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Abstract

We present the software CRUP (Condition-specific Regulatory Units Prediction) to infer from

epigenetic marks a list of regulatory units consisting of dynamically changing enhancers with their

target genes. The workflow consists of a novel pre-trained enhancer predictor that can be reliably

applied across cell lines and species, solely based on histone modification ChIP-seq data. Enhancers

are subsequently assigned to different conditions and correlated with gene expression to derive

regulatory units. We thoroughly test and then apply CRUP to a rheumatoid arthritis model,

identifying enhancer-gene pairs comprising known disease genes as well as new candidate genes.

Keywords: enhancer prediction, enhancer dynamics, gene regulation, epigenetics, random forest,

differential analysis, histone modification, 3D interaction

Availability: https://github.com/VerenaHeinrich/CRUP
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1 Background

Gene expression is to a large degree regulated by distal genomic elements referred to as enhancers

(Shlyueva et al., 2014), which recruit a combination of different factors to activate transcription

from a targeted core promoter. The activity state of enhancers may change dynamically across

conditions, e.g. across varying time-points, cell lines, species or disease states. Thus, their activity

patterns are central in the context of phenotypic diversity (Wray, 2007; Wittkopp and Kalay, 2012)

and altered activity can be the source of pathogenic disruptions of gene-enhancer interactions and

subsequent mis-regulation (Maurano et al., 2012). Although the functional importance of enhancers

was first observed almost 40 years ago (Banerji et al., 1981), the underlying mechanisms by which

enhancers regulate gene expression are still not fully understood. To date, there is neither a complete

knowledge of enhancer elements nor their regulatory interplay with targeted genes. However, by

analyzing epigenetic profiles of experimentally determined enhancers or binding sites of co-activators

like p300 (Visel et al., 2009), condition-specific changes of enhancers were found to be reflected in the

epigenetic landscape (Heintzman et al., 2009). Further, to get a glimpse of the underlying causative

regulatory mechanism, dynamic enhancer elements need to be further associated with promoter

activity across the same conditions. This is particularly important as the majority of gene-enhancer

pairs that change dynamically under different conditions have not been discovered, yet (Corradin

et al., 2014).

Most experimental procedures which are used to validate regulatory activity of enhancers and their

targets are cost and time consuming. Consequently, computational methods that identify enhancer

elements based on epigenetic profiles became an indispensable alternative over the last years (Ernst

and Kellis, 2012; Mammana and Chung, 2015; He et al., 2017; Rajagopal et al., 2013). However,

just a small fraction of enhancers has been functionally characterized in different cell types or tis-

sues (Corradin et al., 2014). Consequently, approaches that rely on a pre-defined gold-standard

set of enhancers are often prone to be biased for the cell type or tissue that was used for training.

Although strategies that address this shortcoming were recently introduced (He et al., 2017), it

remains difficult to develop a method that is able to generalize across different conditions, especially

as there are usually just a few common enhancer features available for all data sets. This becomes

tremendously important if the overall aim is to identify novel enhancer regions that dynamically
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change across different conditions. Apart from that, most of the available computational methods

are not automatically providing a way to compare many samples across different conditions, and

thus the assignment of differential regions has to be done separately in a post-processing step.

Further, the allocation of putative target gene promoters remains challenging, especially as the dis-

tance between enhancers and targeted promoters can be very heterogeneous (de Laat and Duboule,

2013). Several methods have already beed introduced that are based on the correlation of epige-

nomic signals between enhancers and promoters (Corradin et al., 2014; Ernst et al., 2011). One

major restriction of these approaches is the missing information about the search space for each

enhancer-promoter pair as the linear distance can range from 1kb to several megabases (de Laat

and Duboule, 2013). However, this drawback can be compensated by recently introduced methods

to determine the direct physical contact between any genomic regions (Dekker et al., 2002; Rao

et al., 2014) which also reveal regulatory separated parts of the genome.

In this work, we address all of the above-mentioned issues and present the three-step framework

CRUP (Condition-specific Regulatory Units Prediction), that combines the prediction of active

enhancer elements (CRUP-EP) with a condition-specific assignment (CRUP-ED) and the allo-

cation of simultaneously changing gene-enhancer pairs (CRUP-ET).

An enhancer classification method that aims to find dynamically changing activity pattern across

different conditions needs to be applicable to experiments for which no training data exist. In

fact, only a few of the available enhancer prediction tools provide a pre-trained classifier which

can be applied to new experimental data. To overcome this bottleneck, we developed the ran-

dom forest-based enhancer classifier CRUP-EP (Enhancer Prediction) that can be applied across

different cell types and species without the need of being re-trained. Here, we made use of the

widely accepted concept that enhancer activity is reflected by a certain local chromatin structure

with particular histone modifications (HMs) (Creyghton et al., 2010; Rada-Iglesias et al., 2011),

which can be determined by ChIP-seq (Horak and Snyder, 2002). The local structure comprises in

essence an accessible region flanked by nucleosomes which carry a H3K27ac modification and where

the H3K4me1 signal dominates over H3K4me2 or -me3. Moreover, the proportion of H3K4me1

over H3K4me3 distinguishes an enhancer from a promoter region (Heintzman et al., 2007). Based

on these characteristics CRUP-EP solely requires the six core HMs on which the NIH Roadmap

Epigenomics Mapping Consortium (Bernstein et al., 2010) and the International Human Epigenome
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Consortium (IHEC, Stunnenberg et al. 2016) have converged, guaranteeing a broad applicability.

We train and validate CRUP-EP on mouse embryonic stem cells (mESCs) based on curated FAN-

TOM5 validated enhancer regions (de Hoon et al., 2010) such that our training and test sets are

chosen independently from the HM feature set that is used as input for our enhancer classifier.

To validate the open chromatin property, we use the distance to the nearest accessible region as

an additional quality measure for our predicted enhancer regions by integrating an independent

ATAC-seq experiment (Buenrostro et al., 2015).

Recently, super enhancers (SEs) were introduced as an important subset of large (> 3 kb) enhancer

regions, which are especially crucial for the regulation of expression of cell identity genes (Whyte

et al., 2013). Hence, to evaluate our predictions, we further cluster single enhancers in mESCs and

show that almost all of these are overlapping with a list of SEs recently published by Novo et al.

(2018).

To demonstrate the transferability of CRUP-EP we integrated five different experimental data

sets, comprising various cell types and species, that were obtained in the context of the German

Epigenome Project (DEEP, 2017). We trained and applied our classification approach on mESC as

well as on the DEEP-related data sets and validated the performance across the different samples.

We further compare our results to two other widely used enhancer prediction methods, namely

ChromHMM (Ernst and Kellis, 2012) and REPTILE (He et al., 2017). Hidden Markov Models

(HMMs), integrated e.g. in ChromHMM, are well suited to discover unknown combinations of chro-

matin signatures from HM ChIP-seq experiments and especially ChromHMM is widely used when

it comes to enhancer prediction. HMM-based approaches usually do not include prior knowledge

into the predictions but the interpretation of the segmentation and the choice of the number of

chromatin states has to be done manually. On the other hand, REPTILE implements a random

forest-based algorithm to assign enhancer probabilities to each region in the genome and is trained

on distal binding sites of the histone modifying protein p300. In this work we refrain from further

method comparisons since REPTILE just recently demonstrated to be superior to several state-of-

the-art enhancer prediction tools, e.g. RFECS (Rajagopal et al., 2013). We show that CRUP-EP

outperforms ChromHMM and is comparable to REPTILE when applying within a single cell type.

In terms of transferability across different cell types and species, we can show that our classification

approach outperforms REPTILE.
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A prominent application of enhancer prediction methods is be the comparison of dynamic conditions,

like varying time-points, cell lines or disease states. To address this, we complement CRUP-EP

by CRUP-ED (Enhancer Dynamics) which assigns predicted enhancer regions to distinguishable

conditions while accounting for a flexible number of replicates. Based on the enhancer probabilities

obtained by CRUP-EP, the second phase of CRUP is computing pair-wise empirical p-values

based on a permutation test which are further used to cluster significantly different enhancer re-

gions.

We apply CRUP-ED to a data set of pluripotent and retinoic acid (RA) induced mESCs yielding

two clusters of condition-specific enhancer regions. We can show that the assignment of clusters

across the two conditions is in good agreement with HM ChIP-seq as well as with ATAC-seq data.

Enhancer elements regulate gene expression through the binding of sequence-specific transcription

factors (TFs) to cognate motifs (Grossman et al., 2017). Therefore, we further evaluate our dynamic

enhancer regions by investigating the over-representation of TF motifs within each enhancer cluster.

We are able to identify several motifs that are associated with RA receptors as well as with signaling

pathways that regulate the pluripotency of stem cells.

A traditional approach to infer a gene promoter that is targeted by an enhancer is to apply a

distance-based strategy whereas either the nearest promoter is chosen or some statistic is applied

within a fixed search space. However, it has been recently shown that enhancer activation can not

only skip several non-target genes, independently of their orientation, but enhancer elements can

also be placed in the gene body of another independent gene (Pennacchio et al., 2013).

To understand the underlying regulatory mechanism of dynamic enhancer regions, they need to be

linked to promoter activity across the same conditions. As enhancer dynamics strongly correlate

with changing gene expression pattern (Heintzman et al., 2009), we make use of this property and

added a third layer to our framework, CRUP-ET (Enhancer Targets), to match condition-specific

enhancers to RNA-seq experiments (Wang et al., 2009).

