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Abstract

Studying the impact of genetic variation on gene regulatory networks is essential to understand the
biological mechanisms by which genetic variation causes variation in phenotypes. Bayesian networks
provide an elegant statistical approach for multi-trait genetic mapping and modelling causal trait re-
lationships. However, inferring Bayesian gene regulatory networks from high-dimensional genetics
and genomics data is challenging, because the number of possible networks scales super-exponentially
with the number of nodes, and the computational cost of Markov chain Monte Carlo (MCMC) sam-
pling methods quickly becomes prohibitive. We propose an alternative method to infer high-quality
Bayesian gene networks that easily scales to thousands of genes. Our method first reconstructs a to-
tal node ordering by conducting pairwise causal inference tests between genes, which then allows to
infer a Bayesian network via a series of penalized regressions, one for each gene. We demonstrate
using simulated and real systems genetics data that this results in a Bayesian network with equal, and
sometimes better, likelihood than the traditional MCMC methods, while having a significantly higher
overlap with groundtruth networks and being orders of magnitude faster. Moreover our method allows
for a unified false discovery rate control across genes and individual edges, and thus a rigorous and
easily interpretable way for tuning the sparsity level of the inferred network. Bayesian network in-
ference using pairwise node ordering is a highly efficient approach for reconstructing gene regulatory
networks when prior information for the inclusion of edges exists or can be inferred from the available
data.
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1 Introduction

Complex traits and diseases are driven by large numbers of genetic variants, mainly located in non-
coding, regulatory DNA regions, affecting the status of gene regulatory networks [1–5]. While im-
portant progress has been made in the experimental mapping of protein-protein and protein-DNA
interactions [6–8], the cell-type specific and dynamic nature of these interactions means that compre-
hensive, experimentally validated, cell-type or tissue-specific gene networks are not readily available
for human or animal model systems. Furthermore, knowledge of physical protein-DNA interactions
does not always allow to predict functional effects on target gene expression [9]. Hence, statistical and
computational methods are essential to reconstruct context-specific, causal, trait-associated networks
by integrating genotype and gene, protein and/or metabolite expression data from a large number of
individuals segregating for the trait of interest [1–3].

Bayesian networks are a popular and powerful approach for modelling gene networks and causal
relationships more generally [10–12]. They naturally extend linear models for mapping the genetic
architecture of complex traits to the modelling of conditional independence and causal dependence be-
tween multiple traits, including molecular abundance traits [13–17], and have been used successfully
to identify key driver genes of, for instance, type 1 diabetes [18], Alzheimer disease [19, 20], tempo-
ral lobe epilepsy [21] and cardiovascular disease [22] from systems genetics data. A Bayesian gene
network consists of a directed graph without cycles, which connects regulatory genes to their targets,
and which encodes conditional independence between genes. The structure and model parameters
of a Bayesian network are usually inferred from the data using Markov chain Monte Carlo (MCMC)
methods, whereby, starting from a randomly initialized graph, random edge additions, deletions or
inversions are accepted as long as they improve the likelihood of the model [10, 11]. MCMC meth-
ods have been shown to perform well using simulated genetics and genomics data [23, 24], but their
computational cost is high. Because the number of possible graphs scales super-exponentially with
the number of nodes, Bayesian gene network inference with MCMC methods is feasible for systems
of at most a few hundred genes, and usually requires a preliminary dimension reduction step, such
as filtering or clustering genes based on their expression profiles [14, 19, 20, 22]. Modern sequencing
technologies however generate transcript abundance data for ten-thousands of coding and non-coding
genes, and large sample sizes mean that ever more of those are detected as variable across individu-
als [25–27]. Moreover, to explain why genetic associations are spread across most of the genome, a
recently proposed “omnigenic” model of complex traits posits that gene regulatory networks are suf-
ficiently interconnected such that all genes expressed in a disease or trait-relevant cell or tissue type
affect the functions of core trait-related genes [5]. The limitations of current Bayesian gene network
inference methods mean that this model can be neither tested nor accomodated. Hence there is a clear
and unmet need to infer Bayesian networks from very high-dimensional systems genetics data.

Here we propose a novel method to infer high-quality causal gene networks that scales easily to ten-
thousands of genes. Our method is based on the fact that if an ordering of nodes is given, such
that the parents of any node must be a subset of the predecessors of that node in the given ordering,
then Bayesian network inference reduces to a series of individual (penalized) regressions, one for
each node [11,28]. While reconstructing a node ordering is challenging in most application domains,
pairwise comparisons between nodes can sometimes be obtained. If prior information is available
for the likely inclusion of every edge, our method ranks edges according to the strength of their prior
evidence (e.g. p-value) and incrementally assembles them in a directed acyclic graph, which defines a
node ordering, by skipping edges that would introduce a cycle. Prior pairwise knowledge in systems
biology includes the existence of TF binding motifs [29], or known protein-DNA and protein-protein
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interactions [30, 31], and those have been used together with MCMC methods in Bayesian network
inference previously [32, 33].

In systems genetics, where genotype and gene expression data are available for the same samples,
instead of using external prior interaction data, pairwise causal inference methods can be used to
estimate the likelihood of a causal interaction between every pair of genes [34–40]. To accomodate
the fact that the same gene expression data is used to derive the node ordering and subsequent Bayesian
network inference, we propose a novel generative model for genotype and gene expression data, given
the structure of a gene regulatory graph, whose log-likelihood decomposes as a sum of the standard
log-likelihood for observing the expression data and a term involving the pairwise causal inference
results. Our method can then be interpreted as a straightforward greedy optimization of the posterior
log-likelihood of this generative model.

2 Methods

2.1 An algorithm for the inference of Bayesian gene networks from systems genetics
data

To allow the inference of Bayesian gene networks from high-dimensional systems genetics data, we
developed a method that exploits recent algorithmic developments for highly efficient mapping of
expression quantitative trait loci (eQTL) and pairwise causal interactions. A general overview of the
method is given here, with concrete procedures for every step detailed in subsequent sections below.

