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We introduce a simple new approach to variable selection in
linear regression, with a particular focus on quantifying un-
certainty in which variables should be selected. The approach
is based on a newmodel— the “Sumof Single Effects” (SuSiE)
model —which comes fromwriting the sparse vector of re-
gression coefficients as a sumof “single-effect” vectors, each
with one non-zero element. We also introduce a correspond-
ing new fitting procedure— Iterative Bayesian Stepwise Se-
lection (IBSS) — which is a Bayesian analogue of stepwise
selectionmethods. IBSS shares the computational simplic-
ity and speed of traditional stepwisemethods, but instead
of selecting a single variable at each step, IBSS computes a
distribution on variables that captures uncertainty in which
variable to select. We provide a formal justification of this
intuitive algorithm by showing that it optimizes a variational
approximation to the posterior distribution under the SuSiE
model. Further, this approximate posterior distribution nat-
urally yields convenient novel summaries of uncertainty in
variable selection, providing a Credible Set of variables for
each selection. Our methods are particularly well-suited
to settings where variables are highly correlated and de-
tectable effects are sparse, both of which are characteris-
tics of genetic fine-mapping applications. We demonstrate
through numerical experiments that our methods outper-

1



2 WANG ET AL.

form existing methods for this task, and illustrate their ap-
plication to fine-mapping genetic variants influencing alter-
native splicing in human cell-lines. We also discuss the po-
tential and challenges for applying thesemethods to generic
variable selection problems.
K E YWORD S
linear regression, variable selection, sparse, variational inference,
genetic fine-mapping

1 INTRODUCTION
The need to identify, or “select”, relevant variables in regressionmodels arises in a diverse range of applications, and has
spurred development of a correspondingly diverse range of methods (e.g., see O’Hara and Sillanpää, 2009; Fan and Lv,
2010; Desboulets, 2018; George andMcCulloch, 1997, for reviews). However, variable selection is a complex problem,
and so despite considerable work in this area there remain important issues that existing methods do not fully address.
One such issue is assessing uncertainty in which variables should be selected, particularly in settings involving very highly
correlated variables. Here we introduce a simple and computationally scalable approach to variable selection that helps
address this issue.

Highly correlated variables pose an obvious challenge to variable selection methods, simply because they are
hard to distinguish from one another. Indeed, in an extreme case where two variables (say,x1 andx2) are completely
correlated, it is impossible to claim, based on a regression analysis, that one should be selected as relevant rather than
the other. In some applications, such ambiguity causes few practical problems. Specifically, in some applications variable
selection is used only to help build an accurate predictor, in which case it suffices to arbitrarily select one of the two
identical variables (or both); prediction accuracy is unaffected by this choice. However, in other scientific applications,
variable selection is used as a means to help learn something about the world, and in those applications the ambiguity
created by highly correlated variables is more problematic because scientific conclusions depend onwhich variables
are selected. In these applications, it is crucial to acknowledge uncertainty in which variables should be selected. This
requiresmethods that can draw conclusions such as “eitherx1 orx2 is relevant andwe cannot decide which” rather
thanmethods that arbitrarily select one of the variables and ignore the other. While this may seem a simple goal, in
practicemost existing variable selectionmethods do not satisfactorily address this problem (see Section 2 for further
discussion). These shortcomingsmotivate our work here.

