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Abstract 
Summary: this paper presents an efficient tool gencore, to eliminate errors and duplicates of next-
generation sequencing (NGS) data. This tool clusters the mapped sequencing reads and merges 
each cluster to generate one consensus read. If the data has unique molecular identifier (UMI), 
gencore uses it for identifying the reads derived from same original DNA fragment. Comparing to the 
conventional tool Picard, gencore greatly reduces the output data’s mapping mismatches, which are 
mostly caused by errors. This error-suppressing feature makes gencore very suitable for the 
application of detecting ultra-low frequency mutations from deep sequencing data. Comparing to the 
performance of Picard, gencore is about 3X faster and uses much less memory. 
Availabi l i ty and Implementation: gencore is an open source tool written in C++. It’s hosted in 
github: https://github.com/OpenGene/gencore 
Contact: chen@haplox.com  

 

1  Introduction  
High-depth next-generation sequencing (NGS) has been widely used for 
precision cancer diagnosis and treatment. From such deep sequencing 
data, somatic mutations can be detected to guide personalized targeted 
therapy or immunotherapy. Recently, circulating tumor DNA (ctDNA) 
sequencing has been recognized as a promising biomarker for cancer 
treatment and monitoring. Since the tumor-derived DNA is usually a 
small part of the total blood cell-free DNA, the mutant allele frequency 
(MAF) of the variants detected from ctDNA sequencing data can be very 
low (as low as 0.1%). To detect such low-frequency variants, we usually 
increase the sequencing depth (can be higher than 10,000x). However, 
the processes of making NGS library and sequencing are not error-free. 
Particularly, the library amplification using PCR technology can produce 
a lot of errors, and consequently cause some false positive mutations in 
the result of NGS data analysis.  

As a result of library amplification, NGS data can have duplicates. 
The higher the sequencing depth is, the more duplication the data can 
have. Traditionally, we just mark the duplicated reads and remove them 
before downstream analysis. For low-depth paired-end NGS data, the 
read pairs of same start and end mapping positions can be treated as 
duplicated reads derived from a same original DNA fragment. Then, the 
reads clustered together can be merged to be a single read. Due to the 

nature that errors usually happen randomly, the inconsistent mismatches 
in the clustered read group can be removed to generate a consensus read.  

However, for ultra-deep sequencing, it’s possible that two read pairs 
with same positions are derived from different original DNA fragments. 
This possibility can be higher when the DNA fragments are shorter. For 
example, cell-free DNA usually has a peak length of ~167 bp, which is 
much shorter than the peak length of normally fragmented genomic 
DNA. To better identify sequencing reads derived from different DNA 
fragments, a technology called unique molecular identifier (UMI) has 
been developed. With UMI technology, each DNA fragment is ligated 
with unique random barcodes before any DNA amplification process. 
The UMIs can be then used for accurate clustering of sequencing reads. 

Currently the conventional de-duplication tool like Picard 
MarkDuplicates cannot perform consensus read generating well, and is 
not able to handle the UMI-integrated data. Furthermore, Picard 
MarkDuplicates is too slow and uses too much memory, which makes it 
not suitable for cloud-based deployment. These unmet requirements 
drove us to develop a new tool called gencore, which eliminates errors 
and removes duplicates by generating consensus reads. 

2  Implementation 
gencore requires an input of sorted BAM file and a reference genome 
FASTA file. If the FASTQ data has UMIs, it can be preprocessed using 
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fastp (Chen, Zhou, Chen, & Gu, 2018) to move the UMIs from read 
sequences to read identifiers. 

gencore clusters read pairs by their mapping positions and UMIs (if 
applicable), and then generates a consensus read for each cluster. The 
main implementation of gencore can be briefly introduced as following 
steps: 

(1) Position clustering: all mapped read pairs are grouped together 
by their mapping chromosome, start position and end position. 

(2) UMI clustering: for each group of same mapping positions, read 
pairs are then grouped by their UMIs with one base difference 
tolerance. If the data has no UMIs, this step is skipped. 

(3) Pair scoring: for each pair in a cluster, the overlapped region of 
the paired reads is computed. Each base is initialized with a 
score. And for each base in the overlapped region, its score is 
adjusted according to its consistence with its paired base, with 
the consideration of their quality scores. 