Recently, conformation capture methods such as Hi-C (Rao et al., 2014; Bonev et al., 2017) or

CaptureC-seq (Andrey et al., 2017) have focused on the three-dimensional non linear structure of

the genome. Chromatin folding brings distal regulatory elements, such as enhancers, into close

physical proximity of their target gene promoters (Tolhuis et al., 2002). Although, until now, sin-

gle enhancer-promoter contacts have been difficult to observe in Hi-C experiments, they have been
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shown to interact primarily within the same topological associated domain (TAD) (Bonev et al.,

2017; Yin et al., 2012). In this work we make use of this knowledge and designed CRUP-ET in such

a way that it restricts the search space to prioritize promoter/gene-enhancer interactions within the

same TAD.

We identify differential enhancer regions across eight developmental states in mouse embryo mid-

brain and link each region to putative target genes. Using a small set of genes that are found to be

active in the same tissue we show that our inferred regulatory units (high-confidence gene-enhancer

pairs) coincide well with corresponding CaptureC-seq data and recapitulate physical interaction

information. We further evaluate our approach using a data set comprising three states of mouse

neural differentiation and demonstrate a very good agreement of our inferred dynamic regulatory

units using ultra-deep Hi-C data.

Finally, we identify trait-associated regulatory elements in a mouse model of rheumatoid arthritis,

an autoimmune inflammatory complex disease, and discuss our main findings on a single enhancer

region that we can correlate to several genes of the CCR-gene cluster, which is part of the Chemokine

signaling pathway. Additionally, we support our findings with motif enrichment analysis as well as

with a pathway analysis. With this, we demonstrate how our presented framework CRUP can be

used to identify candidate enhancer regions together with their putative target genes that dynami-

cally change between different conditions.
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A) CRUP-Enhancer Prediction B) CRUP-Enhancer Dynamics C) CRUP-Enhancer Targets

Figure 1: Schematic overview. CRUP (Condition-specific Regulatory Units Prediction) is a
three-step framework to predict active enhancers (’CRUP-EP ’), assign them to dynamic condi-
tions (’CRUP-ED ’) and create differential regulatory units (’CRUP-ET ’). A) CRUP-EP accounts
for the size of accessible regions (highlighted in blue) which are flanked by nucleosomes. For each
region of interest, binx, a combination of two binary random forest classifiers, solely based on ChIP-
seq HM data, is then used for enhancer prediction. B) Based on a permutation test, CRUP-ED
computes empirical p-values for each binx across different conditions (dotted and solid rectangles),
which are further used to combine and cluster regions. C) CRUP-ET inspects each differential en-
hancer region (blue ellipse) individually within its topologically associated domain (blue triangle).
To infer putative target genes, the correlation between probability values and gene expression counts
is calculated.

2 Results

2.1 Short summary of CRUP

In this work, we describe the three-step framework CRUP to predict active enhancer regions, assign

them to specific conditions and finally correlate each dynamically changing enhancer to putative

target genes. Each single step is implemented in R and incorporated into a workflow (Figure 1).

The first module of our framework, CRUP-EP (Enhancer Prediction, Section 5.8), is an en-

hancer classifier with feature sets based on six core HMs, namely H3K4me1, H3K4me3, H3K27ac,

H3K36me3, H3K27me3 and H3K9me3 (Figure 1 A). We implemented a combination of two random

forests to split the task of distinguishing active regulatory regions from the rest of the genome, as

well as differentiating enhancers from active promoters. CRUP-EP is designed such that it takes

into account the basic genomic structure of an enhancer, which is in essence an open chromatin

region flanked by nucleosomes.

The second phase of the workflow, CRUP-ED (Enhancer Dynamics, Section 5.9), is based on
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genome-wide enhancer predictions for multiple conditions, e.g. different development states of a

cell (Figure 1 B). We find condition-specific enhancers by applying a permutation test directly on

the predicted enhancer probabilities obtained by CRUP-EP. Based on pairwise empirical p-values,

dynamic enhancers can be combined and clustered into differential regions.

In a last step, CRUP-ET (Enhancer Targets, Section 5.10), each dynamically changing enhancer

region obtained by CRUP-ED is linked to target genes (Figure 1 C). To this end, the correlation

between enhancer probabilities and gene expression values across the same conditions is computed

for all putative gene-enhancer pairs that are located within the same TAD.

We trained CRUP-EP on input-normalized HM ChIP-seq data and a training set based on FAN-

TOM5 curated enhancers. To evaluate CRUP-ED and CRUP-ET we predicted active enhancer

regions based on a classifier trained on mouse embryonic stem cells (mESC).

2.2 Accuracy and spatial resolution of enhancer predictions in mESC

We trained our random forest based enhancer classifier CRUP-EP on input-normalized HM ChIP-

seq data from a single mESC sample, in this work further labeled as mESC+ (see Section 5.8). The

predictions were validated on ten test sets, primarily focusing on the area under the precision-recall

(AUC-PR) curve. Overall, our classification method yields very good and stable results across all

test sets with an AUC-PR ranging from 0.93 to 0.96 and an AUC-ROC ∈ [0.98, 0.99] (Figure 2 A,

Figure S2). This also holds true when comparing to two other widely used enhancer classification

methods, ChromHMM and REPTILE, which will be further discussed in Section 2.4.

Based on the genome-wide predictions we called 42, 530 enhancers at length 1100 bp, using a mini-

mum probability threshold of 0.5 as described in Section 5.8. The distribution of the original HM

ChIP-seq read counts over the called enhancers shows a partition of these regions into a large and

a small cluster (Figure S5). The majority of the predicted enhancers show typical enhancer char-

acteristics, with high enrichment for the histone marks H3K4me1 and H3K27ac, as well as for an

independent ATAC-seq experiment. A much smaller cluster rather looks like promoter proximal

enhancers with an additional, not centered, enrichment for the promoter mark H3K4me3 and an

ATAC-seq profile showing several peaks of enrichment at the predicted enhancer. Nevertheless, we

do not see any promoter proximal enhancers when applying a more stringent cutoff (0.98) to the
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B)

CRUP - EP

C)

Figure 2: Performance of enhancer classifiers in murine ESC. A) ChromHMM emission probabilities
for mESC using 12 and 16 chromatin states, ranging from 0 (white) to 1 (dark blue). The state
that resembles enhancers best is marked as bold. B) Precision recall curves for CRUP-EP (light
blue lines) and REPTILE (light orange lines) trained on an mESC sample (mESC+) and tested on
ten randomly sampled independent test sets. The curves for the best performances are highlighted
in darker colors. Additionally, the performance results of different ChromHMM segmentations for
the same ten test sets are depicted (gray shapes). C) The median distance of predicted mESC
enhancers to the closest ATAC-seq peak for CRUP-EP (blue) and different settings of REPTILE.
The evaluated sets of predicted enhancers are based on decreasing probability cutoffs ∈ [1, 0.5].
REPTILE was trained on our FANTOM5-based training set and mESC+ (orange), on a p300-based
training set, mESC+ and intensity deviation (ID) features (dotted light orange), on a p300-based
training set using mESC ENCODE data (dashed yellow) and on a p300-based training set using
mESC ENCODE data and differentially methylated regions (DMRs, dashed green).
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probabilities (see Figure S6). To validate the spatial resolution of our predictions, we computed

the distance between each of our predicted enhancers and the closest accessible region measured

with ATAC-seq (see Section 5.5). By decreasing the probability cutoff from 1 to 0.5 in a step-wise

manner, we get an increasing set of enhancers for which we computed the median distance to the

closest ATAC-seq peak (Figure 2 C). The top-ranked enhancers show a very low median distance

of 118 bp, and for the top ∼ 10, 000 regions (probability threshold of 0.84) we still observe a very

good resolution with a median distance of 222 bp.

We further investigated the length and distribution of our enhancer predictions in the genome by

dividing the whole set into 9, 170 singletons and 7, 550 enhancer clusters covering multiple closely

placed enhancer peaks (see Section 5.8) for which two examples are depicted in Figure S7. We

compared each enhancer cluster to a list of 927 super-enhancers (SEs) which was recently published

by Novo et al. (2018). Over 96% (896) of the SEs overlap with our enhancer clusters and almost all

of them overlap with our complete non-clustered list of predicted peaks (924/42, 530). This shows

that CRUP-EP is well suited to capture enhancer regions of very heterogeneous lengths.

For further validation we used a probability cutoff of 0.5 which is implemented by default in CRUP-

EP to define enhancer regions.

2.3 Enhancer predictions are stable across different cell types and species

We trained our enhancer classification approach CRUP-EP for 12 different samples from different

cell types and species (summarized in Table S2) in the same fashion as described for mESC+ in

Section 2.2. We used each of the classifiers to predict active enhancers on the test sets of the

remaining 11 samples and calculate the AUC-PR, resulting in a 12 × 12 AUC-PR-matrix which is

summarized in Figure 3 A. Within one sample, training and test sets are independent following the

logic described in Section 5.8.

All classifiers perform well regardless of the test set they are applied to (AUC-PR ∈ [0.71, 0.95]).