One particular application where these issues arise is genetic fine-mapping (e.g., Veyrieras et al., 2008; Maller
et al., 2012; Spain and Barrett, 2015; Huang et al., 2017; Schaid et al., 2018). The goal of fine-mapping is to identify the
genetic variants that causally affect some traits of interest (e.g., LDL cholesterol in blood, gene expression in cells). In
other words, themain goal of fine-mapping is to learn something about the world, rather than build a better predictor.
(This is not to say that predicting traits from genetic variants is not important; indeed, there is also a lot of work on
prediction of genetic traits, but this is not themain goal of fine-mapping.) Themost successful current approaches to
fine-mapping frame the problem as a variable selection problem, building a regression model in which the regression
outcome is the trait of interest, and the candidate predictor variables are the available genetic variants (Sillanpää and
Bhattacharjee, 2005). Performing variable selection in a regressionmodel identifies variants that may causally affect
the trait. Fine-mapping is challenging because the variables (genetic variants) can be very highly correlated, due to a
phenomenon called linkage disequilibrium (Ott, 1999). Indeed, typical studies contain many pairs of genetic variants with
sample correlations exceeding 0.99, or even equaling 1.
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Our approachbuilds onpreviousworkonBayesian variable selection in regression (BVSR) (Mitchell andBeauchamp,
1988; George and McCulloch, 1997), which has already been widely applied to genetic fine-mapping and related
applications (e.g., Meuwissen et al., 2001; Sillanpää and Bhattacharjee, 2005; Servin and Stephens, 2007; Hoggart et al.,
2008; Stephens and Balding, 2009; Logsdon et al., 2010; Guan and Stephens, 2011; Bottolo et al., 2011;Maller et al.,
2012; Carbonetto and Stephens, 2012; Zhou et al., 2013; Hormozdiari et al., 2014; Chen et al., 2015;Wallace et al.,
2015;Moser et al., 2015;Wen et al., 2016; Lee et al., 2018). BVSR is an attractive approach to these problems because it
can, in principle, assess uncertainty in which variables to select, evenwhen the variables are highly correlated. However,
applying BVSR in practice remains difficult for at least two reasons. First, BVSR is computationally challenging, often
requiring implementation of sophisticatedMarkov chainMonte Carlo or stochastic search algorithms (e.g., Bottolo and
Richardson, 2010; Bottolo et al., 2011; Guan and Stephens, 2011;Wallace et al., 2015; Benner et al., 2016;Wen et al.,
2016; Lee et al., 2018). Second, and perhapsmore importantly, the output fromBVSRmethods is typically a complex
posterior distribution— or samples approximating the posterior distribution— and this can be difficult to distill into
results that are easily interpretable.

Our work addresses these shortcomings of BVSR through several innovations. We introduce a new formulation
of BVSR, which we call the “Sum of Single Effects” (SuSiE) model. This model, while similar to existing BVSRmodels,
has a different structure that naturally leads to a simple, intuitive, and fast procedure for model fitting — Iterative
Bayesian Stepwise Selection (IBSS) —which is a Bayesian analogue of traditional stepwise selectionmethods (andwhich
enjoys important advantages over these traditional selectionmethods, as we explain below). We provide a principled
justification for this intuitive algorithm by showing that it optimizes a variational approximation to the posterior
distribution under the SuSiE model. Although variational approaches to BVSR already exist (Logsdon et al., 2010;
Carbonetto and Stephens, 2012), our new approach uses a completely different family of approximating distributions,
and providesmuchmore accurate inferences in settings with highly correlated variables.

A key feature of our method, which distinguishes it frommost existing BVSRmethods, is that it produces “Credible
Sets” of variables that quantify uncertainty in which variable should be selected when multiple, highly correlated
variables compete with one another. These Credible Sets are designed to be as small as possible while still each
capturing a relevant variable. Arguably, this is exactly the kind of posterior summary that one would like to obtain
fromMCMC-based or stochastic search BVSRmethods, but doing so would require non-trivial post-processing of their
output. In contrast, our method provides this posterior summary directly, andwith little extra computational effort.

The structure of this paper is as follows. Section 2 provides further motivation for our work, and brief background
on BVSR. Section 3 describes the new SuSiE model and fitting procedure. Section 4 uses simulations, designed to
mimic realistic genetic fine-mapping studies, to demonstrate the effectiveness of our approach compared with existing
methods. Section 5 illustrates the application of our methods to fine-mapping of genetic variants affecting splicing, and
Section 6 briefly highlights the promise (and limitations) of ourmethods for other applications such as change-point
problems. We endwith a discussion highlighting avenues for further work.