A. eQTL mapping When genome-wide genotype and gene expression data are sampled from the
same unrelated individuals, fast matrix-multiplication based methods allow for the efficient identifica-
tion of statistically significant eQTL associations [41–44]. Our method takes as input a list of genes,
and for every gene its most strongly associated eQTL (Figure 1A). Typically only cis-acting eQTLs
(i.e. genetic variants located near the gene of interest) are considered for this step, but this is not a
formal requirement. Multiple genes can have the same associated eQTL, and genes without signifi-
cant eQTL can be included as well, although these will only be allowed to have incoming edges in the
resultant Bayesian networks.

B. Pairwise causal ordering Given a set of genes and their respective eQTLs, pairwise causal
interactions between all genes are inferred using the eQTLs as instrumental variables (Figure 1B).
While there is a great amount of literature on this subject (cf. Introduction), only two stand-alone
software packages are readily available: CIT [39] and Findr [40]. In our experience, only Findr is
sufficiently efficient to test for causality between millions of gene pairs.

C. Genetic node ordering In Section 2.3 we introduce a generative probabilistic model for jointly
observing eQTL genotypes and gene expression levels given the structure of a gene regulatory net-
work. In this model, the posterior log-likelihood of the network given the data decomposes as a sum of
two terms, one measuring the fit of the undirected network to the correlation structure of the gene ex-
pression data, and the other measuring the fit of the edge directions to the pairwise causal interactions
inferred using the eQTLs as instrumental variables. The latter is optimized by a maximal directed

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2018. ; https://doi.org/10.1101/501460doi: bioRxiv preprint 

https://doi.org/10.1101/501460
http://creativecommons.org/licenses/by/4.0/


A. eQTL mapping

GiLi ?

,

G3

L4L3

G4

L5

G5

L1

G2

L2

G1

B. Pairwise causal ordering

GiLi Gj ?

,

G5G4

L1 L3L2

G3G2

L5L4

G1

C. Genetic node ordering

G1

G3

G4

G5

G2

D. Bayesian network inference

G1

G5

G2

G3

G4

Figure 1: Schematic overview of the method. A. For each gene Gi, the cis-eQTL Li whose genotype
explains most of the variation in Gi expression is calculated; shown on the left are typical eQTL
associations for three genes (colored blue, green and red) where each box shows the distribution
of expression values for samples having a particular genotype for that gene’s eQTL. B. Pairwise
causal inference is carried out which considers in turn each gene Gi and its eQTL Li to calculate the
likelihood of this gene being causal for all others; shown on the left is a typical example where an
eQTL Li is associated with expression of Gi (red) and with expression of a correlated gene G j (blue),
but not with expression of G j adjusted for Gi (green), resulting in a high likelihood score for the
causal ordering Gi→ G j. C. A total ordering is derived from the pairwise causal interactions, which
can be represented as a maximal directed acyclic graph having the genes as its nodes. D. Variable
selection is used to determine a sparse Bayesian gene network, which must be a sub-graph of the total
ordering graph (red edges, Bayesian network; gray edges, causal orderings deemed not significant or
indirect by the variable selection procedure); the signs of the maximum-likelihood linear regression
coefficients determine whether an edge is activating (arrows) or repressing (blunt tips).

acyclic graph (DAG) or total node ordering, which we term “genetic node ordering” in reference to
the use of individual-level genotype data to orient pairs of gene expression traits (Figure 1C).

D. Bayesian network inference The genetic node ordering fixes the directions of the Bayesian net-
work edges. Variable selection methods are then used to determine the optimal sparse representation
of the inverse covariance matrix of the gene expression data by a subgraph of the total ordering DAG
(Figure 1D). In this paper, we use both a simple truncation of the pairwise interaction scores in the
complete DAG, and multi-variate, L1-penalized lasso regression [45] to select upstream regulators
for every gene. Given a sparse DAG, maximum-likelihood linear regression is used to determine the
input functions and whether an edge is activating or repressing.

2.2 Bayesian network model with prior edge information

A Bayesian network with n nodes (random variables) is defined by a DAG G such that the joint
distribution of the variables decomposes as

p(x1, . . . ,xn | G ) =
n

∏
j=1

p
(
x j | {xi : i ∈ Pa j}

)
, (1)
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where Pa j denotes the set of parent nodes of node j in the graph G . We only consider linear Gaussian
networks [11], where the conditional distributions are given by normal distributions whose means
depend linearly on the parent values (see Supplementary Information).

The likelihood of observing a data matrix X∈Rn×m with expression levels of n genes in m independent
samples given a DAG G is computed as

p
(
X | G

)
=

m

∏
k=1

n

∏
j=1

p
(
x jk | {xik : i ∈ Pa j}

)
. (2)

Using Bayes’ theorem we can then write the likelihood of observing G given the data X, upto a
normalization constant, as

P
(
G | X

)
∝ p
(
X | G

)
P(G )

where P(G ) is the prior probability of observing G . Note that we use a lower-case ‘p’ to denote
probability density functions and upper-case ‘P’ to denote discrete probability distributions.

Our method is applicable if pairwise prior information is available, i.e. for prior distributions satisfying

logP(G ) ∝ ∑
(i, j)∈G

fi j,

with fi j a set of non-negative weights that are monotonously increasing in our prior belief that there
exists a directed edge from node i to node j (e.g. fi j ∝ − log pi j, where pi j is a p-value). Note that
setting fi j = 0 excludes the edge (i, j) from being present in G .

2.3 Bayesian network model for systems genetics data

When genotype and gene expression data are available for the same samples, instrumental variable
methods can be used to infer the likelihood of a causal interaction between every pair of genes [34–40].
Previously, such pairwise probabilities have been used as priors in MCMC-based Bayesian network
inference [13, 23], but this is unsatisfactory, because a prior, by definition, should not be inferred
from the same expression data that is used to learn the model. Other methods have addressed this by
augmenting the gene network model with genotypic variables [15, 16], but this increases the size and
complexity of the model even further. Here we introduce a model to use pairwise causal inference
that does not suffer from these limitations.

