	Although studies have identified a relationship between key ASD traits, such as social

126 dysfunction, and EF 28 , there are few studies focusing on how *sex* might impact the

127 relationship, and the findings have been inconsistent. Some studies have indicated that

128 females with ASD have more impairment in EF compared to males ²⁵. In a relatively small

129 group of participants, Lemon and colleagues ²⁵ found that only girls showed poorer response

130 inhibition. Others have reported that females with ASD outperform males on executive tasks

131 related to processing speed and verbal fluency 11,26 .

132

133	With regard to everyday functioning in children with ASD, there is one study, to our
134	knowledge, of sex differences in the relationship between the Autism Diagnostic Interview
135	Revised (ADI-R) and adaptive behavior ²⁹ , and another study of sex differences in parent-
136	reported EF and adaptive behavior ³⁰ . Mandic-Maravik and colleagues ²⁹ found different
137	associations of autistic symptoms with various aspects of adaptive behavior between the
138	sexes. White and colleagues ³⁰ reported a correlation between EF difficulties and decreased
139	adaptive ability in both males and females. However, females had more EF difficulties on the
140	BRIEF and more difficulties on the Daily Living Skills domain on the Vineland Adaptive
141	Behavior Scales. To the best of our knowledge there are no studies of how sex differences
142	influence the relationship between parent-rated EF in everyday life (BRIEF) and autistic
143	symptomatology (ADI-R).
144	
145	The main aim of the current study was to investigate the relationship between EF in everyday
146	life rated by parents and autistic symptomology, and to investigate possible sex differences in
147	this relationship. In accordance with the female protective effect hypothesis, that girls would
148	need to be more impaired to have the same amount of ASD symptoms as boys, we
149	hypothesized the relationship between EF deficits and autistic symptomology to be stronger
150	in girls than boys.
151	
152	Methods

153 **Participants**

154 The participants were recruited from Norwegian health services specializing in the assessment155 of ASD and other neurodevelopmental disorders. The study was part of the national BUPgen

- 156 network ³¹. The current sample consisted of 25 girls and 91 boys with ASD who were
- recruited between 2013 and May 2018 and assessed at age 5-19 years. Fifteen of the children
- 158 (2 girls, 13 boys) were diagnosed with childhood autism, 9 (2 girls, 7 boys) with atypical
- autism, 57 (14 girls, 43 boys) with Asperger syndrome and 35 (7 girls, 28 boys) with
- 160 unspecified pervasive developmental disorder (PDD-NOS).
- 161
- 162 The male: female ratio was 3.6:1. In total, 40 children (34.5%) had a comorbid disorder of
- 163 ADHD. All participants had an intelligence quotient (IQ) within the normal range based on a
- standardized Wechsler's test (Full-scale IQ \geq 70) and spoke Norwegian fluently. Exclusion
- 165 criteria were significant sensory losses (vision and/or hearing).
- 166

167 Clinical assessment

- 168 The children were assessed by a team of experienced clinicians (clinical psychologists and/or
- 169 child psychiatrists and educational therapists). Diagnostic conclusions were best-estimate
- 170 clinical diagnoses derived from tests, interview results and observations. All diagnoses were
- 171 based on the International Statistical Classification of Diseases and Related Health Problems
- 172 10th Revision (ICD-10)³² criteria, and the autistic symptoms were evaluated using the Autism
- 173 Diagnostic Observation Schedule (ADOS)³³ and/or Autism Diagnostic Interview-Revised
- 174 (ADI-R)³⁴. In addition, the assessment included a full medical and developmental history,
- 175 physical examination and IQ assessment. Because ASD and ADHD often co-occur (29), the
- 176 current study also included children with ASD and comorbid ADHD.

177

For a subsample of the group n = 34 (10 girls), we also had neuropsychological test data from the Delis-Kaplan Executive Function System (D-KEFS)³⁵. We used five of the subtests from

180 D-KEFS. Results are reported as mean scaled scores and standard deviations (10+/-3): 8.48

181	(3.44) for Trail Making Test Condition 4 Number-Letter Switching (n = 31), 8.97 (2.42) for
182	Verbal Fluency Letter Fluency (FAS) ($n = 32$), 8.59 (3.39) for the Color-Word Inhibition
183	Time (n=34), 8.44 (3.31) for Color-Word Inhibition/ Switching Time (n = 32), 10.39 (3.59)
184	for Twenty Questions Initial Abstract Score ($n = 28$) and 10.19 (2.34) for Tower Test Total
185	Achievement Score ($n = 31$). The subsample with neuropsychological test results was on
186	average older than the total sample (11.8 versus 10.3 year; $p = 0.009$), and fewer had
187	comorbid ADHD than the total sample ($p = 0.043$). However they did not differ from the total
188	sample in sex distribution ($p = 0.185$). Due to a small sample size, the neuropsychological test
189	results are included to describe the group and were not used in further analyses.
190	
191	Measures
192	Autistic symptoms: Autism Diagnostic Interview-Revised (ADI-R) diagnostic algorithm was
193	used to assess autistic symptoms. The ADI-R is a clinical diagnostic tool based on a
194	comprehensive interview with parents or primary caregivers of the child/ adolescent ³⁶ . The
195	interview consists of 93 questions, and a predetermined number of these scores go into a
196	diagnostic algorithm. The interview and scoring follow standardized procedures, and the
197	interviewer records and codes the informant's responses. The algorithm is divided into three
198	functional domains based on the diagnostic criteria (qualitative deviations in): A = Reciprocal
199	Social Interaction, B = Communication, C = Restricted, Repetitive, and Stereotyped
200	Behavior. Higher scores indicate that an individual has a greater number of items representing
201	core ASD deficits and/or more severe symptoms ³⁷ . All the participants were verbal children,
202	and therefore the algorithm for verbal children was used. We used the Norwegian translation
203	of the ADI-R ³⁸ .
204	

205	Executive function (EF): In order to assess EF parents completed the parent version of the
206	BRIEF ³⁹ . The BRIEF for children and adolescents aged 5 to 18 years includes 86-item parent
207	and teacher forms that allow professionals to assess everyday EF in the home and school
208	environments ³⁹ . The BRIEF contains eight scales that are grouped in a Behavioral Regulation
209	Index (BRI): Inhibit, Shift and Emotional Control, and a Metacognition Index (MI): Initiate,
210	Working Memory, Plan/Organize, Organization of Materials and Monitor. <i>T</i> -scores of ≥ 65
211	are considered to represent clinically significant areas. The Global Executive Composite
212	(GEC) is a summary score that incorporates all eight clinical scales. The GEC has high
213	reliability in both standardized and clinical samples (Cronbach's alpha = 0.80-0.98). The
214	current study used the Norwegian version of the parent rating form, which has been reported
215	to have high internal consistency (Cronbach's alpha = $0.76-0.92$) ⁴⁰ . Similar levels are
216	described for the English version (Cronbach's alpha = $0.80-0.98$) ³⁹ .
217	
218	Intelligence Quotient (IQ): IQ was assessed using age-appropriate full-scale Wechsler tests of
219	intelligence ⁴¹⁻⁴³ . We used the Norwegian versions of the Wechsler tests, which have
220	Norwegian and/or Scandinavian norms 44-46.