Interestingly, the performances correlate much more with the test set than with the training set

origin, as can be observed in a vertical trend of the AUC-PR values in Figure 3 A. For instance, the

lowest AUC-PR value with a minimum of 0.71 is achieved when using one of the mouse hepatocyte

samples as a test set. On the other hand, when training the classifier on any mouse hepatocyte
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A) CRUP - EP B) REPTILE
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91 92 90 93 80 84 88 82 88 82 77 77

92 88 92 95 82 85 86 81 87 90 72 75

92 87 89 95 84 85 87 83 89 87 74 78

92 90 91 94 83 88 88 88 84 82 73 79

93 88 89 94 81 85 89 87 86 83 73 76

90 87 88 94 81 87 88 86 86 83 73 77

92 90 91 92 85 88 88 88 86 87 75 73

92 91 90 94 81 88 86 86 85 82 74 78

93 88 91 93 82 86 84 86 86 85 71 76

92 91 90 93 83 85 86 85 83 80 73 77

95 90 90 94 82 88 86 87 87 85 71 73

73 74 81 85 76 70 68 75 72 83 77 82

63 51 70 67 64 58 64 61 55 66 71 71

88 83 83 81 77 77 78 82 68 85 66 64

85 81 79 91 78 79 83 78 90 81 64 62

84 84 84 85 85 85 88 87 72 86 74 73

89 83 85 80 83 85 88 87 68 85 69 72

86 84 82 81 79 81 89 83 76 83 68 69
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87 86 82 93 78 81 86 80 88 85 71 71

92 88 92 82 84 86 87 86 78 87 66 62

92 91 91 86 79 83 83 86 82 87 63 63

92 90 90 90 83 84 87 86 83 82 68 66

Figure 3: Predictions across different cell types and species. Classifiers were trained on and applied
to samples from different cell types (hepatocyte, ESC, adipocyte, fibroblast) and species (mouse and
human). The results for CRUP-EP (A) and REPTILE (B) can be summarized in 12× 12 heatmaps
where each entry is shaded according to the computed AUC-PR (in percent). The origin of the
training data a)-l) can be found in the rows and the origin of the test sets a-l in the columns. The
diagonal shows the performance results on an independent test set within one sample. For instance,
using CRUP in mESC+ (training and test set highlighted in red) led to an AUC-PR= 0.94.

sample and testing on a high quality sample, such as mESC+, the performance is very good (AUC-

PR ∈ [0.93, 0.94]). Also, training and prediction within one sample (diagonal entries) rarely results

in the best prediction performance for the corresponding classifier. Overall, the best performances

across all cell types and species could be achieved when testing on the mESC+ sample (AUC-PR

∈ [0.92, 0.95]) and this will be used as the pre-trained classifier provided in CRUP-EP.

2.4 Comparison to other enhancer prediction methods

Here we compare our enhancer classification approach CRUP-EP to two other widely used meth-

ods, namely ChromHMM and REPTILE. First, we applied both methods to the undifferentiated

mESC+ sample and compared the results to the performance of CRUP-EP as described in Section

2.2. A more detailed description of the implementation of both methods can be found in Section

5.11.

We created three genome-wide segmentations utilizing ChromHMM with different numbers of chro-

matin states, K ∈ {8, 12, 16}, and defined enhancer states based on the parameters of the emission
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distribution (Figure 2 A and Figure S8). We validated the segmentation results based on K = 12 and

K = 16 and different combinations of possible enhancer states on ten test sets leading to strongly

varying true positive rates (TPRs) ∈ [0.2, 0.925] and precision values ∈ [0.36, 0.775] (Figure 2 B).

Compared to the CRUP-EP results, the performance of ChromHMM is less robust and less sta-

ble. Interestingly, the results cluster into two distinct groups, depending on whether the enhancer

definition is only based on high emission probabilities for H3K4me1 and H3K27ac (E3 for K = 12,

E1 for K = 16) or additionally on the promoter mark H3K4me3 (E2 for K = 12, E6 for K = 16).

These findings show that there is no state in the ChromHMM segmentations that uniquely describes

enhancers or promoters and illustrate the difficulties in separating these two regulatory elements.

When we trained REPTILE on our FANTOM5-based training set and six core HMs, we observe a

similar but slightly worse test set performance in mESC+ (AUC-PR ∈ [0.92, 0.94]) compared to our

classifier (AUC-PR ∈ [0.93, 0.96]), Figure 2 A, Figure S2). The differences in performance become

more prominent when comparing different training and test set combinations across cell types and

species as described in Section 2.3. For most of the combinations of different training and test sets,

our classifier (AUC-PR ∈ [0.71, 0.95]) outperforms REPTILE (AUC-PR ∈ [0.51, 0.93]) as depicted

in Figure 3. In addition, we used the REPTILE classifier close to its original setting, i.e., trained

on the mESC HM features and the p300-based enhancers as described in He et al. (2017), to make

predictions across the 12 samples. This lead to slightly worse results on the FANTOM5-based test

set than when trained on our data (Figure S9).

Next, we measured the median distance to the closest ATAC-seq peak (spatial resolution) of the

REPTILE predictions in mESC+ following the same procedure as in Section 2.2. To this end, we

applied REPTILE in four different training set and feature set combinations. For the training set,

we used either FANTOM5-based or p300-based enhancers, and for the feature sets we used our six

core HMs, the HM data and the differentially methylated regions (DMRs) from He et al. (2017) as

well as additional intensity deviation features (see Section 5.11 for more details). Only when in-

cluding DMRs, REPTILE achieves better results for more than the top 12, 500 predicted enhancers

compared to CRUP-EP (Figure 2 C). Without DMRs as additional features, CRUP-EP performs

similar to REPTILE when using p300-based enhancers as a training set. However, when applying

the same feature and training set combination, CRUP-EP outperforms REPTILE in terms of

spatial resolution .
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2.5 Enhancer probabilities enables identification of clusters of differen-

tial enhancers

We applied our approach to identify differential enhancers, CRUP-ED, between murine pluripotent

(mESC+) and differentiated retinoic acid (RA) induced stem cells (mESC−) as further described

in Section 5.9. To this end, enhancer prediction was performed on both samples using CRUP-

EP which was trained on mESC+ as described in Section 5.8. Dynamically changing enhancer

regions that are either active in mESC+ (cluster 1) or in the RA-induced mESC− sample (cluster 2)

were identified and further summarized as explained in Section 5.9. From the predicted condition-

specific enhancers, a total of 58 are only active in mESC+ (cluster 1) and 54 regions are predicted

to be active solely in mESC− (cluster 2). The differential assignment of predicted enhancers can

be further corroborated by ChIP-seq read count distributions (Figure 4 B, also shown for a single

differential region in Figure 4 C). The signal for the enhancer marks H3K27ac and H3K4me1 is

higher in mESC− (orange) compared to mESC+ (gray) for the displayed regions in cluster 2. The

same trend can also be observed when investigating chromatin accessibility for the two data sets

which becomes detectable via additional ATAC-seq experiments (right panel Figure 4 B, bottom

panel 4 C). To further evaluate the two differentially active enhancer clusters, we performed a motif

enrichment analysis for both groups as described in more detail in Section 5.12, taking the union

of all differential enhancers as the basis for the estimation of the background model. The complete

list of differentially enriched motifs is depicted in Figure S13.

With the functional annotation tool DAVID (Huang and Lempicki, 2009; Huang et al., 2009) we

could identify several transcription factors (TFs) that show a higher binding site enrichment in clus-

ter 1 and are part of signaling pathways regulating pluripotency of stem cells (OCT4, HNF1A).

In the same way, TFs that are more enriched in the second (RA-specific) cluster were found

to be linked to the functional categories ’differentiation’ and/or ’developmental protein’ (GLIS2,

ASCL1, INSM1, Myod1, Myog, NHLH1, NR2C2, PAX5). Furthermore, we found retinoic acid

receptors (heterodimers) in our list of differential transcription factor binding sites (TFBSs) for

cluster 2 (RARA::RXRG, RARA::RXRA, Pparg::RXRA, Gudas and Wagner (2011); Cunningham

and Duester (2015); Lin et al. (2011)).

Binding sites for two differentiation associated TFs with a very similar motif (Myog and Myod1;
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Figure 4: Differential enhancers in murine stem cell differentiation. A) Differential enhancer regions
of undifferentiated (mESC+) and differentiated (mESC−) cells, colored by their respective enhancer
probabilities. All regions can be divided into two clusters according to their differential activity
pattern. B) Density distributions of HM ChIP-seq and ATAC-seq read counts for all differential
enhancer regions for mESC+ (gray) and mESC− (orange) in cluster 2. C) The enhancer region
(chr4:136, 776, 101 − 136, 777, 600, highlighted in light gray) was predicted to be active in mESC−

(orange) but not in mESC+ (gray). This trend is also apparent by visual inspection of the enhancer
probabilities displayed in the top panel (’prediction’). The region is located within the intronic region
of the gene Ephb2 (blue) which was identified as regulator of stem and progenitor cell proliferation.
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pvalue ≤ 0.05, see Section 5.12) can be found in a differentially active enhancer region located in

an intron of the gene Ephb2 (Figure 4C ). Eph receptors constitute the largest subgroup of tyrosine

kinase receptors which were already identified as regulators of stem and progenitor cell proliferation

in mice (Chumley et al., 2007). Moreover, Ephb2 has also been reported to be regulated by retinoic

acid (RA) signaling in the chick retina (Sen et al., 2005).