Let G and X again be a DAG and a matrix of gene expression data for n genes, respectively, and let
E∈Rn×m be a matrix of genotype data for the same samples. For simplicity we assume that each gene
has one associated genotypic variable (e.g. its most significant cis-eQTL), but this can be extended
easily to having more than one eQTL per gene or to some genes having no eQTLs. Using the rules of
conditional probability, the joint probability (density) of observing X and E given G can be written,
upto a normalization constant, as

p(X,E | G ) ∝ P(E | X,G ) p(X | G ). (3)

The distribution p(X | G ) is obtained from the standard Bayesian network equations [eq. (2)], and we
define the conditional probability of observing E given X and G as

P(E | X,G ) ∝ ∏
(i, j)∈G

P(Li→ Gi→ G j | Ei,Xi,X j), (4)
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where Ei,Xi ∈ Rm are the ith rows of E and X, respectively, and P(Li → Gi → G j | Ei,Xi,X j) is the
probability of a causal interaction from gene Gi to G j inferred using Gi’s eQTL Li as a causal anchor.
In other words, conditional on a gene-to-gene DAG G and a gene expression data matrix, our model
assumes that it is more likely to observe genotype data that would lead to causal inferences consistent
with G than data that would lead to inconsistent inferences. Other variations on this model can be
considered as well, for instance one can include a penalty for interactions that are not present in the
graph, as long as the final model can be expressed in the form

P(E | X,G ) ∝ ∏
(i, j)∈G

egi j (5)

with gi j monotonously increasing in the likelihood of a causal inference Li→ Gi→ G j.

Combining eqs. (3) and (5) with Bayes’ theorem and a uniform prior P(G ) = const, leads to an expres-
sion of the posterior log-likelihood that is formally identical to the model with prior edge information,

logP(G | X,E) = log p(X | G )+ ∑
(i, j)∈G

gi j + const (6)

As before, if gi j = 0, the edge (i, j) is excluded from being part of G ; this would happen for instance
if gene i has no associated genotypic variables and consequently zero probability of being causal for
any other genes given the available data. Naturally, informative pairwise graph priors of the form
logP(G ) = ∑(i, j)∈G fi j, can still be added to the model, when such information is available.

2.4 Bayesian network parameter inference

Given a DAG G , the maximum-likelihood parameters of the conditional distributions [eq. (1)], in the
case of linear Gaussian networks, are obtained by linear regression of a gene on its parents’ expres-
sion profiles (see Supplementary Information). For a specific DAG, we will use the term “Bayesian
network” to refer to both the DAG itself as well as the probability distribution induced by the DAG
with its maximum-likelihood parameters.

2.5 Reconstruction of the node ordering

Without further sparsity constraints in eq. (6), and again assuming for simplicity that each gene has
exactly one eQTL, the log-likelihood is maximized by a maximal DAG with n(n−1)/2 edges. Such
a DAG G defines a node ordering ≺ where i ≺ j⇔ (i, j) ∈ G . Standard results in Bayesian network
theory show that for a linear Gaussian network, the likelihood function (2) is invariant under arbi-
trary changes of the node ordering (see [11] and Supplementary Information). Hence to maximize
eq. (6) we need to find the node ordering or DAG which maximizes the term ∑(i, j)∈G gi j. Finding
the maximum-weight acyclic subgraph is an NP-hard problem with no known polynomial approxi-
mation algorithms with a strong guaranteed error bound [46, 47]. We therefore employed a greedy
algorithm, where given n genes and the log-likelihood gi j of regulation between every pair of them,
we first rank the regulations according to their likelihood. The regulations are then added to an empty
network one at a time starting from the most probable one, but avoiding those that would create a
cycle, until a maximal DAG with n(n−1)/2 edges is obtained. Other edges are assigned probability 0
to indicate exclusion. Maximal DAG reconstruction was implemented in Findr [48] as the command
netr one greedy, with the vertex-guided algorithm for cycle detection [49].
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2.6 Causal inference of pairwise gene regulations

We used Findr 1.0.6 (pij gassist function) [48] to perform causal inference of gene regulatory inter-
actions based on gene expression and genotype variation data. For every gene, its strongest cis-eQTL
was used as a causal anchor to infer the probability of regulation between that gene and every other
gene. Findr outputs posterior probabilities Pi j (i.e. one minus local FDR), which served directly as
weights in model (6), i.e. we set gi j = logPi j. To verify the contribution from the inferred pairwise
regulations, we also generated random pairwise probability matrices which were treated in the same
way as the informative ones in the downstream analyses.

2.7 Findr and random Bayesian networks from complete node orderings

The node ordering reconstruction removes less probable, cyclic edges, and results in a maximal,
weighted DAG G with edge weights Pi j = egi j . We term these weighted, complete DAGs as findr
or random Bayesian networks, depending on the pairwise information used. A significance threshold
can be further applied on the continuous networks, so as to convert them to binary Bayesian networks
at any desired sparsity level.

2.8 Lasso-findr and lasso-random Bayesian networks using penalized regression on
ordered nodes

To infer a more refined sparse Bayesian network from a maximal DAG, we performed hypothesis
testing for every gene on whether each of its predecessors (in findr or random Bayesian network) is a
regulator, using L1-penalized lasso regression [45] with the lassopv package [50] (see Supplementary
Information). We calculated for every regulator the p-value of the critical regularization strength when
the regulator first becomes active in the lasso path. This again forms a continuous Bayesian network
in which smaller p-values indicate stronger significance. These Bayesian networks were termed the
lasso-findr and lasso-random Bayesian networks.