221

222 Statistical analyses

223 Analyses were conducted using the R statistical environment (version 3.5.0) using the "jmv"

224 (Version 0.7.3.1; ⁴⁷) and "cocor" packages ⁴⁸. Statistical significance was set at p < 0.05 and

adjusted according to number of comparisons. When adjusting critical *p*-values for multiple

- tests it is important to carefully consider the risks of type-I and type-II errors ⁴⁹. Thus, we
- 227 provide justifications below for how we adjusted tests for multiple comparisons to control the
- 228 Type-I error rate. Conventional values were used for interpreting effect sizes (Effect size

values of 0.2, 0.5, and 0.8, were considered small, medium, and large effects, respectively 50).

231	Welch's t-tests were conducted to assess sex differences in ADI-R and BRIEF scores. As here
232	we were examining a series of tests and hypothesizing that these groups were not significantly
233	different, we adjusted for 6 tests (critical p-value = 0.008); ^{49,51} , with values less than 0.05
234	considered on the border of statistical significance. A chi-squared statistic was calculated to
235	assess the frequency distribution of comorbid ADHD between sexes. For the t-tests, Glass'
236	delta-which is unaffected by unequal variances-was used as a measures of effect size.
237	
238	To assess the association between ADI-R sub-scores (i.e., reciprocal social interaction,
239	communication, and restricted, repetitive and stereotyped behavior) and EF (BRIEF GEC),
240	we first calculated a Pearson correlation coefficient. To assess the impact of covariates (i.e.,
241	sex, IQ, age, ADHD, and a sex * EF interaction) on the association between ADI-R sub-
242	scores and BRIEF GEC, we fitted a series of nested multiple regression models and then
243	compared the fit of these models by calculating Akaike information criterion (AIC) values
244	and F-ratios for model change. Lower AIC values are indicative of better model fit. As we
245	were interested in three sub-scores from the ADI-R for these multiple regression models, we
246	adjusted the critical value for 3 tests (critical p-value = 0.017), with values less than 0.05
247	considered on the border of statistical significance for the purposes of these analyses.
248	Although this is an arbitrary cutoff for values considered to be on the border of statistical
249	significance, we chose 0.05 as this is the value traditionally used when not corrected for
250	multiple comparisons. To generalise the regression results beyond the given samples, robust
251	regression was performed in the event of non-normally distributed standardized residuals via
252	bootstrapping with 2000 samples. We obtained bootstrapped 95% confidence intervals for the
253	model intercept and slopes and compared these with the confidence intervals from the original
254	model. Similar confidence intervals between original and bootstrapped models would suggest

255	that there are no considerable problems with non-normal distribution of residuals in the
256	original models. Finally, we assessed the relationship between BRIEF GEC and ADI-R sub-
257	scores in the male and female subgroups and Fisher's z test was used to assess whether these
258	correlations were significantly different. To examine the impact of more closely matched
259	boys and girls on age and IQ, the same model fit and comparison procedure was performed on
260	a subset of the sample, which was generated using the FUZZY extension command in SPSS.
261	These analyses can be found in the supplement section. We allowed cases to be matched on
262	age within 2 years and total IQ within 10 points. Three girls had missing full-scale IQ data, so
263	the 22 girls with no missing values were matched to 44 boys.
264	
265	Results
266	Sex differences in age, IQ, ADI-R scores, and BRIEF scores
267	There were no statistically significant differences between sexes (critical alpha adjusted to $p =$
268	.008) in any of the ADI-R domains, BRIEF GEC, full-scale IQ, or age (Table 1). However,
269	there were tendencies for girls to be slightly older ($p = 0.029$), have some more difficulties on
270	the BRIEF index MI ($p = 0.045$) and to have less difficulties with the ADI-R C domain
271	restricted and repetitive behaviour ($p = 0.038$) than the boys, but these sex differences did not
272	reach the adjusted significance level.
273	
274	[Table 1 about here]
275	
276	There was no significant difference in the proportion of males and females with comorbid
277	ADHD ($\chi^2 = 2.96, p = 0.09$).
278 279	The association between reciprocal social interaction and executive function
	The association between recipi ocal social interaction and executive function

280	There was a statistically significant correlation (adjusted critical alpha = 0.017) between
281	reciprocal social interaction and EF (r = 0.31, $p < 0.001$), as indexed by scores on the ADI-R-
282	A and BRIEF GEC, respectively. We fitted three nested linear regression models to assess the
283	role of covariates (i.e., sex, IQ, age, and ADHD diagnosis) and the interaction of sex and EF
284	on the relationship between reciprocal social interaction and BRIEF GEC (Table 2A). The
285	first model, which included sex, IQ, age, and ADHD diagnosis, was not statistically
286	significant ($p = 0.49$). The second nested model, which added BRIEF GEC, was on the border
287	of our adjusted statistical significance threshold ($p = 0.04$). The second model (AIC = 630.9)
288	was a significantly better fit of the data than the first model (AIC = 637.4 ; F(1, $96 = 8.38$, $p =$
289	0.005), indicating that EF is related to reciprocal social interaction, over and above the main
290	effects of sex, IQ, age, and ADHD diagnosis. The third nested model, which added the
291	interaction of BRIEF GEC and sex, significantly predicted social interaction ($p = 0.001$). In
292	this model, BRIEF GEC, sex, and their interaction provided a statistically significant
293	contribution (Table 2A). The third model (AIC = 619.7), which included a sex * BRIEF GEC
294	interaction term, was a significantly better model for the data than the second model, which
295	only included main effects (AIC = 630.9; $F(1, 95) = 13.15$, $p < 0.001$).
296	
297	[Table 2A about here]
298	
299	The standardized residuals from models 1 ($p = 0.02$), 2 ($p = 0.01$), and 3 ($p = 0.003$) were not
300	normally distributed. Confidence intervals for the intercept and slopes of this model were
301	similar to a bootstrapped model (Table S3A), indicating that there were no considerable
302	problems with non-normal distribution of residuals in the model. The relationship between
303	ADI-R A and BRIEF GEC was statistically significant in females ($p < 0.001$), but not males
304	($p = 0.08$; Figure 1). A formal comparison of these correlations suggested that the relationship