2.6 Dynamic enhancers can be linked to putative target genes by a

greedy matching approach

By including RNA-seq experiments (see Section 5.3), we utilize CRUP-ET to link dynamically

changing enhancers to putative target genes (Section 5.10) using a ’greedy matching’ approach. To

do so, we calculate Pearson’s correlation coefficients between enhancer probabilities of a differential

enhancer region across all samples and normalized expression counts of genes that are located within

the same TAD. We further describe dynamically changing gene-enhancer pairs with a correlation

coefficient ≥ 0.9 as ’regulatory units’.

We applied CRUP-EP and CRUP-ED to predict enhancers and assign them to different condi-

tions in a time series experiment performed in mouse embryo midbrain, spanning eight time points

in total (Gorkin et al., 2017). This results in 3, 815 differentially active enhancers that could be

grouped and summarized into 379 different clusters using activity pattern as described in Section

5.9 (Figure 5 A).

With this we build 258 regulatory units describing putative dependencies between differential en-

hancer regions and target genes located within the same TADs (see Section 5.6 for a description

of the TAD calling software). Altogether, 61 of these differential enhancers are located within the

gene body of the correlated target gene, whereas the remaining 197 regions are located in gene-free

regions with a distance ranging from 75 bp to 1, 662, 424 bp to the correlated gene (see Figure 5

C). For about one third (64/197) of the intergenic regulatory units, the putative target gene is also

the nearest gene to the respective differential enhancer region. Hence, the interaction range of a

gene/promoter-enhancer pair is very heterogeneous and the nearest gene is not automatically the

best choice for a target.

The majority of the regulatory units consists of single dynamic enhancer elements which are inter-
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Figure 5: Differential enhancer-gene pairs in mouse embryo midbrain. A) Dynamic enhancer regions,
colored by their respective enhancer probability, for eight time points (day 10.5 to day 0 after
birth, AB) in mouse embryo midbrain. B) Enhancer probability tracks of the eight time points
(blue) within a topologically associated domain. Eight differential enhancers could be assigned
across all conditions (orange bars). Of these, enhancer probabilities of four regions (solid orange
boxes) highly correlate with the gene expression of Sall4 (bold black), a gene that regulates early
embryonic development (orange arcs). CaptureC-seq data (CC ) of mouse embryo midbrain (day
10.5) recapitulate these regulatory units (yellow histogram, yellow CC peak calls). C) Distribution
of the log10 transformed distance between dynamic enhancers and their correlated target genes
(orange) and the nearest gene (blue). D) Dynamic enhancers were filtered for regions that are
active in mouse embryo midbrain at day 10.5. The number of differential enhancers found in the
surrounding TAD of six genes that are active for mouse embryo midbrain at day 10.5 are displayed
in light blue. The overlap with called CaptureC-seq peaks is shown in orange.
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acting with only one putative target gene (134/258). A small proportion of the regulatory units

(55/258) rather describe genes that are correlated to multiple differential enhancers at once. Inter-

estingly, several target genes seem to be regulated by the same enhancer region (35/258) which was

also observed by van Arensbergen et al. (2014).

For four differentially active enhancers the probability patterns over all time points are highly

correlated with the dynamic gene expression of Sall4 (Figure 5 B), a known regulator in early em-

bryonic development (Zhang et al., 2006). We validate the results with CaptureC-seq experiments

as exemplified by Andrey et al. (2017). Here we use interaction counts of mouse embryo midbrain

CaptureC-seq (CC) data at day 10.5 (see Section 5.7 for details) with a viewpoint located at the

promoter region of Sall4. Four differentially active enhancer regions are in close proximity to the

three reported CC peaks and four additional regions could be only found with our CRUP frame-

work. These additionally regions also show a slight increase in the interaction profile via visual

inspection (yellow distribution, Figure 5 B). In total, we compared our predictions to Capture-C

peaks for six different viewpoints located in the promoter regions of genes which are active at day

10.5 in mouse embryo midbrain and found an overlap with reported CC peaks for three of them

(see Figure 5 D).

2.7 Regulatory units are well recapitulated by 3D chromatin struc-

tures

To further investigate the connection between predicted regulatory units and three-dimensional

physical interactions between regulatory elements, we analyzed ultra-deep coverage Hi-C maps. We

applied CRUP to a data set focusing on neural differentiation and cortical development in mice

(Bonev et al., 2017) comprising ChIP-seq, RNA-seq and Hi-C experiments across three developmen-

tal states: embryonic stem cells (ES), neural progenitor cells (NPC) and cortical neurons (CN).

We inferred 6, 855 regulatory units, which are clustered into 14 groups based on the activity pat-

tern (see Section 5.9), and compared our results to log2 observed/expected (O/E) normalized Hi-C

interaction matrices (see Section 5.6). Figure 6 shows a single regulatory unit, where the differen-

tial enhancer region is linked to the gene Glul. The Hi-C interaction frequencies across the three

developmental states confirm the observed trend. The dynamic enhancer is predicted to be active
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Figure 6: Differential regulatory units across mouse neural differentiation. A) Interaction matrices
(log O/E) of three HiC-seq experiments of mouse embryonic stem cells (ES ), neural progenitor
cells (NPC ) and cortical neurons (CN ). A differential regulatory unit is indicated with dashed gray
lines and a solid rectangle, showing the interaction of a differentially active enhancer region and
the correlated gene Glul (red). B) Differentially active enhancers were filtered for regions that are
only active in ES (left), only active in NPC (middle) and only active in CN (right), whereas the
respective active condition is highlighted in orange. For these regions, normalized (log O/E) HiC
interaction counts that overlap the predicted differential regulatory units were re-scaled to [0, 1],
such that the highest interaction count for each region is 1.
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Figure 7: Example region containing differential regulatory units in the context of rheumatoid
arthritis. Topologically associated domain and enhancer probabilities (’prediction’) of two healthy
mice (gray) and two mouse model for destructive arthritis (orange). One enhancer in this region
(blue bar) was found to be only active in the diseased samples. Using RNA-seq experiments of the
same samples (displayed raw counts are cut at a maximum of 500), six genes are higly correlated
(≥ 0.9, highlighted in blue) with the probabilities of the differential enhancer. Five of these genes
(Ccr1, Ccr1l1, Ccr3, Ccr2, Ccr5) belong to the CCR-gene cluster that is an important part in the
chemokine signaling pathway and also known to play a role in rheumatoid arthritis.

only in ES cells but not in the other two conditions, which is also visible by normalized spatial

interaction values. Next, we separately investigated clusters of regulatory units that are specific

for only one condition. After dividing each interaction count triplet by its maximum value, the

dynamic changes across the three conditions can be visualized for all regulatory units (Figure 6

B). These results not only confirm that cell type-specific gene-enhancer contacts are established

concomitant with gene expression as already stated by Bonev et al. (2017), but they also show

that dynamic enhancer activity goes hand in hand with physical changes in the three dimensional

chromatin organization.

2.8 Analysis of regulatory units in the context of a

rheumatoid arthritis model

So far we evaluated our proposed framework CRUP to create condition-specific regulatory units

on experiments focusing on developmental changes. Next, we apply our framework CRUP to

a complex disease study which is part of the German Epigenome Program (DEEP, 2017), with

the aim to identify the differences between two healthy mice and two mice which are affected by

destructive rheumatoid arthritis (’RA-like’, see Section 5.1). Rheumatoid arthritis, an autoimmune
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Table 1: KEGG pathway analysis results. Shown are the top five KEGG pathways over-
represented in the putative target genes which are highly correlated with enhancer regions solely
active in the samples with destructive arthritis (’Genes’ ). The list is sorted by the p-value for
over-representation (’N’ is the number of all genes in the respective pathways).

Pathway ID Pathway N #Genes p-value
path:mmu04062 Chemokine signaling pathway 27 13 1.655229e-06
path:mmu04666 Fc gamma R-mediated phagocytosis 17 9 2.760813e-05
path:mmu04625 C-type lectin receptor signaling pathway 23 10 8.401368e-05
path:mmu04650 Natural killer cell mediated cytotoxicity 14 7 3.649052e-04
path:mmu05167 Kaposi sarcoma-associated herpesvirus infection 28 10 5.757081e-04

inflammatory disease, affects approximately 0.5 − 1% of the human population and can lead to

permanent joint destruction (Alamanos and Drosos, 2015).

We identified 514 differential enhancers and 462 differential regulatory units, of which about 60%

(279) describe novel promoter/gene-enhancer pair activity that can only be found in the affected

mice. We performed a motif analysis on all differential enhancer regions as described in Section

5.12. The TF motifs for KLF4, EGR2, IRF1 and FLI1 show higher enrichment in the cluster which

contains enhancers that are solely active in the RA-like samples, and were already shown to be

connected to rheumatoid athritis (Myouzen et al., 2010; Luo et al., 2016; Salem et al., 2014; Sato

et al., 2014). A list of all enriched motifs is given in Figure S14.