2.9 MCMC-based bnlearn-hc and bnlearn-fi Bayesian networks from package bn-
learn

For comparison with the traditional MCMC-based Bayesian network inference, we applied the hc
function of the R package bnlearn [51], using the Akaike information criterion (AIC) penalty to en-
force sparsity. This algorithm starts from a random Bayesian network and iteratively performs greedy
revisions on the Bayesian network to reach a local optimum of the penalized likelihood function.
Since the log-likelihood is equivalent to minus the average (over nodes) log unexplained variance (see
Supplementary Information), which diverges when the number of regulators exceeds the number of
samples, we enforced the number of regulators for every gene to be smaller than 80% of the number
of samples. For each AIC penalty, one hundred random restarts were carried out and only the network
with highest likelihood score was selected for downstream analyses. These Bayesian networks were
termed the bnlearn-hc Bayesian networks.

For comparison with the constraint based Bayesian network inference (e.g. [52]), we applied the
fast.iamb function of the R package bnlearn [51], using nominal type I error rate. These Bayesian
networks were termed the bnlearn-fi Bayesian networks.
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To account for the role and information of cis-eQTLs on gene expression, we also included the
strongest cis-eQTL of every gene in the bnlearn based network reconstructions, for an approach sim-
ilar to [15, 16]. Cis-eQTLs are only allowed to have out-going edges, using the blacklist function in
bnlearn. We then removed cis-eQTL nodes from the reconstructed networks, resulting in Bayesian
gene networks termed bnlearn-hc-g and bnlearn-fi-g respectively.

2.10 Evaluation of false discovery control in network inference

An inconsistent false discovery control (FDC) reduces the overall accuracy of the reconstructed net-
work [50]. We empirically evaluated the FDC using a linearity test on genes that are both targets and
regulators. The linearity test assesses whether the number of false positive regulators for each gene
increases linearly with the number of candidate regulators, a consequence of consistent FDC. The top
5% predictions were discarded to remove genuine interactions. See [50] for method details.

2.11 Precision-recall curves and points

We compared reconstructed Bayesian networks with gold standards using precision-recall curves and
points, for continuous and binary networks respectively. For Geuvadis datasets, we only included
regulator and target genes that are present in both the transcriptomic dataset and the gold standard.

2.12 Assessment of predictive power for Bayesian networks

To assess the predictive power of different Bayesian network inference methods, we used five-fold
cross-validation to compute the training and testing errors from each method, in terms of the root
mean squared error (rmse) and mean log squared error (mlse) across all genes in all testing data
(Algorithm 1). For continuous Bayesian networks from non-bnlearn methods, we applied different
significance thresholds to obtain multiple binary Bayesian networks that form a curve of prediction
errors.

Algorithm 1 Cross-validation of predictive power for Bayesian networks
Require: M ∈ Rn×m as matrix of normalized expression,

B(m) ∈ Rn×n as function to infer binary Bayesian network from expression matrix m,
s(ŷ,y) as score function (rmse or mlse) of predicted expression ŷ given true expression y.

1: function CROSS-VALIDATION(M,B,s)
2: train score, test score← 0
3: for i← 1 to 5 do
4: train, test ← Random cross-validation split i of training & test data from M
5: G ← B(train)
6: for j← 1 to n do
7: model ← Fitted linear model to predict train j with trainG·, j
8: train score← train score+ s(model(trainG·, j), train j)
9: test score← test score+ s(model(testG·, j), test j)

10: train score← train score/5n
11: test score← test score/5n
12: return train score, test score
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2.13 Data

We used the following datasets to infer and evaluate Bayesian gene networks:

• The DREAM 5 Systems Genetics challenge A (DREAM) provided a unique testbed for network
inference methods that utilize genetic variations in a population (https://www.synapse.
org/\#!Synapse:syn2820440/wiki/). The DREAM challenge included 15 simulated datasets
of expression levels of 1000 genes and their best eQTL variations. To match the high-dimensional
property of real datasets where the number of genes exceeds the number of individuals, we an-
alyzed datasets 1, 3, and 5 with 100 individuals each. Around 25% of the genes within each
dataset had a cis-eQTL, defined in DREAM as directly affecting the expression level of the cor-
responding gene. Since the identity of cis-eQTLs is not revealed, we used kruX [53] to identify
them, allowing for one false discovery per dataset. The DREAM challenge further provides the
groundtruth network for each dataset, varying from around 1000 to 5000 interactions.

• The Geuvadis consortium is a population study providing RNA sequencing and genotype data of
lymphoblastoid cell lines in 465 individuals. We obtained gene expression levels and genotype
information, as well as the eQTL mapping from the original study [54]. We limited our analysis
to 360 European individuals, and after quality control, a total of 3172 genes with significant
cis-eQTLs remained. To validate the inferred gene regulatory networks from the Geuvadis
dataset, we obtained three groundtruth networks: (1) differential expression data from siRNA
silencing experiments of transcription-associated factors (TFs) in a lymphoblastoid cell line
(GM12878) [55]; (2) DNA-binding information of TFs in the same cell line [55]; (3) the filtered
proximal TF-target network from [7]. The Geuvadis dataset overlapped with 6,790 target genes,
and 6 siRNA-targeted TFs and 20 DNA-binding TFs in groundtruth 1 and 2, respectively, and
with 7,000 target genes and 14 TFs in groundtruth 3.

We preprocessed all expression data by converting them to a standard normal distribution separately
for each gene, as explained in [48].

3 Results

3.1 Lasso-findr Bayesian networks correctly control false discoveries

We inferred findr and lasso-findr Bayesian networks for the DREAM datasets, using Findr and lassopv
respectively (Methods). The Findr method predicts targets for each regulator using a local FDR
score [56] which allows false discovery control (FDC) for either the entire regulator-by-target matrix,
or for a specific regulator of interest [35, 48]. However, the enforcement of a gene ordering/Bayesian
network partly broke the FDC, as seen from the linearity test (Methods) in Figure 2A. By performing
an extra lasso regression on top of the acyclic findr network, proper FDC was restored in the lasso-
findr Bayesian network (Figure 2B, Supplementary Figure S1).