305 between EF and reciprocal social interaction is stronger in females than males (Fisher's z = -306 3.56, p < 0.001). The same model fit and comparison procedure on subset of participants 307 more closely matched on age and IQ revealed similar results (Supplementary material S2A). 308 309 [Figure 1 about here] 310 311 312 313 314 315 316 Figure 1 Correlations between ADI-R and BRIEF scores for girls and boys ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B: Communication domain, C: Restricted, repetitive and stereotyped behavior domain. BRIEF GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite Note: BRIEF scores are reported as T scores (M = 50, SD = 10) and ADI-R scores are reported as domain scores from the diagnostic algorithm. 317 318 The association between communication and executive function 319 There was a statistically significant correlation (adjusted critical alpha = 0.017) between 320 communication and EF (r = 0.33, p < 0.001), as indexed by scores on the ADI-R-B and 321 BRIEF GEC, respectively. We fitted three nested linear regression models to assess the role 322 of covariates and the interaction of sex and EF on the relationship between ADI-R B and 323 BRIEF GEC (Table 2B). The first model, which including sex, IQ, age, and ADHD diagnosis, 324 was not statistically significant (p = 0.84). Although the second nested model was also not 325 statistically significant (p = 0.20), BRIEF GEC provided a contribution that was on the border 326 of statistical significance (p = 0.02). This second model (AIC = 577.3) was a better fit of the data than the first model (AIC = 581.5; F(1, 92) = 5.98, p = 0.02), indicating that EF is related 327 328 to communication, over and above the main effects of sex, IO, and ADHD diagnosis. 329 However, this effect was on the border of statistical significance (p = 0.02) and needs to be 330 validated in future studies. The third nested model, which added the interaction of BRIEF 331 GEC and sex, significantly predicted communication (p = 0.004). In this model, BRIEF GEC, 332 sex, and their interaction provided a statistically significant contribution (Table 2B). The third 333 model (AIC = 566.9), which included a sex * BRIEF GEC interaction term, was a 334 significantly better model for the data than the second model, which only included main

335	effects (AIC = 577.3; $F(1, 91) = 12.27$, $p = 0.001$). The standardized residuals from models 1
336	(p = 0.004), 2 $(p = 0.02)$, and 3 $(p = 0.01)$ were not normally distributed. Confidence intervals
337	for the intercept and slopes of this model were similar to a bootstrapped model (Table S3B),
338	indicating that there were no considerable problems with non-normal distribution of residuals
339	in the model. The relationship between BRIEF GEC and ADI-R B was statistically
340	significant in females ($p < 0.001$), but not males ($p = 0.03$; Figure 1). A formal comparison of
341	these correlations suggested that the relationship between EF and communication is stronger
342	in females than males (Fisher's $z = -2.62$, $p = 0.01$). The same model fit and comparison
343	procedure on subset of participants more closely matched on age and IQ revealed similar
344	results (Supplementary material S2B).
345	
346	[Table 2B about here]
247	
347	
347 348	The association between restricted, repetitive and stereotyped behavior and executive
	The association between restricted, repetitive and stereotyped behavior and executive function
348	
348 349	function
348 349 350	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by
348 349 350 351	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted
348 349 350 351 352	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted critical alpha ($r = 0.22$, $p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested
 348 349 350 351 352 353 	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted critical alpha ($r = 0.22$, $p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested linear regression models to assess the role of covariates and the interaction of sex and EF on
348 349 350 351 352 353 354	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted critical alpha ($r = 0.22$, $p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested linear regression models to assess the role of covariates and the interaction of sex and EF on the relationship between repetitive behavior and EF (Table 2C). The first model, which
 348 349 350 351 352 353 354 355 	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted critical alpha ($r = 0.22$, $p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested linear regression models to assess the role of covariates and the interaction of sex and EF on the relationship between repetitive behavior and EF (Table 2C). The first model, which including sex, IQ, age, and ADHD diagnosis, was not statistically significant ($p = 0.43$). Nor
 348 349 350 351 352 353 354 355 356 	function The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted critical alpha ($r = 0.22$, $p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested linear regression models to assess the role of covariates and the interaction of sex and EF on the relationship between repetitive behavior and EF (Table 2C). The first model, which including sex, IQ, age, and ADHD diagnosis, was not statistically significant ($p = 0.43$). Nor was the second nested model which added BRIEF GEC ($p = 0.12$). This second model (AIC =

360	The third model (AIC = 438.4) was a better fit of the data than the second model (AIC =
361	439.9), but this was not statistically significant (F(1, 92) = 3.3, $p = 0.07$). The standardized
362	residuals from models 2 and 3, which included the predictor of EF were normally distributed
363	(p > 0.05), however, they were not normally distributed for the first model $(p = 0.01)$.
364	Confidence intervals for the intercept and slopes of this model were similar to a bootstrapped
365	model (Table S3C), indicating that there were no considerable problems with non-normal
366	distribution of residuals in the model. The relationship between EF and repetitive behavior
367	was statistically significant in females ($p = 0.007$) but not statistically significance in males (p
368	= 0.09 ; Fig 1). However, formal comparisons of these two correlations showed that they were
369	not significantly different (Fisher's $z = -1.72$, $p = 0.09$). The same model fit and comparison
370	procedure on subset of participants more closely matched on age and IQ revealed similar
371	results (Supplementary material S2C).
372	
373	[Table 2C about here]

375 Discussion

376 The main finding of the current study is that there are sex differences in the relationship 377 between EF in everyday life and social difficulties related to ASD. We found a strong 378 association between the BRIEF (GEC) scores and the ADI-R domains reciprocal social 379 interaction and communication in girls, while these relationships were small and non-380 significant in boys. We did not find sex differences in the relationship between executive 381 dysfunction and restricted and repetitive behaviors. These results have implications for 382 understanding the different clinical manifestations of ASD in girls and boys. The findings 383 indicate that girls and boys might have a different relationship between cognitive and 384 behavioural phenotypes, which may provide novel information in search for different 385 etiologies in girls and boys with ASD. Furthermore, it supports the notion that there may be 386 different reasons for the behavioural problems related to ASD in girls and boys, with girls' 387 social and communicative challenges more strongly related to EF deficits. This could also 388 help to develop sex-differentiated interventions. 389 390 Of particular note, we found evidence for a relationship between EF deficits and difficulties in

391 the domains social reciprocity and communication, but not for the relationship between EF

deficits and restrictive and repetitive behavior (RRB). This differs from previous studies,

393 which found that EF difficulties were mainly related to RRB ^{52,53}. However, these studies did

394 not investigate the differences between girls and boys. On the other hand, Kenworthy and

395 colleagues showed that EF deficits, measured with both performance tests and parental

396 questionnaires, were related to all three components of the triad of impairment in ASD 28 .