Additionally, we performed a pathway analysis on all putative target genes that are correlated

with differentially active enhancers in the affected mice using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa and Goto, 2000; Kanehisa et al., 2000, 2017), a curated database

of molecular pathways and disease signatures (see Section 5.13 for details). Genes in the top five

resulting KEGG pathways (see Table 1) have been previously associated with rheumatoid arthritis

(Szekanecz et al., 2010; Vogelpoel et al., 2015; Chiffoleau, 2018; French and Yokoyama, 2004; Bergler-

Czop et al., 2016). A complete list of all gene-enhancer pairs and their associated top five KEGG

pathway can be found in Table S6. A whole differential regulatory hub involving the CCR-gene

cluster, which is part of the most significant pathway (Chemokine signaling pathway), is shown in

Figure 7. Interestingly, the TF motif IRF1 is enriched in the differentially active enhancer which is

correlated with all genes in the CCR-gene cluster. Interferon regulatory factor 1 (IRF1) is not only

connected to rheumatoid athritis (Salem et al., 2014) but is also a part of the C-type lectin receptor

signaling pathway which we also found to be over-represented in out disease-related target gene list
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(see Table 1).

In summary, our framework CRUP is well suited to detect reliable candidate enhancer regions

that act dynamically in different disease states as well as to link these enhancers to differentially

expressed target genes building disease-associated regulatory units.
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3 Discussion

In this work we described the three-step framework CRUP (Condition-specific Regulatory Units

Prediction) to identify enhancer regions in a genome-wide manner, assign the predicted enhancers

to different conditions and subsequently correlate the differential enhancers to putative target genes

within their topologically associated domain to build condition-specific regulatory units.

We first showed that our random forest based enhancer classifier CRUP-EP can be reliably applied

across different cell types and species without the need for re-training, solely depending on six core

HMs. By integrating known structural characteristics of enhancer regions, namely an open region

flanked by nucleosomes, into our feature modeling, our enhancer classifier accounts for the length of

accessible chromatin and the spatial resolution of enhancer predictions. Our results show that the

prediction performance of CRUP-EP across different cell types and species depends rather on the

test than on the training data. We speculate that differences in ChIP-seq quality (see Figure S1) for

certain training regions can be tolerated during the learning process and are not crucial for finding

enhancer-specific HM pattern. However, for test regions, poor ChIP-seq signals very likely result in

a decrease of performance. Another factor is the quality of the active enhancers which we defined

based on the FANTOM5 database (see Table S3). While some weak or even mislabeled enhancers

(false positives) in the training set still allow for a good enhancer representation by the classifier

in terms of HM signals, mislabeled enhancers in the test set lead to false negatives predictions and

thus directly reduce the recall results. Further, the highest number of suitable FANTOM5 cell lines

for a confident enhancer definition was available for the mESC data set, which shows the best test

set performance for almost all classifiers.

We further showed that our enhancer classification approach outperforms the unsupervised genome-

segmentation tool ChromHMM and is comparable to another state-of-the-art random-forest based

approach, REPTILE. In terms of transferability across different cell types and species, our classifica-

tion approach even outperforms REPTILE. For this comparison, REPTILE was applied excluding

differentially methylated regions (DMRs), which was part of the originally proposed feature set, as

this was not available for all cell lines used in this study. Including DMRs led to an increase in spatial

resolution which, nevertheless, remained below the results achieved with our classifier for the top

12, 500 predicted enhancers. Although the basic concept of the two supervised methods is similar, it
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is beneficial to include multiple windows in the feature set as we could show in our cross-validation,

and to split the enhancer prediction into two separate tasks. This becomes especially visible when

comparing the spatial resolution of the two classifiers based on the exact same training and feature

setting. Another reason for the varying performance results across cell types/species could lie in

the different normalization strategies. REPTILE does not offer an integrated normalization, but

instead gives recommendations how to prepare the input data which we followed in our analysis.

We advocate that a quantile normalization to the corresponding distribution of the data set used

for training is crucial for a reliable enhancer prediction across cell types and species, and therefore

incorporated this in our framework.

In a second step, CRUP-ED, we assign enhancers to different conditions using a permutation test

on the enhancer probabilities obtained by the first module of CRUP. This approach can be applied

to more than two conditions as the test is performed in a pair-wise manner. Using the resulting

p-values we are able to create an activity pattern for each single bin which can then be used to com-

bine and cluster all differentially active enhancers. We demonstrate that the assignment of clusters

across different conditions is in good agreement with HM counts as well as with independent ATAC-

seq data. Limitations arising from the raw data and from the enhancer prediction approach are

consequently also reflected in the predicted differential enhancer regions. For instance, due to poor

quality of individual HM ChIP-seq experiments the enhancer predictions might vary across samples

in one condition and could therefore influence the results in the permutation test. Increasing the

number of replicates could be one way to overcome this drawback since the implemented weighted

difference between two conditions benefits from an enhanced sample size.

Lastly, we utilize CRUP-ET to integrate further genomic information, obtained from RNA-seq

and Hi-C experiments, to link condition-specific enhancers to putative target genes via a ’greedy

matching’ approach. To this end, we compute the correlation between normalized gene expression

counts and enhancer probability values across all samples within the same TAD and put a strict

threshold on the results to build high confidence regulatory units. Next, we evaluate our results

by comparing regulatory units with Capture-C and Hi-C experiments. We could show that our

inferred condition-specific gene-enhancer pairs are well recapitulated by physical dynamics in chro-

matin structures. To reduce the search space of interacting promoter/gene-enhancer pairs, we use

TADs as a more sophisticated approach to form regulatory units rather than simply applying a
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distance based window. We show that the range in which differential enhancers and putative target

genes are connected varies and that the nearest gene is often not the gene with the highest corre-

lation. The resolution of Hi-C based experiments is still not on a single base pair level and might

lead to wrongly associated promoter/gene-enhancer pairs, especially because the approach is also

highly dependent on the performance of the TAD calling algorithm. We are utilizing TADs from

murine stem cell experiments, to reduce the search space for detecting regulatory units for all the

presented examples. We argue that these structures are highly stable across cell types and conserved

in related species as observed in recent studies (Dixon et al., 2012; Rao et al., 2014). However, it was

also shown, that structural differences between conditions occur, especially on a low scale sub-TAD

level (Bonev et al., 2017). Furthermore, the three dimensional landscape may change dramatically

when structural variations disrupt the boundary structure as for example shown by Lupianez et al.

(2015). In the future, condition specific Hi-C experiments could further help the presented approach

in linking differentially active enhancers to putative target genes.

The complete framework was further applied to a complex disease study to identify differential

regulatory units associated with rheumatoid arthritis. By applying motif analysis to the resulting

differentially active enhancers, we were able to connect several regions to TF motifs that are linked

to the disease. In combination with standard KEGG pathway analysis on the putative target genes

we could show that our framework is well suited to identify candidate regulatory regions that behave

differently depending on the disease state. To further validate these regions, additional follow-up

experiments could complement the presented analysis.

The input to CRUP consists of a number of HM ChIP-seq experiments, each of which could in

principle be analyzed by eye. Interpreting the combination of experimental tracks and, worse, many

tracks under many conditions is, however, beyond the capacity of a human brain. As a result, many

epigenetic experiments in the end get exploited only for studying the vicinity of a particular gene

and do not serve the purpose of an unbiased, whole-genome inquiry. We thus see our method as an

information integrator that reduces the diverse layers of information into an interpretable predictor,

in turn allowing to rank signals across the entire genome.
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4 Conclusion

In summary, we presented the three-step framework CRUP, Condition-specific Regulatory Units

Predictions, to identify and assign differentially active enhancer regions in different states and link

them to putative target genes within the same topologically associated domain.

The presented approach is user friendly as it aims to overcome the time consuming difficulties

when comparing single read count tracks for several features and conditions. The framework is

implemented in R and can be executed by solely providing mapped read counts for ChIP-seq and

RNA-seq experiments.

Our pre-trained classifier can be used without the need of re-training and also outperforms existing

methods especially when applied across various tissues and species. The resulting dynamically

changing enhancer-gene pairs are in good agreement with three-dimensional interactions and can

be used to further complement studies that aim to unravel dynamic epigenetic behaviour across

different conditions.
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5 Materials and Methods

5.1 Cell culture and isolation

Mouse embryonic stem cells:

E14 mouse embryonic stem cells (mESCs) were cultured and routinely passaged every two days in

ES medium plus leukemia inhibitory factor (LIF) in order to maintain the pluripotent state of the

cells (Smith et al. 1988, Pease et al. 1990). To exit from pluripotency and push the cells towards

differentiation, LIF was withdrawn and retinoic acid (RA) was added to the medium for a short

pulse of 4h.

All experimental data related to these samples are accessible via GEO (GEO:GSE120376).

Mouse synovial fibroblasts:

Murine SF (Synoial Fibroblasts) were isolated by enzymatic digestion from hind paws of 12 week

old hTNFtg (reactive arthritis, strain Tg197 overexpressing human TNF) and wildtype (healthy

control) as described before (Wehmeyer et al., 2016; Keffer et al., 1991).

Mouse adipocytes:

Samples for adipocytes were isolated by collagenase treatment for 5 minutes followed by 5 minuts

of collagenase inactivation as described before (Arrigoni et al., 2016). After centrifugation the fat

layer was collected.

Mouse hepatocytes:

Primary mouse hepatocytes were obtained from two female mice (C57BL/6J x DBA/2 background)

at the age of nine weeks. The isolation of primary mouse hepatocytes was performed by a two-step

EDTA/collagenase perfusion technique as described by Godoy et al. (2013).