In contrast, MCMC-based bnlearn-hc Bayesian networks (Methods), inferred from multiple DREAM
datasets and for a spectrum of network sparsities (AIC penalty strengths from 8 to 12 in steps of
0.5), displayed a highly skewed in-degree distribution, with most genes having few regulators, but
several with near 80 regulators each, i.e. the maximum allowed (Figure 2C, Supplementary Figure S2).
This indicates that MCMC-based Bayesian networks lack a unified FDR control, i.e. that each gene
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retained incoming interactions at different FDR levels. We believe this is due to the log-likelihood
score function employed by bnlearn-hc. Since the log-likelihood corresponds to the average logarithm
of the unexplained variance, this score intrinsically tends to focus on the explanation of variances from
a few variables/genes, especially in high-dimensional settings where this can lead to arbitrarily large
score values (see Supplementary Information). Using the total proportion of explained variance as the
score may spread regulations over more target genes, but this score is not implemented in bnlearn.
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Figure 2: False discovery controls of different Bayesian networks. (A, B) The linearity test of findr
(A) and lasso-findr (B) Bayesian networks at 10,000 significant interactions on DREAM dataset 1.
(C) The histogram of significant regulator counts for each target gene in the bnlearn-hc Bayesian
network with AIC penalty 8 on DREAM dataset 1.

Constraint-based bnlearn-fi Bayesian networks (Methods) did not allow for unbiased FDC either, as
they do not have a fully adjustable sparsity level. We varied its “nominal type I error rate” from 0.001
to 0.2, but the number of significant interactions varied very little on DREAM dataset 1 (Supplemen-
tary Figure S3).

Incorporating genotypic information in MCMC-based (bnlearn-hc-g) or constraint-based (bnlearn-fi-
g) Bayesian networks did not resolve these issues, as the problems of lacking FDC and oversparsity
persisted (Supplementary Figure S4, Supplementary Figure S5).

3.2 Findr and lasso Bayesian networks recover genuine interactions more accurately
than MCMC or constraint-based networks

We compared the inferred Bayesian networks from all methods against the groundtruth network of
the DREAM challenge. We drew precision-recall (PR) curves, or points for the binary Bayesian
networks from bnlearn-based methods. As shown in Figure 3, the findr, lasso-findr, and lasso-random
Bayesian networks were more accurate predictors of the underlying network structure. The inclusion
of genotypic information improved the precision of bnlearn methods, but it remained less optimal than
findr and lasso-based Bayesian networks.

3.3 Findr and lasso Bayesian networks obtain superior predictive performances

We validated the predictive performances of all networks in the structural equation context (see Sup-
plementary Information). Under 5-fold cross validation, a linear regression model for each gene on its
parents is trained based on the Bayesian network structure inferred from each training set, to predict
expression levels of all genes in the test set (Methods). Predictive errors were measured in terms of
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Figure 3: Precision-recall curves/points of reconstructed Bayesian networks for DREAM dataset 1.

root mean squared error (rmse) and mean log squared error (mlse; the score optimized by bnlearn-hc).
The findr Bayesian network explained the highest proportion of expression variation (≈ 2%) in the
test data and identified the highest number of regulations (200 to 300), with runners up from lasso-
based networks (≈ 1% variation, 50 regulations, Figure 4). The explained variance by findr and lasso
networks grew to ≈ 10% when more samples were added (DREAM dataset 11 with 999 samples,
Supplementary Figure S6). Training errors did not show overfitting of predictive performances in the
test data (Supplementary Figure S7).
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Figure 4: The root mean squared error (rmse, A) and mean log squared error (mlse, B) in test data are
shown as functions of the numbers of predicted interactions in five-fold cross validations using linear
regression models. Shades and lines indicate minimum/maximum values and means respectively.
Root mean squared errors greater than 1 indicate over-fitting. DREAM dataset 1 with 100 samples
was used.
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3.4 Lasso Bayesian networks do not need accurate prior gene ordering

Interestingly, the performance of lasso-based networks did not depend strongly on the prior ordering,
as shown in the comparisons between lasso-findr and lasso-random in Figure 3, Figure 4, and Supple-
mentary Figure S7. Further inspections revealed a high overlap of top predictions by lasso-findr and
lasso-random Bayesian networks, particularly among their true positives (Figure 5). This allows us to
still recover genuine interactions even if the prior gene ordering is not fully accurate.
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lasso-random only
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Figure 5: The numbers of overlap and unique interactions (y axis) predicted by lasso-findr and lasso-
random Bayesian networks as functions of the number of significant interactions in each network (x
axis), on DREAM dataset 1. Positive and negative directions in y correspond to true and false positive
interactions according to the gold standard.

3.5 Lasso Bayesian networks mistaken confounding as false positive interactions

We then tried to understand the differences between lasso and Findr based Bayesian networks, by
comparing three types of gene relations in DREAM dataset 1, both among genes with a cis-eQTL in
Figure 6A, and when also including genes without any cis-eQTL as only targets in Figure 6B. Both
findr and lasso-findr showed good sensitivity for the genuine, direct interactions. However, when
two otherwise independent genes are directly confounded by another gene, lasso tends to produce a
false positive interaction, but not findr. As expected, to achieve optimal predictive performance, lasso
regression cannot distinguish the confounding by a gene that is either unknown or ranked lower in the
DAG.

3.6 Findr and lasso Bayesian network inference is highly efficient

The findr and lasso Bayesian networks required much less computation time compared to the bn-
learn Bayesian networks, therefore allowing them to be applied on much larger datasets. To infer
a Bayesian network of 230 genes from 100 samples in DREAM dataset 1, Findr required less than
a second, lassopv around a minute, but bnlearn Bayesian networks took half an hour to half a day
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A B

Figure 6: The significance score of findr (posterior probability; x-axis) and in lasso-findr (-log P-value;
y-axis) for direct true interactions (red), directly confounded gene pairs (cyan), and other, unrelated
gene pairs (black) on DREAM dataset 1; in A, only genes with cis-eQTLs are considered as regulator
or target, whereas in B targets also include genes without cis-eQTLs. Higher scores indicate stronger
significances for the gene pair tested.