397

We did not find any statistically significant sex differences in the total amount of difficulties with social reciprocity or communication (ADI-R A and ADI-R B). However, we did observe

that girls had slightly less reported problems related to RRB (ADI-R C), which is in line with
previous studies ⁵⁴. Results from the Simons Simplex Collection showed lower levels of
restricted interests in girls ⁵⁵, and others have found that girls with ASD have less RBB
compared to boys, especially for high functioning girls ⁵⁶.

404

405 The participants in our study did not significantly differ in the total amount of executive 406 difficulties (GEC), but girls had higher scores (were slightly more impaired) than boys on the metacognitive index from the BRIEF. White and colleagues ³⁰ reported that girls showed 407 408 more EF difficulties in a matched sample of 78 girls and 158 boys with ASD and ADHD 409 symptomatology. The BRIEF (GEC) scores for girls and boys from their study are similar to 410 our results; however, in our study the difference in GEC scores between girls and boys did not 411 reach the corrected level of significance. This might be due to a smaller sample size and a 412 stricter control for multiple testing in our study.

413

414 We showed a strong link between EF deficits in everyday life and social dysfunction for girls 415 with ASD. However, EF deficits seem to have a weaker association to social dysfunction for 416 boys, which suggest that their social difficulties may have a different etiology. Despite not 417 collecting any genetic information in our study, the finding is consistent with earlier studies 418 suggesting that girls require a greater genetic load to manifest autistics symptoms, and that 419 their cognitive and behavior characteristics tend to be more severe than boys when they are diagnosed ⁵⁷. The main finding in our study is not that girls with ASD have more EF deficits 420 421 than boys, but that the EF deficits are stronger linked to core ASD symptoms in girls. Our 422 study only investigated the association between EF and social function, and does not give insight into the causal relationship between these two functional areas. Still, it is reasonable to 423

424 argue that in girls, EF difficulties might drive social difficulties. This possible causal

425 explanation should be further investigated in follow-up studies.

426

427 In typically developed children, girls appear to be more mature than boys, better at adapting to the classroom environment and more sociable ⁵⁸. These differences may explain why girls 428 tend to outperform boys in the early school years ⁵⁸. Consequently, there tends to be different 429 430 societal expectations of girls and boys in terms of social functioning. Girls with ASD might 431 have more difficulties socially interacting with other girls, than boys with ASD have socially interacting with other boys ^{59,60}. Thus, when EF is impaired in girls with ASD, it may have 432 433 stronger negative effects on their social functioning because it requires more of their total 434 cognitive resources.

435

436 Although the ADI-R together with the ADOS is considered to be the gold standard for assessing ASD ^{61,62}, recent studies suggest that these diagnostic instruments may not be 437 equally effective in identifying symptoms in both sexes. Beggiato and colleagues ⁵⁴ 438 439 investigated if the ADI-R items discriminate between males and females, and found that in 440 two large cohorts the ADI-R was better at classifying males than females. They argue that because clinicians use diagnostic tools (like the ADOS and the ADI-R) that are not gender 441 442 specific, it is likely that girls are underrepresented. Other screening instruments for autism 443 symptoms like the Autism Spectrum Screening Questionnaire (ASSQ) and the Social 444 Responsiveness Scale (SRS) have gender-specific items or different norms for boys and girls, to better to capture the "female phenotype" of autism ⁵⁴. Thus, although girls and boys in our 445 446 study have the same level of difficulties in social reciprocity and communication, they might 447 have different expressions of autism symptoms in everyday life. We did not use the screening 448 tools ASSQ or SRS because ADI-R is considered the gold standard measure of autism

symptomatology. Further, ADI-R involves a clinical rating and not just parent reports, takinginto account the clinical judgment.

451

452	In our study 34.5% of the children had a comorbid diagnosis of ADHD. Both ASD and
453	ADHD are characterized by executive dysfunction, but the two disorders typically differ in
454	terms of which subdomains of EF that are affected. Where individuals with ADHD usually
455	have problems with inhibition, those with ASD are more likely to have difficulties with
456	flexibility and planning ⁶³ . Recently, it is suggested that as many as 40-70% of children and
457	adolescents with ASD have a comorbid diagnosis of ADHD ^{19,64,65} . This complicates the
458	picture regarding EF deficits, considering that the two disorders typically represent different
459	aspects of EF deficits. In our study we did not have any significant sex differences in the
460	distribution of ADHD. Furthermore, we included ADHD diagnosis as a predictor in our
461	nested regression models (Table 2A-C). ADHD diagnosis did not have a significant
462	contribution to the outcome measures related to social reciprocity, communication or RRB.
463	We argue that it is important to include children and adolescents with comorbid ADHD in
464	research on ASD, because ADHD is a common comorbid disorder in clinical populations.
465	However, it is important to be aware of the possible influence ADHD might have on
466	executive measures. Future research should combine the measurements used in this study
467	with genetic information and/or neuropsychological testing to investigate sex differences in
468	the relationship between EF and social difficulties in more depth.
469	

470 **Potential clinical implications**

471 The finding that executive dysfunction and social difficulties are highly related in girls but not

472 in boys might be important for various aspects of clinical practice. Firstly, when girls present

473 high scores on the ADI-R, it is reasonable to assess for executive difficulties and vice versa.

474 Furthermore, because girls might have a higher risk for executive dysfunction in combination 475 with their social difficulties, the finding can have implications for the choice of interventions. 476 Following this argument, it is possible that girls (with the same amount of social difficulties 477 as boys) will benefit more from EF interventions. Some existing programs that aim to enhance EF have shown to be effective on both social problems and EF ⁶⁶. However, to our 478 479 knowledge, research is yet to investigated whether this treatment may be more effective for 480 girls than boys. Future studies need to consider that sex differences might influence the effect 481 of interventions.