Human hepatocytes:

Primary human hepatocytes were obtained from three different female donors (age 28-70 years)

undergoing surgery due to primary or secondary liver tumors. Hepatocytes were isolated from

healthy liver tissue remaining from liver resection as described in Godoy et al. (2013). Informed

consent of the patients for the use of tissue for research purposes was obtained and experiments

were approved by the local ethical committees.
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5.2 Processing of histone modification ChIP-seq data

For all biological samples presented in this study, ChIP against six core HMs, H3K27ac, H3K27me3,

H3K4me1, H3K4me3, H3K36me3 and H3K9me3, was performed. As a control served the sheared

chromatin without antibody (Input). We utilized the tool plotFingerprint which is part of the

deepTools project (Ramirez et al., 2014) to assess quality metrics for all ChIP-seq experiments.

Where we need to visualize read count enrichments in particular genomic regions, we employ the

tool plotHeatmap which is also part of the deepTools project (Ramirez et al., 2014).

Mouse embryonic stem cells:

6× 105 low passage (< 10) E14 cells were cultivated for 48h in regular ES medium containing LIF.

4h prior to cross-link cells were treated with LIF or RA. Sequencing libraries were prepared and the

resulting DNA fragments were paired-end 50bp sequenced on a Illumina HiSeq 2500 device. Raw

sequencing reads were subsequently aligned to the genome assembly ’GRCm38’ with STAR (Dobin

et al., 2012) and duplicates where removed using Picard tools (Wysoker et al., 2013).

Mouse synovial fibroblasts:

ChIP-seq from 2 × 106 cells was carried out as described before (Arrigoni et al., 2016). Resulting

DNA fragments were paired-end 50bp sequenced on a Illumina HiSeq 2500 device and raw sequencing

reads were aligned to the genome assembly ’GRCm38’ using BWA-MEM (Li and Durbin, 2009; Li,

2013) and duplicates where removed using Picard tools (Wysoker et al., 2013).

Mouse adipocytes:

For mouse adipocytes chromatin from fixed cells has been extracted and sonicated for 15 minutes

using Covaris S220 sonicator. Resulting DNA fragments were paired-end 50 bp sequenced on a

Illumina HiSeq HiSeq 2500 device. Raw sequencing reads were aligned to the genome assembly

’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using

Picard tools (Wysoker et al., 2013).

Mouse hepatocytes:

ChIP-seq was performed using 1 × 106 primary mouse hepatocytes as was previously described

(Kinkley et al., 2016) with minor modifications. All six ChIP and input libraries from each sample

were then pooled and paired-end sequenced on an HiSeq 2500 device. Raw sequencing reads were
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aligned to the genome assembly ’GRCm38’ with STAR (Dobin et al., 2012) and duplicates where

removed using Picard tools (Wysoker et al., 2013).

Human hepatocytes:

ChIP-seq was performed using 1 × 106 primary human hepatocytes as was previously described

(Kinkley et al., 2016) with minor modifications. All six ChIP and input libraries from each sample

were then pooled and paired-end sequenced on an HiSeq 2500 device. Raw sequencing reads were

aligned to the genome assembly ’hs37d5’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and

duplicates where removed using Picard tools (Wysoker et al., 2013).

Mouse embryo midbrain:

Raw reads from ChIP-seq experiments were downloaded from GEO (GEO:GSE88517, Gorkin et al.

(2017)) and aligned to the genome assembly ’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li,

2013) and duplicates where removed using Picard tools (Wysoker et al., 2013).

Samples in the context of mouse neural differentiation:

Raw data from RNA-seq for the three in vitro generated murine cell types ES, NPC and CN were

downloaded via GEO (GEO:GSE96107, Bonev et al. (2017)) and aligned to the genome assembly

’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using

Picard tools (Wysoker et al., 2013).

5.3 Processing of RNA-seq experiments

Mouse embryonic stem cells:

2 × 105 low passage (< 10) E14 cells were plated and cultivated for 48h in regular ES medium

containing LIF. 4h prior to harvest, medium was exchanged and cells were treated with LIF or RA.

Cells were harvested and three biological triplicates were subjected to RNA extraction. Sequencing

libraries were generated from total mRNA input and high-throughput sequencing was performed

on an Illumina HiSeq 2500 device generating resulting in 50bp paired-end reads. Raw reads were

subsequently mapped to the mouse genome build ’GRCm38’ using BWA-MEM (Li and Durbin,

2009; Li, 2013).

Mouse synovial fibroblasts:
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Long RNA libraries were prepared from total mRNA input and sequenced on an Illumina HiSeq 2500

device resulting in 50bp and 100bp long paired-end reads. Raw reads were subsequently mapped

with TopHat2 (Kim et al., 2013) to the mouse genome build ’GRCm38’.

Mouse adipocytes:

RNA isolation for cells was performed using 1 ml TRIzol per sample followed by Isopropyl alco-

hol/Ethanol precipitation. Sequencing libraries were generated from total mRNA input and high-

throughput sequencing was performed on an Illumina HiSeq 2500 device generating resulting in

100bp paired-end reads. Raw reads were mapped with TopHat2 (Kim et al., 2013) to the mouse

genome build ’GRCm38’

Mouse hepatocytes:

RNA was extracted from ∼ 5× 106 hepatocytes homogenized in 1 mL Trizol. Sequencing libraries

were generated from total mRNA input using TruSeq v3 Kit (Illumina) according to manufacturers

instructions and high-throughput sequencing was performed on an Illumina HiSeq 2500 device gen-

erating resulting in 100bp paired-end reads. Raw reads were mapped to the mouse genome build

’GRCm38’ using BWA-MEM (Li and Durbin, 2009; Li, 2013).

Human hepatocytes:

RNA was extracted from ∼ 5× 106 hepatocytes homogenized in 1 mL Trizol. Sequencing libraries

were generated from total mRNA input using TruSeq v3 Kit (Illumina) according to manufactur-

ers instructions and high-throughput sequencing was performed on an Illumina HiSeq 2500 device

generating resulting in 100bp paired-end reads. Raw reads were mapped with TopHat2 (Kim et al.,

2013) to the genome build ’hs37d5’.

Mouse embryo midbrain:

Raw reads from RNA-seq experiments were downloaded from GEO (GEO:GSE88517, Gorkin et al.

(2017)) and aligned to the genome assembly ’GRCm38’ with STAR (Dobin et al., 2012).

Samples in the context of mouse neural differentiation:

Raw data from RNA-seq for the three in vitro generated murine cell types ES, NPC and CN were

downloaded via GEO (GEO:GSE96107, Bonev et al. (2017)) and aligned to the genome assembly

’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li, 2013).
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5.4 Processing of DNase-seq experiments

To compare open chromatin sites to HM signals, read counts from DNase-seq experiments were

summarized for adjacent 100bp bins using the R package bamProfile (Mammana and Helmuth,

2016). Read count enrichments are visualized with the plotHeatmap funciton implemented in the

software package deepTools (Ramirez et al., 2014).

Mouse embryonic stem cells:

Raw reads from DNase-seq experiments from mESCs (E14, Embryonic day 0) were downloaded from

GEO (accession Nr.:GSM1014154) and aligned to the genome assembly ’GRCm38’ with BWA-MEM

(Li and Durbin, 2009; Li, 2013). Duplicates were further removed using Picard tools (Wysoker et al.,

2013).

Mouse synovial fibroblasts:

5 − 7 × 106 nuclei were digested with DNaseI in 5 different dilutions as described before (Schmidt

et al., 2016). Raw sequencing reads were aligned to the genome assembly ’GRCm38’ with BWA-

MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using Picard tools (Wysoker

et al., 2013).

Mouse adipocytes:

Nuclei extracted from ∼ 10 × 106 nuclei by treatment with IGEPAL were digested with different

concentrations of DNaseI as described before (Schmidt et al., 2016) and kept at 4◦C until further

processing. Sequencing libraries were prepared and sequenced on an Illumina HiSeq 2500 device

resulting in 100bp long paired-end reads. Raw sequencing reads were aligned to the genome assembly

’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using

Picard tools (Wysoker et al., 2013).

Mouse hepatocytes:

Nuclei extracted from ∼ 10 × 106 nuclei by treatment with IGEPAL were digested with different

concentrations of DNaseI as described before (Schmidt et al., 2016) and kept at 4◦C until further

processing. Sequencing libraries were prepared and sequenced on an Illumina HiSeq 2500 device

resulting in 100bp long paired-end reads. Raw sequencing reads were aligned to the genome assembly

’GRCm38’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/501601doi: bioRxiv preprint 

https://doi.org/10.1101/501601
http://creativecommons.org/licenses/by-nc-nd/4.0/


Picard tools (Wysoker et al., 2013).

Human hepatocytes:

Nuclei extracted from ∼ 10 × 106 nuclei by treatment with IGEPAL were digested with different

concentrations of DNaseI as described before (Schmidt et al., 2016) and kept at 4◦C until further

processing. Sequencing libraries were prepared and sequenced on an Illumina HiSeq 2500 device

resulting in 100bp long paired-end reads. Raw sequencing reads were aligned to the genome assembly

’hs37d5’ with BWA-MEM (Li and Durbin, 2009; Li, 2013) and duplicates where removed using

Picard tools (Wysoker et al., 2013).