(Table 1). Moreover, since bnlearn only produces binary Bayesian networks, multiple recomputation
is necessary to acquire the desired network sparsity.

Table 1: Timings for different Bayesian network inference methods/programs. Times for bnlearn
methods depend on parameter settings (e.g. nominal FDR and AIC penalty), and take longer (approx.
8 times) with genotypes included. Times for bnlearn-hc include 10 random restarts.

Dataset Samples Genes findr lassopv bnlearn-hc bnlearn-fi
DREAM 100 230 <1sec ≈1min ≥10hr ≥30min
Geuvadis 360 3172 <1min ≈10hr - -

3.7 Results on the Geuvadis dataset reaffirm conclusions from simulated data

To test whether the results from the DREAM data also hold for real data, we inferred findr and lasso-
findr Bayesian networks from the Geuvadis data using both real and random causal priors (see Meth-
ods); MCMC-based bnlearn network inference was attempted, but none of the restarts could complete
within 1000 minutes.

Lasso-findr Bayesian networks were previously shown to provide ideal FDR control on this dataset
[50], whereas findr Bayesian networks did not obtain a satisfying FDR control (Supplementary Figure
S8). We believe this is due to the reconstruction of a prior node ordering, which interferes with the
FDR control in pairwise causal inference. On the other hand, and again consistent with the DREAM
data, findr Bayesian networks obtained superior results for the recovery of known transcriptional
regulatory interactions inferred from ChIP-sequencing data (Figure 7A,B); neither method predicted
TF targets inferred from siRNA silencing with high scores or accuracy better than random (Figure
7C).
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Figure 7: Precision-recall curves for Bayesian networks reconstructed from the Geuvadis dataset for
three groundtruth networks: DNA-binding of 20 TFs in GM12878 (A), DNA-binding of 14 TFs in 5
ENCODE cell lines (B), and siRNA silencing of 6 TFs in GM12878 (C).

Comparisons on the predictive power yielded results similar with the DREAM datasets, where pre-
dictive scores were again hardly able to distinguish network directions.

4 Discussion

The inference of Bayesian gene regulatory networks for mapping the causal relationships between
thousands of genes expressed in any given cell type or tissue is a challenging problem, due to the
computational complexity of standard MCMC sampling methods. Here we have introduced an alter-
native method, which first reconstructs a total topological ordering of genes, and then infers a sparse
maximum-likelihood Bayesian network using penalized regression of every gene on its predecessors
in the ordering. Our method is applicable when pairwise prior information is available or can be
inferred from auxiliary data, such as genotype data. Our evaluation of the method using simulated
genotype and gene expression data from the DREAM5 competition, and real data from human lym-
phoblastoid cell lines from the GEUVADIS consortium, revealed several lessons that we believe to be
generalizable.

A major disadvantage of MCMC methods, irrespective of their computational cost, was their over-
fitting of the expression profiles of a very small number of target genes. In high-dimensional settings
where the number of genes far exceeds the number of samples, the expression profile of any one of
them can be regressed perfectly (i.e. with zero residual error) on any linearly independent subset of
variables, and this causes the log-likelihood to diverge. Even when the number of parents per gene
was restricted to less than the number of samples, it remained the case that at any level of network
sparsity, the divergence of the log-likelihood with decreasing residual variance of even a single gene
resulted in MCMC networks where most genes had either the maximum number of parents, or no
parents at all. Restricting the maximum number of parents to an artificially small level can circum-
vent this problem, but will also distort the network topology, particularly by truncating the in-degree
distribution, and therefore predict a biased gene regulatory network. Optimizing the total amount of
variance explained, rather than log-likelihood, might overcome this problem. This, however, is not
available yet in bnlearn.

Our method assembles a global Bayesian network from pairwise causal relationships inferred using
instrumental variable methods. We considered two variants of the method: one where the pairwise
relations were truncated directly to form a sparse DAG, and one where an additional L1-penalized
lasso regression step was used to enforce sparsity. The lasso step was introduced for two reasons.
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First, pairwise relations do not distinguish between direct or indirect interactions and do not account
for the possibility that a true relation may only explain a small proportion of target gene variation (e.g.
when the target has multiple inputs). We hypothesized that adding a multi-variate lasso regression step
could address these limitations. Second, truncating pairwise relations directly results in non-uniform
false discovery rates for the retained interactions, due to each gene starting with a different number
of candidate parents in the pairwise node ordering. As we showed in this paper and our previous
work [50], a model selection p-value derived from lasso regression can control the FDR uniformly for
each potential regulator of each target gene, resulting in an unbiased sparse DAG.

Despite these considerations, the ‘naive’ procedure of truncating the original pairwise causal proba-
bilities resulted in Bayesian networks with better overlap with groundtruth networks of known tran-
scriptional interactions, in both simulated and real data. We believe this is due to the lack of any
instrumental variables in lasso regression, which makes it hard to dissociate true causal interactions
from hidden confounding. Indeed, it is known that if there are multiple strongly correlated predictors,
lasso regression will randomly select one of them [57], whereas in the present context it would be
better to select the one that has the highest prior causal evidence. In a real biological system, findr
networks and the use of instrumental variables may therefore be more robust than lasso regression,
particularly in the presence of hidden confounders. We also note that the deviation from uniform FDR
control for the naive truncation method was not huge and only affected genes with a very large number
of candidate parents (Figure 2). Hence, at least in the datasets studied, adding a lasso step for better
false discovery control did not overcome the limitations introduced by confounding interactions.

On the other hand, the lasso-random network uses solely transcriptomic profiles, yet provided better
performance than all MCMC-based networks, including those that used genotypic information. To-
gether with its better false discovery control, this makes the lasso-random network the ideal method
for Bayesian network inference with no or limited prior information.