482

483 Strengths and limitations of the study

484 The study consists of a clinically well-defined sample of children and adolescents with ASD. 485 Even though we have a reasonable number of girls, the total number of girls is still relatively 486 small. The participants were recruited from specialist health care services, which may limit 487 the findings to the more severe conditions. Previous studies have shown that girls referred to specialist clinics have more severe problems than boys ⁵⁷. The girls in our study were slightly 488 489 older than the boys, but age was accounted for in the nested linear models. The BRIEF is 490 based on parent's own observations and evaluations of the child. This parental bias might 491 have influenced the findings, but on the other hand, these instruments have been shown to be 492 ecologically valid measurements of how the child functions in everyday life. We have used 493 the *t*-score from the BRIEF in the analyses, which have age and gender "corrected" norms, 494 since t-scores are commonly used in literature, as well as clinical practice, and it is important 495 to understand how different clinical tools influences each other. Both the BRIEF and the ADI-496 R are based on information from parents and this might bias the findings. However, while the 497 BRIEF is a questionnaire, the ADI-R is a clinical semi-structured interview, which involves a 498 clinical rating. Together, they both give important information about a child's behaviour.

499

1))	
500	Another reason for the sex difference in ASD prevalence might be that girls have a different
501	phenotype. Currently, the established diagnostic practices and tools like the ADOS and the
502	ADI-R are not constructed or adapted to measure the subtle difficulties that girls may present
503	with, which differ from the typical presentation of ASD symptoms in boys. Lai and
504	colleagues suggest this might be a circular phenomenon, since an ASD diagnosis is based on
505	behavioral descriptions, and the most common diagnostic tools are largely validated on the
506	classic male phenotype of autism behaviors ¹ .
507	
508	Conclusion
509	We report sex differences in the relationship between executive dysfunction and social
510	difficulties in individuals with ASD. Our study found a strong relationship between
511	difficulties with social reciprocity and communication and parent-rated executive dysfunction
512	in girls, while the same relationship was not evident in boys. These results suggest potential
513	underlying factors related to different manifestations of ASD in males and females, which
514	may have clinical implications.
$\begin{array}{c} 515\\ 516\\ 517\\ 518\\ 520\\ 5223\\ 5223\\ 5223\\ 5225\\ 5224\\ 5222\\ 5226\\ 5228\\ 5226\\ 5332\\ 5334\\ 535\\ 5334\\ 536\end{array}$	 Abbreviations ADHD: Attention Deficit Hyperactivity Disorder; ADI-R: Autistic Diagnostic Interview-Revised; ADOS: Autism Diagnostic Observation Scale; ASD: Autism Spectrum Disorder; BRIEF: Behavior Rating Inventory of Executive Function; BRI: Behavioral Regulation Index; D-KEFS: Delis-Kaplan Executive Function System; EF: Executive Function; GEC: Global Executive Composite; IQ: Intelligence Quotient; MI: Metacognitive Index; PDD-NOS: Pervasive Developmental Disorder – Not Otherwise Specified; RRB: Restrictive and Repetitive Behavior. Acknowledgements We are thankful to all the BUPgen participants and partners. The study is part of the BUPgen Study group and the research network NeuroDevelop. Funding This project was supported by the National Research Council of Norway (Grant #213694) and the South-Eastern Norway Regional Health Authority funds the Regional Research Network NeuroDevelop (Grant #39763). The corresponding author has a research grant from Vestre Viken Hospital Trust (Grant #6903002). Availability of data and materials The datasets used and analyses in the current study are available from the corresponding author on reasonable request.
536	Authors' contributions

Funding

Availability of data and materials

Authors' contributions

537538539540542542543544545546546547548TT, TN, MGØ and OAA planned and designed the study. TT, MGØ, REH, AK, ALH and SH collected the clinical information. TT, TN and DQ analysed the data and interpreted the results. TT wrote the first draft of the manuscript. All the authors contributed to the manuscript and read and approved the final manuscript.

Ethics approval and consent to participate

Written informed consent was obtained from a parent and/or legal guardian for all participants under the age of 18 years who were included in the study. Participants over 18 years gave written consent themselves. The study was approved by the Regional Ethical Committee and the Norwegian Data Inspectorate (REK #2012/1967), and was conducted in accordance with the Helsinki Declaration of the World Medical Association Assembly.

Consent for publication

All the participants consented to publication.

549 550 551 **Competing interests**

The authors declare that they have no conflict of interest.