5.5 Processing of ATAC-seq experiments from mESC

2×105 low passage (< 10) E14 cells were cultivated for 48h in regular ES medium containing LIF. 4h

prior to harvest, cells were treated with LIF or RA (1 M). 75000 cells per treatment were subjected to

transposition reaction and PCR amplification of accessible regions by Omni-ATAC-seq as described

previously by Corces et al. (2017). Sequencing libraries were constructed and DNA fragments were

paired-end 50bp sequenced on a Illumina HiSeq 4000 device. Raw reads were subsequently aligned

to the mouse genome build GRCm38m using BWA-MEM (Li and Durbin, 2009; Li, 2013) and

duplicates were removed upon filtering using SAMtools (Li et al., 2009). ATAC-seq peaks were

idenitfied using MACS2 (Zhang et al., 2008).

5.6 Processing of HiC-seq experiments

The Juicertools command ’dump’ (Durand et al., 2016) was used to extract data from Hi-C archives

associated with three in vitro generated murine cell types ES, NPC and CN (Bonev et al., 2017):

• http://hicfiles.s3.amazonaws.com/external/bonev/ESmapq30.hic

• http://hicfiles.s3.amazonaws.com/external/bonev/NPCmapq30.hic

• http://hicfiles.s3.amazonaws.com/external/bonev/CNmapq30.hic

With this each matrix is Knight-Ruiz (KR) normalized (Knight and Ruiz, 2013) at 10kb resolution

and the observed/expected (O/E) ratio is computed. For visualization O/E interaction maps were
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further log2 converted and negative values were set to 0. Additionally, topologically associated

domains (TADs) were identified by utilizing TopDom (Shin et al., 2016) on 25kb binned and KR

normalized matrix based on murine stem cells (ES) using a window of 750 kb (30 × 25kb) for the

TopDom algorithm. These regions were used to reduce the search space for promoter/gene-enhancer

interactions.

5.7 Filtering of Capture-C experiments for mouse embryo midbrain

Capture-C-seq profiles from mouse embryo midbrain (Day 10.5) were downloaded from GEO

(GEO:GSE84795, Andrey et al. (2017)) and coordinates were transferred to the mouse genome build

’GRCm38’ utilizing the function liftOver which is implemented in the R package rtracklayer. We

further filtered the provided list of chromatin states that were assigned to each promoter by EpiCseq

(Mammana and Chung, 2015) for the state’Active A’, which resembles active promoters. The result

was further filtered for genes present in any differential regulatory unit that was found across all

conditions in mouse embryo midbrain (Gorkin et al., 2017), resulting in six genes.

5.8 CRUP-EP: Enhancer Prediction

Preparation and normalization of HM counts

Histone modification count signals are summarized for adjacent non-overlapping 100 bp bins utilizing

the R package bamProfile (Mammana and Helmuth, 2016), following a log2 input normalization

(with pseudo count of 1) of the raw counts. We compute the log2 ratio (also with pseudo count of

1) between H3K4me1 and H3K4me3 after shifting the distribution of their input-normalized count

values to ≥ 0.

Before making predictions on a sample with our classifier, the input-normalized count values are

quantile normalized to the corresponding distributions of the data used for training. This is done

with the normalize.quantiles.target function of the R package preprocessCore (Bolstad, 2018).

Definition of high confidence enhancer regions

One specific hallmark for enhancer activity was found to be the initiation of RNAPII transcription,

which was used by the FANTOM5 project (Andersson et al., 2014). Short RNA-seq and CAGE
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was applied to a variety of different cell types and tissues to detect bidirectional capped transcripts.

CAGE count data were downloaded for mouse adipocyte cells, mouse embryonic stem cells, mouse

fibroblast cells as well as human and mouse liver cells. Depending on the number of available repli-

cates for each cell line we chose different cutoffs for the CAGE counts to define a first set of putative

enhancers according to the summary in Table S3. To get our final high-confidence enhancer set

we centered the putative FANTOM5 enhancers based on DNase-seq peaks and discarded enhancers

without any overlap with DNase-seq peaks as summarized in Table S4. To convert the genome

coordinates of the enhancer regions given by the FANTOM5 project from genome build GRCm37

to GRCm38 we applied the Batch Coordinate Conversion tool liftOver from the UCSC Genome

Browser Utilities (Hinrichs et al., 2006).

Definition of active and inactive promoter regions

For murine ESC, adipocytes, liver and fibroblast cells, and for human liver cells we computed FPKM

gene expression values from RNA-seq data as described in Section 5.3.

Based on the gene annotations from the Ensembl data base (GRCh37.70 and GRCm38.90), we

defined a gene with an FPKM value greater than two as active and a gene with FPKM value of zero

as inactive (0 < FPKM <= 1 was not used for training). In case replicates were available, all of the

replicates had to fulfill the chosen FPKM cutoff to be accounted to the one or the other class. An

exemplary distribution of FPKM values, here for mESC+, can be seen in Figure S4. Building up

on this, we then defined an inactive promoter as the 100 bp bin overlapping the TSS of an inactive

gene. An active promoter is defined as the 100 bp bin having an overlap with the TSS of an active

gene as well as with a DNase-seq peak in the corresponding cell type. An overview can be found in

Table S5.

Enhancer prediction based on random forests

We use a combination of two binary random forest classifier for our enhancer prediction, where both

consist of M = 70 decision trees. The first classifier (classifier 1) learns the difference between active

genomic regions (active promoters, enhancers) and inactive genomic regions (inactive promoters,

remaining intra- and intergenic regions). The second one (classifier 2) learns to distinguish enhancers

from active promoters, such that it gives the probability of a region to be an enhancer assuming it is

an active region. The final enhancer probability assigned to each 100bp bin, binx, in the fragmented
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genome is the product of both classifiers according to Bayes’ theorem:

P (binx = active enhancer) = P (binx = active)︸ ︷︷ ︸
classifier 1

·P (binx = active enhancer | binx = active)︸ ︷︷ ︸
classifier 2

.

In the two distinct training sets for classifier 1 and 2 we emulate a typical genome composition as

reported, e.g., in Kellis et al. (2014). The training set of classifier 1 is composed of 10% enhancers,

2% active promoters, 2% inactive promoters, 6% intragenic and 80% intergenic regions, summing

up to 1000 regions in total. Classifier 2 is trained on 83.3̄% enhancers and 16.6̄% active promoters.

Here we keep the same enhancer/promoter ratio and total numbers than in the first training set,

i.e., we always use 120 regions selected according to these rules. Overall, this also serves the purpose

of adequately reflecting the imbalance between enhancers and non-enhancer regions in the genome.

The feature set, which is also chosen individually for the two classifiers, is derived from summed and

normalized ChIP-seq read counts for the six core HMs. For classifier 1, we consider only H3K27ac,

H3K27me3 and H3K9me3, whereas for classifier 2 we consider all six core HMs as well as the

H3K4me1/me3 ratio.

Since we want to represent the physical structure of an enhancer (nucleosome - accessible region -

nucleosome) we divide a large window of 1100 bps into 11 non-overlapping bins, i.e., the center bin

(binx) plus N = 5 bins on either side, resulting in a total number of 11 · 3 = 33 features for classifier

1 and 11 · 7 = 77 features for classifier 2.

The number of neighboring bins N in the feature set, as well as the number of decision trees M in

the random forest are parameters that we optimized according to the description in the following

section.

Parameter tuning

We used 5-fold cross-validation over 10 different training seeds to find the optimal number of decision

trees M ∈ {10, 20, . . . , 100} and neighboring windows N ∈ {0, 1, . . . , 10}. Each of the 10 training

sets used is chosen as described in the previous paragraph. Based on the AUC-PR (area under the

PR curve) performances (see Figure S12), we fixed the combination of N = 5 neighboring windows

and M = 70 trees for both classifiers. With the optimized parameter choice we trained classifier 1

and 2 on two final randomly sampled training sets which can have a possible overlap with the 10

training sets used for parameter tuning. The parameter setting of N = 5 and M = 70 is used in all
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our analyses.

Enhancer peak calling and building of enhancer clusters

Genome-wide predictions result in enhancer probability values for each 100 bp bin in the genome

which are further summarized to define enhancer peaks. To this end, all bins with a probability

≥ 0.5 are sorted in descending order according to their probability value and expanded by five bins

up and downstream resulting in a window length of 1100 bps. By going through the sorted list of

high probability regions, starting with the highest probability, all windows that overlap the current

window are discarded. This results in a sorted list of non-overlapping enhancer peaks of length 1100

bp.

Enhancer peaks are further summarized into enhancer clusters solely considering the distance be-

tween them (maximum distance of 12.5 kb), which partly reflects the definition of super-enhancers

as stated by Whyte et al. (2013) and Love et al. (2013).