In addition to comparing the inferred network structure against known ground-truths, we also com-
pared the predictive performance of the various Bayesian networks. Although findr Bayesian networks
again performed best, differences with lasso-based methods were modest. As is well known, using
observational data alone, Bayesian networks are only defined upto Markov equivalence [11, 12], i.e.
there is usually a large class of Bayesian networks with very different topology which all explain the
data equally well. Hence it comes as no surprise that the prediction accuracy in edge directions has lit-
tle impact on that in expression levels. This suggests that for the task of reconstructing gene networks,
Bayesian network inference should be evaluated, and maybe also optimized, at the structural rather
than inferential level. This also reinforces the importance of causal inference which, although chal-
lenging both statistically and computationally, demonstrated significant improvement of the global
network structure even when it was restricted to pairwise causal tests.

Most of our results were derived for simulated data from the DREAM Challenges, but were qual-
itatively confirmed using data from human lymphoblastoid cell lines. However, it has to be ac-
knowledged that the human ground-truth networks are small. Because the available networks for
lymphoblastoid cell lines are exclusively for TF-DNA or TF siRNA interactions, and TFs tend not
to show great variation in transcriptional expression data (i.e. don’t have very strongly associated
eQTLs), only 6–20 TFs were common between the predicted and ground-truth networks. As such,
one has to be cautious not to over-interpret results, for instance on the relative performance of findr
vs. lasso-findr Bayesian networks. Much more comprehensive and accurate ground-truth networks of
direct causal interactions, preferably derived from a hierachy of interventions on a much wider variety
of genes and functional classes, would be required for a conclusive analysis. Emerging large-scale
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perturbation compendia such as the expanded Connectivity Map, which has profiled knock-downs or
over-expressions of more than 5,000 genes in a variable number of cell lines using a reduced repre-
sentation transcriptome [58], hold great promise. However, the available cell lines are predominantly
cancer lines, and the relevance of the profiled interactions for systems genetics studies of human com-
plex traits and diseases, which are usually performed on primary human cell or tissue types, remains
unknown.

Lastly, we note that our study has focused on ground-truth comparisons and predictive performances,
but did not evaluate how well the second part of the log-likelihood, derived from the genotype data
[cf. eq. (4)], was optimized. This score is never considered in MCMC-based algorithms, and hence a
comparison would not be fair, and moreover, optimising it is known to be an NP-hard problem. We
used a common greedy heuristic optimization algorithm, but for this particular problem, this heuristic
has no strong guaranteed error bound. We intend to revisit this problem, and investigate whether
other graph-theoretical algorithms, perhaps tailored to specific characteristics of pairwise interactions
inferred from systems genetics data, are able to improve on the greedy heuristic.

To conclude, Bayesian network inference using pairwise node ordering is a highly efficient approach
for reconstructing gene regulatory networks from high-dimensional systems genetics data, which
outperforms traditional MCMC-based methods by assembling pairwise causal inference results in
a global causal network, and which is sufficiently flexible to integrate other types of pairwise prior
data when they are available.
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Supplementary Information

S1 Theoretical background and results

S1.1 Bayesian network primer

We collect here the minimal background on Bayesian networks necessary to make this paper self-
contained. For more details and proofs of the statements below, we refer to existing textbooks, for
instance [11].

A Bayesian network for a set of continuous random variables X1, . . . ,Xn, represented by nodes 1, . . . ,n,
is defined by a DAG G and a joint probability density function that decomposes as in eq. (1). We are
interested in linear Gaussian networks, which can be defined alternatively by the set of structural
equations

X j = ∑
i∈Pa j

βi jXi + ε j, (S1)

where Pa j is the set of parent nodes for node j in G and ε j ∼N (0,ω2
j ) are mutually independent

normally distributed variables. The matrix B = (βi j), with βk j = 0 for k 6∈ Pa j can be regarded as a
weighted adjacency matrix for G . With this notation, the conditional distributions in eq. (1) satisfy

p
(
x j | {xi : i ∈ Pa j}

)
= N

(
∑

i∈Pa j

βi jxi,ω
2
j

)
. (S2)

The values of B and ω2
1 , . . . ,ω

2
n are the parameters of the Bayesian network which are to be determined

along with the structure of G . The conditional distributions (S2) result in the joint probability density
function being multi-variate normal,

p(x1, . . . ,xn) =
n

∏
j=1

p
(
x j | {xi : i ∈ Pa j}

)
= N (0,Σ)

with inverse covariance matrix

Σ
−1 = (1−B)Ω−1(1−B)T

where Ω = diag(ω2
1 , . . . ,ω

2
n ). It follows that the gene expression-based term in the log-likelihood

[eq. (6)] can be written as (up to an additive constant)

LX ≡ log p(X | G ) =
m
2

logdetΣ
−1− 1

2
tr
(
Σ
−1XXT ) (S3)

where as before X ∈ Rn×m is the data matrix for n genes in m independent samples. From these basic
results, the following can be derived easily:

• For a given G , LX can also be written as

LX =
n

∑
j=1

[
−m

2
log(ω2

j )−
1

2ω2
j

∥∥∥X j− ∑
i∈Pa j

βi jXi

∥∥∥2
]

(S4)
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where X j ∈ Rm is the expression data vector for gene j. It follows that the maximum-likelihood
parameter values β̂i j are the ordinary least-squares linear regression coefficients, ω̂2

j =
1
m‖X j−

∑i∈Pa j β̂i jXi‖2 are the residual variances, and LX evaluated at these maximum-likelihood values
is the log of the total unexplained variance, up to an additive constant

LX =−m
2

n

∑
j=1

log(ω̂2
j ). (S5)

• Adding more explanatory variables always reduces the residual variance in linear regression.
Hence L̂X as a function of G is maximized for maximal or fully connected DAGs with n(n−
1)/2 edges. Such DAGs define a node ordering or permutation that turns B into a lower trian-
gular matrix. Hence eq. (S5) can also be seen as a function on node orderings or permutations,
and the maximum-likelihood values are then found by linearly regressing each node on its pre-
decessors (i.e. parents) in the ordering [cf. eq. (S4)]. More precisely, let π be a permutation of
{1, . . . ,n}, then

LX ,π =
n

∑
j=1

[
−m

2
log(ω2

j )−
1

2ω2
j

∥∥∥X j− ∑
πi<π j

βi jXi

∥∥∥2
]

(S6)

• Conversely, eq. (S3), and hence also eq. (S5), is easily seen to be invariant under any reordering
of the nodes. Hence no edge directions can be inferred unambiguously from observational
expression data without further constraints or information.