552	Pofor	
552 553		ences Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences
555 554	I	and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry 54, 11-24,
555		doi:10.1016/j.jaac.2014.10.003 (2015).
556	2	Loomes, R., Hull, L. & Mandy, W. P. L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder?
557		A Systematic Review and Meta-Analysis. J Am Acad Child Adolesc Psychiatry 56, 466-474,
557 558		doi:10.1016/j.jaac.2017.03.013 (2017).
559	3	Halladay, A. K. et al. Sex and gender differences in autism spectrum disorder: summarizing evidence
560		gaps and identifying emerging areas of priority. <i>Mol Autism</i> 6 , 36, doi:10.1186/s13229-015-0019-y
561 562	4	(2015). Lai, M. C. <i>et al.</i> Cognition in males and females with autism: similarities and differences. <i>PLoS One</i> 7 ,
563	4	e47198, doi:10.1371/journal.pone.0047198 (2012).
564	5	Werling, D. M. & Geschwind, D. H. Understanding sex bias in autism spectrum disorder. <i>Proc Natl Acad</i>
565	-	Sci U S A 110 , 4868-4869, doi:10.1073/pnas.1301602110 (2013).
566	6	Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr Opin Neurol 26,
567		146-153, doi:10.1097/WCO.0b013e32835ee548 (2013).
568	7	Jacquemont, S. et al. A higher mutational burden in females supports a "female protective model" in
569 570	0	neurodevelopmental disorders. <i>Am J Hum Genet</i> 94 , 415-425, doi:10.1016/j.ajhg.2014.02.001 (2014).
570	8	Levy, D. <i>et al.</i> Rare de novo and transmitted copy-number variation in autistic spectrum disorders. <i>Neuron</i> 70 , 886-897, doi:10.1016/j.neuron.2011.05.015 (2011).
572	9	Werling, D. M., Parikshak, N. N. & Geschwind, D. H. Gene expression in human brain implicates
573 574	-	sexually dimorphic pathways in autism spectrum disorders. Nat Commun 7, 10717,
<u>574</u>		doi:10.1038/ncomms10717 (2016).
575	10	Dworzynski, K., Ronald, A., Bolton, P. & Happe, F. How different are girls and boys above and below the
576 577		diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry 51, 788-797,
578	11	doi:10.1016/j.jaac.2012.05.018 (2012). Lehnhardt, F. G. <i>et al.</i> Sex-Related Cognitive Profile in Autism Spectrum Disorders Diagnosed Late in
578 579		Life: Implications for the Female Autistic Phenotype. J Autism Dev Disord 46 , 139-154,
580		doi:10.1007/s10803-015-2558-7 (2016).
581	12	Dean, M., Harwood, R. & Kasari, C. The art of camouflage: Gender differences in the social behaviors of
582		girls and boys with autism spectrum disorder. Autism 21, 678-689, doi:10.1177/1362361316671845
583	10	(2017).
584 585	13	Lai, M. C. <i>et al.</i> Quantifying and exploring camouflaging in men and women with autism. <i>Autism</i> 21 , 690-702, doi:10.1177/1362361316671012 (2017).
586	14	Ratto, A. B. <i>et al.</i> What About the Girls? Sex-Based Differences in Autistic Traits and Adaptive Skills. J
587		Autism Dev Disord 48 , 1698-1711, doi:10.1007/s10803-017-3413-9 (2018).
588	15	Van Wijngaarden-Cremers, P. J. et al. Gender and age differences in the core triad of impairments in
589		autism spectrum disorders: a systematic review and meta-analysis. J Autism Dev Disord 44, 627-635,
590 591	10	doi:10.1007/s10803-013-1913-9 (2014).
592	16	Geurts, H., de Vries, M. & van den Bergh, S. F. in <i>Handbook of Executive Functioning</i> (eds S. Goldstein & J. A. Naglieri) (Springer Science + Business Media, 2014).
593	17	Hill, E. L. Executive dysfunction in autism. <i>Trends Cogn Sci</i> 8 , 26-32 (2004).
594	18	Pennington, B. F. & Ozonoff, S. Executive functions and developmental psychopathology. <i>J Child</i>
595		Psychol Psychiatry 37 , 51-87 (1996).
596	19	Lai, M. C., Lombardo, M. V. & Baron-Cohen, S. Autism. <i>Lancet</i> 383 , 896-910, doi:10.1016/s0140-
597 598	20	6736(13)61539-1 (2014).
599	20	Demetriou, E. A. <i>et al.</i> Autism spectrum disorders: a meta-analysis of executive function. <i>Mol Psychiatry</i> , doi:10.1038/mp.2017.75 (2017).
600	21	Lai, C. L. E. <i>et al.</i> Meta-analysis of neuropsychological measures of executive functioning in children and
601		adolescents with high-functioning autism spectrum disorder. Autism Res 10, 911-939,
602		doi:10.1002/aur.1723 (2017).
603	22	Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex "Frontal
604 605	23	Lobe" tasks: a latent variable analysis. Cogn Psychol 41 , 49-100, doi:10.1006/cogp.1999.0734 (2000). Kenworthy, L., Yerys, B. E., Anthony, L. G. & Wallace, G. L. Understanding executive control in autism
606	23	spectrum disorders in the lab and in the real world. <i>Neuropsychol Rev</i> 18 , 320-338, doi:10.1007/s11065-
607		008-9077-7 (2008).
608	24	Van Eylen, L., Boets, B., Steyaert, J., Wagemans, J. & Noens, I. Executive functioning in autism
609		spectrum disorders: influence of task and sample characteristics and relation to symptom severity. Eur
610		Child Adolesc Psychiatry 24, 1399-1417, doi:10.1007/s00787-015-0689-1 (2015).
611 612	25	Lemon, J. M., Gargaro, B., Enticott, P. G. & Rinehart, N. J. Executive functioning in autism spectrum
613		disorders: a gender comparison of response inhibition. <i>J Autism Dev Disord</i> 41 , 352-356, doi:10.1007/s10803-010-1039-2 (2011).
614	26	Bolte, S., Duketis, E., Poustka, F. & Holtmann, M. Sex differences in cognitive domains and their clinical
615		correlates in higher-functioning autism spectrum disorders. <i>Autism</i> 15 , 497-511,
616		doi:10.1177/1362361310391116 (2011).
617	27	Nyden, A., Hjelmquist, E. & Gillberg, C. Autism spectrum and attention-deficit disorders in girls. Some
618		neuropsychological aspects. Eur Child Adolesc Psychiatry 9, 180-185 (2000).