5.9 CRUP-ED: Enhancer Dynamics

Statistical inference of differences between two conditions

Enhancer probabilities for all 100 bp bins and samples are collected in a matrix A = (Axi) where Axi

corresponds to binx in sample i. In the following we denote by AC1 = (Axi)i∈C1 the sub-matrix of A

with columns corresponding to samples from condition C1 (applies equally for condition C2). As the

number of samples in each group is usually very small, we perform a non-parametric permutation

test on the data set to compute an empirical distribution. This approach was already introduced

in earlier studies, as for example by Tusher et al. (2001). First, all enhancer probabilities Axi are

independently shuffled for each sample i. The t-test statistic Tx is then calculated for each binx to

obtain the weighted difference between the two conditions:

Tx =
µC1 − µC2 − w0

S4
, (1)

whereas µC1 = µ(AxC1) and µC2 = µ(AxC2) are the respective group means for binx and w0 defines

the minimum difference between them (here: w0 = 0.5). S4 is the pooled standard deviation based
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Figure 8: Assignment of activity pattern for the comparison of two conditions. For the differential
comparison of enhancers in two conditions, C1 and C2, the activity pattern assigned to binx depends
on the empirical p-values of binx and two neighboring bins to both sides (binx−1, binx−2, binx+1,
binx+2). If one of the five empirical p-values exceeds the cutoff P ∗, binx does not represent a differen-
tial enhancer between C1 and C2, and is assigned the activity pattern {Tx(C1, C2) = 0, Tx(C2, C1) =
0} = {0, 0}. If all five bins show an empirical p-value below P ∗ and the group mean of C1 is greater
than the group mean of C2 (µC1 > µC2 , binx represents an active enhancer in C1 and is assigned
the activity pattern {Tx(C1, C2) = 1, Tx(C2, C1) = 0} = {1, 0}. In the opposite case (µC2 > µC1),
binx is active in C2 with an activity pattern of {Tx(C1, C2) = 0, Tx(C2, C1) = 1} = {0, 1}.

on the group variances σ2
C1 = σ2(AxC1) and σ2

C2 = σ2(AxC2):

S2
4 =

(|C1| − 1)σ2
C1 + (|C2| − 1)σ2

C2

|C1|+ |C2| − 2
·
( 1

|C1|
+

1

|C2|

)
(2)

Empirical p-values for each binx, Px = Px(C1, C2), are obtained by counting the values Tx in the

sampling distribution that exceed the true weighted difference T true
x , which means that the lowest

possible p-value is 1/(1 + length of genome). By setting a cut-off P ∗ (default: 0.01) to the obtained

Px the genome is reduced to high confidence enhancer regions of length 100 bp that significantly

differ in probabilities between two distinguishable conditions. Note that S4 is set to a small number

≈ 0 if |C1| = 1 and |C2| = 1 to avoid division by zero.

Clustering of differential enhancers using ’activity pattern’

Significant differential enhancer regions of length 100 bp are obtained for all pairwise comparisons

between any two conditions {C1, C2} ∈ C as described in the previous paragraph.

n the following the indicator function T (C1, C2) = Tx(C1, C2) denotes if binx is an active enhancer
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in condition C1 but not in condition C2:

T (C1, C2) =


1, if Px−2:x+2(C1, C2) ≤ P ∗ and (µC1 − µC2) > 0

0, otherwise

(3)

Note that additional to the p-value assigned to binx, the p-values of two additional bins up and

downstream of binx are required to be smaller than P ∗. In the following binx is renamed as

bin{T (C1,C2)=1, T (C2,C1)=0}
x = bin{1,0}x if the empirical p-values Px−2:x+2(C1, C2) ≤ P ∗ and if the differ-

ence in the group means (µC1 − µC2) > 0. The region will be denoted as bin{0,1}x if T (C2, C1) = 1

and as bin{0,0}x if Px−2:x+2(C1, C2) > P ∗. With this, each differential enhancer binx can be allocated

to a unique ’activity pattern’, either {1, 0}, {0, 1} or {0, 0} (see Figure 8 for an overview).

This notation expands as the number of conditions, |C|, increases. For example, if |C| = 3, the

number of possible comparisons is
(|C|

2

)
= 3, namely (C1, C2), (C1, C3) and (C2, C3). As each tu-

pel can be assigned to three activity pattern, the total number of possible outcomes sums up to

3(|C|
2 )−1 = 26, whereas the pattern {0, 0, 0, 0, 0, 0} does not include any differential information and

can be discarded from the list.

The total range of all binx that are associated with the same activity pattern is summarized within

a 2 kb distance whereas the binx with the lowest p-value Px is stored as peak. If regions with

different activity patterns are overlapping, these are combined and labeled with the activity pattern

according to the lowest peak p-value.

5.10 CRUP-ET: Enhancer Targets

Regulatory units by ’greedy matching’

Differential enhancer regions for any set of conditions C are obtained as described and clustered as

described in Section 5.9. Gene expression counts per exon are obtained from RNA-seq experiments

of the same conditions (see Section 5.3) using the function summarizeOverlaps implemented in the

R package GenomicAlignments (Lawrence et al. (2013), v1.14.2). Summarized counts per gene are

variance stabilized across the mean using the function vst implemented in the R package DESeq2

(Love et al. (2014), v1.18.1).
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All genes and differential enhancer regions are gathered within the same topologically associated

domain (see Section 5.6). To find regulatory units of gene-enhancer pairs that behave similarly

across conditions we apply a ’greedy matching’ strategy. For this, Pearson correlation values are

calculated between enhancer probability values and normalized gene expression counts across all

conditions. All enhancer-gene pairs with a correlation ≥ 0.9 are considered as putative regulatory

units and are reported.

5.11 Comparison to other enhancer predicting methods

Application of ChromHMM

ChromHMM (Kellis et al., 2014) was applied to six core HMs to generate three genome-wide seg-

mentations for undifferentiated mESCs based on K ∈ {8, 12, 16} chromatin states (Figure S8). For

K = 8 we were not able to clearly separate an enhancer from the promoter state. For K = 12

and K = 16 we defined enhancers based on combinations of states with high emission probabilities

for the enhancer marks H3K4me1 and H3K27ac, low emission probabilities for the repressive marks

H3K27me3 and H3K9me3, and also low emission probabilities for the promoter mark H3K4me3.

We tested four different enhancer definitions for K = 12 including states (i) E3, (ii) E3 +E12, (iii)

E2 + E3 and (iv) E2 + E3 + E12, and for K = 16 the enhancer definitions are composed of states

(i) E1, (ii) E1 + E16, (iii) E1 + E6 and (iv) E1 + E6 + E16.

The prediction performances of the defined enhancer state (versus all other states) for K = 12 and

K = 16 were calculated based on the same ten test sets generated through different random seeds as

used in Section 2.2. To determine an overlap we extend our test regions to 1100 bps centered on the

respective region. Based on these definitions the numbers of true and false positives and negatives

could be calculated.

Application of REPTILE

REPTILE (He et al., 2017) was trained on different mouse (ESC, fibroblasts, adipocytes, liver) and

human (liver) data. We first RPM normalized the ChIP-seq tracks and then performed a log2 input

normalization on all HM data as recommended in the REPTILE paper.

For mESC, we made genome-wide predictions whereas for the other samples we only predicted on

a test set. To do so, we chose the training set for REPTILE similarly as for our method (see 5.8),
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i.e. also trying to emulate a typical genome composition.

Genome wide predictions on mESC were generated using four different training and feature set

combinations:

(i) FANTOM5 derived enhancers and six core HMs

(ii) p300 defined enhancers, six core HMs and intensity deviation

(iii) p300 defined enhancers and ENCODE HMs

(iv) p300 defined enhancers, ENCODE HMs and differentially methylated regions (DMRs)

Here, the six core HMs are from the in-house mESC data, the ENCODE HM data and the differ-

entially methylated regions (DMRs) are taken from He et al. (2017). The intensity deviation for a

specific target sample is described in He et al. (2017) as the signal/intensity of the target sample

subtracted by its mean intensity in reference samples. In our setting, we included additional to the

mESC target sample also the intensity deviation between intensity from mESC and the 13 data sets

from our test set prediction across different tissues (Section 2.3).

Using the REPTILE peak calling tool with a probability threshold of 0.5 for the different scenarios,

we got (i) 24,823, (ii) 34,584, (iii) 32,797 and (iv) 30,360 annotated enhancer regions.

5.12 Motif enrichment analysis

We performed motif hit enrichment analyses with the R package motifcounter (Kopp and Vingron,

2017) on individual enhancers or clusters of enhancers. The method is based on a higher-order

Markov background model to compute the expected motif occurrences (hits) and a compound Pois-

son approximation for enrichment testing. We use the default parameters for the order of the

background model and the false positive level for motif hits, order = 1 and α = 0.001, respectively.

In our analysis of enhancer clusters, we refer to the fold-enrichment value for the over-representation

of a motif. For a single enhancer sequence, we filter motifs by p-value (≤ 0.05) and individual motif

hits by score (maximum) to pinpoint relevant TFBSs.

We tested for enrichment of the binding profiles of 579 TFs in total which were downloaded from the

non-redundant JASPAR 2018 CORE vertebrate collection (Khan et al., 2018) of position frequency
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matrices (PFMs).

5.13 KEGG pathway analysis

We used the curated database of molecular pathways and disease signatures to perform a over-

representation analysis for KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Kane-

hisa and Goto, 2000; Kanehisa et al., 2017, 2000). To this end we applied the function kegga

(’species.KEGG = ”mmu”, trend = T’ ) implemented in the edgeR R package (McCarthy et al.,

2012; Robinson et al., 2010) to identify murine KEGG pathways that are over represented in puta-

tive target genes that were found to be highly correlated with enhancer regions that are solely active

in mice with rheumatoid athritis (correlation ≥ 0.9). As background we used all genes (R package

’Txdb.Mmusculus.UCSC.mm10.knownGene’, Team and Maintainer (2016)) that are located within

the same TADs as all identified regulatory units. We used the p-value (’P.DE’ ) to order the results

and reported the best five pathways.
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