(4) Cluster scoring: for each position in a cluster, the total score of 
different bases (A/T/C/G) is computed by summarizing the 
scores that are computed in last step of each base. 

(5) Consensus read generating: for each position in a cluster, its 
base diversity is computed according to the scores of different 
bases computed in last step. If gencore finds one dominant base, 
this base will also be presented in the consensus read. Otherwise 
the corresponding base in the reference genome will be used. 

 
After the processing is done, gencore will generate a summary of the 

data before and after processing. Some metrics like mapping rate, 
duplication rate, passing filter rate and mismatch rate are reported in a 
JSON format report. Furthermore, gencore computes the number of 
clusters for each different duplication levels, and reports it as a 
duplication level histogram.  

3  Application 
Since gencore can be used to reduce sequencing errors, it is very useful 
for the application of detecting low-frequency somatic mutations from 
cancer sequencing data. Particularly, when the samples are from blood, 
urine or malignant effusion, the MAF of variants can be even much 
lower than 1%. The detection of such low-frequency variants can be 
seriously affected by the errors, which are usually introduced by library 
preparation and sequencing. gencore can significantly reduce the 
sequencing errors of deep sequencing data, and consequently reduce the 
false positive calling rate. 

To evaluate how gencore can help the low-frequency variant detection, 
we conducted an evaluation experiment using the Horizon Multiplex I 
cfDNA Reference Standard Set (HD777, HD778). The HD777 is a 
reference standard set with 8 known mutations at the EGFR, KRAS, 
NRAS and PIK3CA genes with expected allelic frequency of 5%. The 
HD778 reference standard set has the same mutations at these four genes, 
but the expected allelic frequency is 1%. 

Sequencing libraries for HD777 and HD778 were made using IDT 
xGen Dual Index UMI Adapters, and captured with a 451-gene cancer 
panel. Libraries were sequenced using Illumina NovaSeq 6000 
sequencers. The output FASTQ data are 32.6Gb and 32.7Gb respectively. 

The FASTQ files were preprocessed by fastp, and then mapped to 
reference genome hg19 using BWA (Li & Durbin, 2009). After the 
mapped bam file was sorted using Samtools, the sorted bam files were 
then be processed by Picard and gencore respectively. VarScan2 

(Koboldt et al., 2012) was then used to call SNVs from the processed 
bam files. The missense variants detected in the coding sequences of 
EGFR/KRAS/NRAS/PIK3CA genes were then filtered with a condition 
(supporting reads ≥ 4). Then the variant calling results and running 
performance were evaluated. The comparison result is shown in Table 1. 

Table 1. A comparison of Picard and gencore results 

 Picard 
Tool 

gencore UMI 
mode 

gencore non-
UMI mode 

HD777 with 8 true positive mutations of %5 MAF 

Depth 637.7X 643.5X 650.6X 
Mismatch Rate 0.024% 0.010% 0.012% 
Variants (TP+FP) 15 (8+7) 8 (8+0) 8 (8+0) 
PPV 53.3% 100% 100% 
Running Time 88m 38m 44m 
Memory Usage 25.4G 3.08G 3.09G 

HD778 with 8 true positive mutations of 1% MAF 

Depth 663.2X 671.9X 679.9X 
Mismatch Rate 0.020% 0.010% 0.010% 
Variants (TP+FP) 14 (8+6) 8 (8+0) 8 (8+0) 
PPV 57.1% 100% 100% 
Running Time 77m 22m 22m 
Memory Usage 25.5G 3.14G 3.15G 

TP = True Positives; FP = False Positives. The values of Depth, Mismatch Rate, 
Variants and PPV are evaluated with the data processed by Picard Tool and 
gencore respectively. For data with UMI, gencore supports UMI mode and non-
UMI mode. In the non-UMI mode, gencore ignores the UMI and clusters the reads 
only based on the mapping positions. According to the specification of the 
reference standard sets, Only the variants at EGFR/KRAS/NRAS/PIK3CA genes 
are evaluated. 

From Table 1, we can find that the gencore processed data contained 
much fewer mismatches than the Picard processed data. With 
downstream analysis, the gencore processed data was detected with only 
all 8 true positives, while the Picard processed data was detected with 
many false positives. Besides the improvement of the accuracy, gencore 
was much faster and memory efficient. 
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