S1.2 Pairwise node ordering

To infer Bayesian gene networks, we first consider the log-likelihood score (6) without sparsity con-
straints,

L ≡ logP(G | X,E) = log p(X | G )+ ∑
(i, j)∈G

gi j

where it is implicitly understood that the maximum-likelihood parameters are used in LX = log p(X |
G ). Because LX and LP = ∑(i, j)∈G gi j are both maximized for maximal DAGs, and because the value
of LX is the same for all maximal DAGs, it follows that to maximize L , we need to find the maximal
DAG or node ordering which maximizes the pairwise score LP. As stated in the main text, this is
an NP-hard problem with no known polynomial approximation algorithms with a strong guaranteed
error bound. The greedy algorithm we used is the standard heuristic for this type of problem [46].

S1.3 Sparsity constraints

Maximal DAGs lead to overfitting of the expression-based score LX , particularly in the case where the
number of genes n is greater than the number of samples m. The most popular methods for imposing
sparsity in Bayesian networks are:

• Bayesian or Akaike Information Criterion. The BIC or AIC methods augment the likelihood
function LX with a term proportional to the number of parameters in the model, i.e. the number
of edges |G | in G (BIC =−|G | logm, AIC =−|G |).
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• L1-penalized lasso regression. In this case, the likelihood LX ,π [eq. (S6) is augmented by
a term ∑

n
j=1 λ j ∑πi<π j |βi j|, such that finding the maximum-likelihood parameters β̂i j becomes

equivalent to performing a series of independent lasso regressions, one for each node on its
predecessors in the ordering π . The extra penalty term can be understood as coming from a
double-exponential prior distribution on the parameters βi j.

An under-appreciated drawback of the BIC/AIC in high-dimensional settings is the fact that with
a sufficient number of predictors it is possible to reduce ω2

j to zero for any gene, and hence make
LX (S5) arbitrarily large. By concentrating all interactions on one or a few target genes, this can
be achieved while still keeping the BIC/AIC small. Hence in high-dimensional settings, use of the
BIC/AIC leads to highly skewed ‘all-or-nothing’ in-degree distributions, as shown in Figure 2C, unless
the maximum allowed number of regulators for each gene is capped at an artificially small number.

Similar problems can occur if lasso regression is used with a fixed λ for all j, because the number
of candidate regulators differs greatly among genes that come early or late in the ordering. In [28], a
method was proposed where the value of λ j increased with the order of j, but their scaling could not
provide any guarantee for the probability of false positive errors for individual edges in the resultant
sparse graph. We used the lassopv variable selection method [50] instead. In brief, for each gene j
and for each candidate regulator i of j (i.e. predecessor of j in the ordering π):

• calculate the largest (most stringent) value of λ j for which i would be selected as a parent of j
(i.e. have non-zero lasso regression coefficient);

• calculate the probability (p-value) of a randomly generated predictor having the same or larger
‘critical’ λ j.

This results in a set of p-values pi j for all pairs πi < π j, which achieve optimal false discovery control,
i.e. they can be transformed into q-values qi j by standard FDR correction methods such that if we
keep all qi j ≤ α , the expected FDR is less than α . Moreover for sufficiently small thresholds α , there
is a corresponding penalty parameter value λ j(α) such that the set of regulators with pi j (or qi j) less
than α is precisely the set of regulators with non-zero lasso regression coefficient [50]. Hence in our
method we can use thresholding on the pi j directly to obtain sparse Bayesian networks.

In addition to the lasso regression based method for inducing sparsity, we also considered a simple
thresholding on the pairwise prior information to obtain a sparse DAG. In eq. (6), if we set

g′i j =

{
gi j if gi j >= ε

0 otherwise

then edges with gi j < ε are automatically excluded from the maximum-likelihood DAG, and the
pairwise node ordering procedure will automatically result in a sparse DAG. This method does not
provide any guarantee for the false positive control of individual edges in the (multi-variate) Bayesian
network beyond what is provided by the pairwise causal inference test used.
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S2 Supplementary figures
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Figure S1: The linearity test of lasso-findr Bayesian networks at 5,000 (A) and 20,000 (B) significant
interactions on DREAM dataset 1.
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Figure S2: The histogram of significant regulator counts for each target gene in the bnlearn-hc
Bayesian networks with AIC penalty 8.5 to 12 (A to H) and step 0.5 on DREAM dataset 1.
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Figure S3: The histogram of significant regulator counts for each target gene in the bnlearn-fi Bayesian
networks with nominal type I error rates 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.2 (A to H) on
DREAM dataset 1.
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Figure S4: The histogram of significant regulator counts for each target gene in the bnlearn-hc-g
Bayesian networks with AIC penalty 9.5 to 13 (A to I) and step 0.5 on DREAM dataset 1.
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Figure S5: The histogram of significant regulator counts for each target gene in the bnlearn-fi-g
Bayesian networks with nominal type I error rates 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.2
(A to H) on DREAM dataset 1.
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Figure S6: The root mean squared error (rmse, A) and mean log squared error (mlse, B) in training
data are shown as functions of the numbers of predicted interactions in five-fold cross validations
using linear regression models. Shades and lines indicate minimum/maximum values and means
respectively. DREAM dataset 1 with 999 samples was used.
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Figure S7: The root mean squared error (rmse, A) and mean log squared error (mlse, B) in training
data are shown as functions of the numbers of predicted interactions in five-fold cross validations
using linear regression models. Shades and lines indicate minimum/maximum values and means
respectively. Root mean squared errors greater than 1 indicate over-fitting. DREAM dataset 1 with
100 samples was used.
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Figure S8: Conversion to Bayesian network from findr’s predictions breaks its false discovery control.
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