619	28	Kenworthy, L., Black, D. O., Harrison, B., della Rosa, A. & Wallace, G. L. Are executive control functions
620		related to autism symptoms in high-functioning children? <i>Child Neuropsychol</i> 15 , 425-440,
621 622	29	doi:10.1080/09297040802646983 (2009). Mandic-Maravic, V. <i>et al.</i> Sex differences in autism spectrum disorders: does sex moderate the pathway
623	23	from clinical symptoms to adaptive behavior? <i>Sci Rep</i> 5 , 10418, doi:10.1038/srep10418 (2015).
624	30	White, E. I. <i>et al.</i> Sex differences in parent-reported executive functioning and adaptive behavior in
625		children and young adults with autism spectrum disorder. Autism Res 10, 1653-1662,
626	0.4	doi:10.1002/aur.1811 (2017).
627 628	31	Grove, J. <i>et al.</i> Common risk variants identified in autism spectrum disorder. <i>bioRxiv preprint</i> November 27 , doi: <u>https://doi.org/10.1101/224774</u> (2017).
629	32	World Health Organization. The ICD-10 classification of mental and behavioral disorders: clinical
630	02	descriptions and diagnostic guidelines., (World Health Organization, 1992).
631	33	Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and
632		communication deficits associated with the spectrum of autism. J Autism Dev Disord 30, 205-223 (2000).
633	34	Rutter, M., Lord, C. & LeCouteur, A. Autism Diagnostic Interview-Revised manual (ADI-R). (Western
634 635	35	Psychological Services, 2003). Delis, D. C., Kaplan, E. & Kramer, J. H. <i>Delis-Kaplan executive function system (D-KEFS)</i> . (The
636	55	Psychological Corporation, 2001).
637	36	Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a
638		diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J
639		Autism Dev Disord 24 , 659-685 (1994).
640 641	37	Gotham, K., Pickles, A. & Lord, C. Standardizing ADOS scores for a measure of severity in autism
642	38	spectrum disorders. <i>J Autism Dev Disord</i> 39 , 693-705, doi:10.1007/s10803-008-0674-3 (2009). Rutter, M., Lord, C. & LeCouteur, A. <i>Autism Diagnostic Interview – Revised. Norsk versjon.</i> , (Hogrefe
643	50	Psykologforlag AB, 2016).
644	39	Gioia, G. A., Isquith, P. K., Guy, S. C. & Kenworthy, L. Behavior Rating Rating Inventory of Executive
645		Function (BRIEF). (PAR Psychological Assessment Resources, Inc, 2002).
646	40	Fallmyr, Ø. & Egeland, J. Psykometriske egenskaper for den norske versjonen av Behavior Rating
647	44	Inventory of Executive Function (BRIEF). <i>Tidsskrift for Norsk Psykologforening</i> 48 , 339-343 (2011).
648 649	41 42	Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence-Third edition (Pearson, 2002). Wechsler, D. Wechler Intelligence Scale for Children- Fourth edition., (Pearson, 2003).
650	42	Wechsler, D. Wechsler Adult Intelligence Scale–Fourth Edition., (Pearson, 2003).
651	44	Weschler, D. Wechsler Preschool and Primary Scale of Intelligence - Third edition. Norsk versjon.
652		(Pearson Assessment, 2008).
653	45	Weschler, D. Wechsler Intelligence Scale for Children - Fourth edition. Norsk versjon. (Pearson
654 655	40	Assessment, 2009).
656	46	Weschler, D. Wechsler Adult Intelligence Scale - Fourth edition. Norsk versjon. (Pearson Assessment, 2011).
657	47	Selker, R., Love, R. & Dropmann, D. The "jamovi" Analyses, https://CRAN.R-
658		project.org/package=jmv.> (2017).
659	48	Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of
660	40	correlations. <i>PLoS One</i> 10 , e0121945, doi:10.1371/journal.pone.0121945 (2015).
661 662	49	Armstrong, R. A. When to use the Bonferroni correction. <i>Ophthalmic Physiol Opt</i> 34 , 502-508, doi:10.1111/opo.12131 (2014).
663	50	Cohen, J. Statistical Power Analysis for the Behavioral Sciences. (Lawrence Erlbaum Associates,
664	00	1988).
665	51	Perneger, T. V. What's wrong with Bonferroni adjustments. BMJ 316, 1236-1238 (1998).
666	52	Lopez, B. R., Lincoln, A. J., Ozonoff, S. & Lai, Z. Examining the relationship between executive functions
667		and restricted, repetitive symptoms of Autistic Disorder. <i>J Autism Dev Disord</i> 35 , 445-460,
668 669	53	doi:10.1007/s10803-005-5035-x (2005). Brunsdon, V. E. & Happe, F. Exploring the 'fractionation' of autism at the cognitive level. <i>Autism</i> 18 , 17-
670	55	30, doi:10.1177/1362361313499456 (2014).
671	54	Beggiato, A. <i>et al.</i> Gender differences in autism spectrum disorders: Divergence among specific core
672		symptoms. Autism Res 10, 680-689, doi:10.1002/aur.1715 (2017).
673	55	Frazier, T. W., Georgiades, S., Bishop, S. L. & Hardan, A. Y. Behavioral and cognitive characteristics of
674 675		females and males with autism in the Simons Simplex Collection. J Am Acad Child Adolesc Psychiatry
675 676	56	53, 329-340 e321-323, doi:10.1016/j.jaac.2013.12.004 (2014). Supekar, K. & Menon, V. Sex differences in structural organization of motor systems and their
677	50	dissociable links with repetitive/restricted behaviors in children with autism. <i>Mol Autism</i> 6, 50,
678		doi:10.1186/s13229-015-0042-z (2015).
679	57	Wang, S. et al. Sex Differences in Diagnosis and Clinical Phenotypes of Chinese Children with Autism
680		Spectrum Disorder. <i>Neurosci Bull</i> 33 , 153-160, doi:10.1007/s12264-017-0102-9 (2017).
681 682	58	Bennett, S., Farrington, D. P. & Huesmann, R. Explaining gender differences in crime and violence: The importance of social acquities skills. Acquires and Violant Palaviar, 262,288 (2005)
682 683	59	importance of social cognitive skills. <i>Aggression and Violent Behavior</i> , 263-288 (2005). Dean, M. <i>et al.</i> The peer relationships of girls with ASD at school: comparison to boys and girls with and
684		without ASD. J Child Psychol Psychiatry 55, 1218-1225, doi:10.1111/jcpp.12242 (2014).

- 685 60 Tierney, S., Burns, J. & Kilbey, E. Looking behind the mask: Social coping strategies of girls on the 686 autistic spectrum. Research in Autism Spectrum Disorders, 73-83 (2016).
- 687 688 Falkmer, T., Anderson, K., Falkmer, M. & Horlin, C. Diagnostic procedures in autism spectrum disorders: 61 a systematic literature review. Eur Child Adolesc Psychiatry 22, 329-340, doi:10.1007/s00787-013-0375-689 0 (2013)
- 690 Ozonoff, S., Goodlin-Jones, B. L. & Solomon, M. Evidence-based assessment of autism spectrum 62 disorders in children and adolescents. J Clin Child Adolesc Psychol 34, 523-540, doi:10.1207/s15374424jccp3403_8 (2005).
- 691 692 693 694 695 696 697 63 Craig, F. et al. A review of executive function deficits in autism spectrum disorder and attentiondeficit/hyperactivity disorder. Neuropsychiatr Dis Treat 12, 1191-1202, doi:10.2147/NDT.S104620 (2016).
- Antshel, K. M., Zhang-James, Y., Wagner, K. E., Ledesma, A. & Faraone, S. V. An update on the 64 comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother 16, 279-293, 698 doi:10.1586/14737175.2016.1146591 (2016).
- 699 65 Simonoff, E. et al. Psychiatric disorders in children with autism spectrum disorders: prevalence, 700 701 comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 47. 921-929. doi:10.1097/CHI.0b013e318179964f (2008).
- 702 Kenworthy, L. et al. Randomized controlled effectiveness trial of executive function intervention for 66 703 children on the autism spectrum. J Child Psychol Psychiatry 55, 374-383, doi:10.1111/jcpp.12161 704 (2014).

706 Tab	ole 1. Age, IQ, BRIEF and ADI-R	scores for girls and bo	ys with ASD (N=116)
---------	---------------------------------	-------------------------	---------------------

707

Scale	Girls		Boys		df	p-value	Glass' delta
	Mean (SD)	n	Mean (SD)	n			
Age	12.0 (3.1)	25	10.4 (3.2)	91	39.0	0.029	-0.50
Full-scale IQ	93.5 (9.3)	22	95.6 (13.1)	80	46.5	0.386	0.16
BRIEF	69.4 (10.1)	25	67.2 (10.8)	91	40.3	0.349	-0.20
Global Executive Composite (GEC)							
BRIEF	67.6 (14.6)	25	68.0 (11.8)	86	33.7	0.917	0.03
Behavioral Regulation Index (BRI)							
BRIEF Metacognition Index (MI)	68.6 (8.3)	25	64.5 (11.0)	91	49.9	0.045	-0.37
ÀDÍ-R (A)	11.8 (6.1)	25	11.8 (5.1)	91	33.5	0.945	-0.02
Reciprocal Social Interaction domain			~ /				
ADI-R (B)	8.8 (5.2)	24	9.2 (4.3)	87	32.4	0.715	0.10
Communication domain	. ,		. ,				
ADI-R (C)	2.4 (2.1)	24	3.4 (2.2)	88	38.4	0.038	0.47
Restricted, repetitive and stereotyped behavior domain	. ,		. /				

p = 0.008

Welch's t-tests were conducted for age, IQ, BRIEF and ADI-R comparisons between sexes

IQ = Intelligence Quotient BRIEF: Behavior Rating Inventory of Executive Functions

ADI-R: Autism Diagnostic Interview-Revised

708 709 710 711 712 713 714 715 716 Note. BRIEF scores are reported as T scores (M = 50, SD = 10) and ADI-R scores are reported as domain scores from the diagnostic algorithm.

Table 2A-C Nested hierarchical models summary

2A Reciprocal Social Interaction domain

ADI-R A		R^2	В	SE B	р
Model 1		0.03			0.486
	Constant		19.98	5.20	< .001*
	Sex		-0.13	1.32	0.923
	IQ		-0.07	0.04	0.104
	ADHD diagnosis		-1.26	1.16	0.279
	Age		-0.08	0.17	0.618
Model 2		0.11			0.041
	Constant		10.68	5.95	0.076
	Sex		-0.55	1.28	0.667
	IQ		-0.07	0.04	0.106
	ADHD diagnosis		-1.88	1.14	0.102
	Age		-0.07	0.16	0.650
	BRIEF GEC		0.14	0.05	0.005*
Model 3		0.22			<.001*
	Constant		44.69	10.93	<.001*
	Sex		-29.20	7.99	<.001*
	IQ		-0.07	0.04	0.100
	ADHD diagnosis		-1.04	1.10	0.345
	Age		-0.05	0.15	0.743
	BRIEF GEC		-0.37	0.15	0.015*
	BRIEF GEC * Sex		0.42	0.11	< .001*

 $p^* p = 0.017$

ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B: Communication domain, C: Restricted, repetitive and stereotyped behavior domain.

ADHD: Attention deficit/ hyperactivity disorder

722 723 724 725 726 727 728 729 730 IQ: Intelligence Quotient

BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite

B = unstandardized regression coefficients

2B Communication domain

ADI-R B		R^2	В	SE B	р
Model 1		0.01			0.843
	Constant		12.86	4.47	0 .005*
	Sex		-0.42	1.14	0.717
	IQ		-0.04	0.04	0.357
	ADHD diagnosis		0.44	1.01	0.664
	Age		0.01	0.15	0.963
Model 2		0.07			0.200
	Constant		6.11	5.16	0.239
	Sex		-0.76	1.12	0.500
	IQ		-0.03	0.04	0.378
	ADHD diagnosis		-0.01	1.00	0.990
	Age		0.01	0.14	0.949
	BRIEF GEC		0.11	0.04	0.016*
Model 3		0.18			0.004*
	Constant		35.20	9.62	< .001*
	Sex		-25.36	7.10	< .001*
	IQ		-0.03	0.03	0.404
	ADHD diagnosis		0.75	0.97	0.439
	Age		0.01	0.13	0.916
	BRIEF GEC		-0.33	0.13	0.013*
	BRIEF GEC* Sex		0.36	0.10	< .001*

* *p* = 0.017

735 736 737 738 739 740 741 742 743 ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B: Communication domain, C: Restricted, repetitive and stereotyped behavior domain.

ADHD: Attention deficit/ hyperactivity disorder

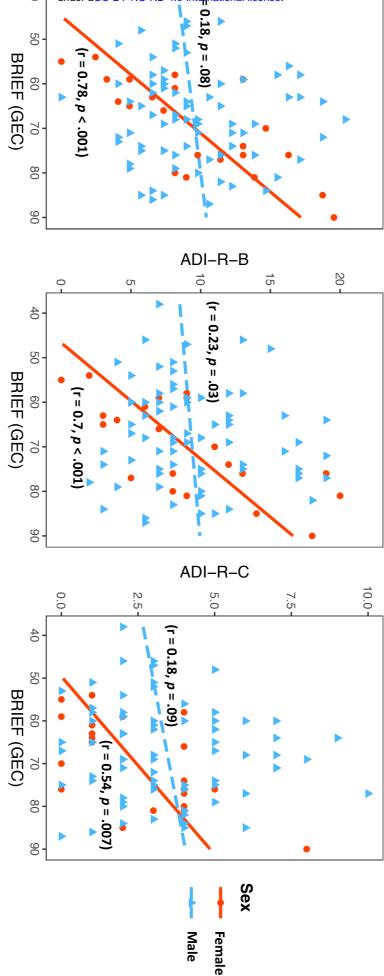
IQ: Intelligence Quotient BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite

B = unstandardized regression coefficients

744 745 2C Restricted, repetitive and stereotyped behavior domain

ADI-R C		R ²	В	SE B	р
Model 1		0.04			0.435
	Constant		5.70	2.16	0 .010*
	Sex		-1.00	0.55	0.073
	IQ		-0.01	0.02	0.478
	ADHD diagnosis		-0.39	0.48	0.422
	Age		0.01	0.07	0.889
Model 2		0.09			0.118
	Constant		2.69	2.50	0.286
	Sex		-1.15	0.54	0.037
	IQ		-0.01	0.02	0.506
	ADHD diagnosis		-0.58	0.48	0.229
	Age		0.01	0.07	0.873
	BRIEF GEC		0.05	0.02	0.027
Model 3		0.12			0.063
	Constant		1.33	4.88	0.037
	Sex		-7.62	3.60	0.037
	IQ		-0.01	0.02	0.533
	ADHD diagnosis		-0.39	0.49	0.428
	Age		0.01	0.07	0.857
	BRIEF GEC		-0.07	0.07	0.309
	BRIEF GEC * Sex		0.09	0.05	0.072

746 747 748


 $p^* p = 0.017$

ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B: 748 749 750 751 752 753 754 Communication domain, C: Restricted, repetitive and stereotyped behavior domain.

ADHD: Attention deficit/ hyperactivity disorder

IQ: Intelligence Quotient BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite

B = unstandardized regression coefficients