2 BACKGROUND
2.1 Amotivating toy example
Suppose the relationship between an n-vector y and an n ˆ p matrixX “ px1, . . . ,xp q, is modeled as a multiple
regression:

y “Xb` e (2.1)
e „ Nnp0,σ

2Inq,
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where b is a p-vector of regression coefficients, e is an n-vector of error terms, σ2 ą 0 is the residual variance, In is the
n ˆ n identity matrix, andNr pµ, Σq denotes the r -variate normal distribution withmean µ and variance Σ. For brevity,
wewill refer to variables j with non-zero effects (b j ‰ 0) as “effect variables”.

Assume now that exactly two variables are effect variables — variables 1 and 4, say— and that these two effect
variables are each completely correlated with another non-effect variable, sayx1 “ x2 andx3 “ x4. Further suppose
that no other pairs of variables are correlated. Here, because the effect variables are completely correlated with other
variables, it is impossible to confidently select the correct variables, even when n is very large. However, given sufficient
data it should be possible to conclude that there are (at least) two effect variables, and that:

pb1 ‰ 0 or b2 ‰ 0q and pb3 ‰ 0 or b4 ‰ 0q. (2.2)

Our goal, in short, is to provide methods that directly produce this kind of inferential statement. Although this example is
simplistic, it mimics the kind of structure that occurs in, for example, genetic fine-mapping applications, where it often
happens that an association can be narrowed down to a small set of highly correlated genetic variants, but not down to
an individual variant.

Most existing approaches to sparse regression do not provide statements like (2.2), nor do they attempt to do
so. For example, methods that maximize a penalized likelihood, such as the lasso (Tibshirani, 1996) or elastic net (EN;
Zou andHastie, 2005), select a single “best” combination of variables, andmake no attempt to assess whether other
combinations are also plausible. In our toy example, EN selects all four variables (1-4), implying b1 ‰ 0, b2 ‰ 0, b3 ‰ 0

and b4 ‰ 0, which is quite different from (2.2). Recently-developed selective inference approaches (Taylor andTibshirani,
2015) do not solve this problem, because they do not assess uncertainty inwhich variables should be selected; instead
they assess uncertainty in the coefficients of the selected variables within the selectedmodel. In our toymotivating
example, selective inferencemethods sometimes selects thewrong variables (inevitably, due to the complete correlation
with other variables) and then assigns them highly significant p values (seeWang et al., 2018, for an explicit example
accompanied by code). The p values are significant because, even though the wrong variables are selected, their
coefficients —within the (wrong) selectedmodel — can be estimated precisely. An alternative approach, which does
address uncertainty in variable selection, is to control the false discovery rate (FDR) among selected variables — for
example, using stability selection (Meinshausen and Bühlmann, 2010) or the knockoff filter (Barber and Candès, 2015).
However, in examples with very highly correlated variables no individual variable can be confidently declared an effect
variable, and so controlling the FDR among selected variables results in no discoveries, and not inferences like (2.2).

One approach to producing inferences like (2.2) is to reframe the problem, and focus on selecting groups of variables,
rather than individual variables. A simple version of this idea might first cluster the variables into groups of highly
correlated variables, and then perform some kind of “group selection” (Huang et al., 2012). However, while this could
work in our toy example, in general this approach requires ad hoc decisions about which variables to group together,
and howmany groups to create— an unattractive feature we seek to avoid. Amore sophisticated version of this idea is
to use hierarchical testing (Meinshausen, 2008; Yekutieli, 2008;Mandozzi and Bühlmann, 2016; Renaux et al., 2018),
which requires specification of a hierarchy on the variables, but avoids an a priori decision on where to draw group
boundaries. However, in applications where variables are not precisely arranged in a known hierarchy—which includes
genetic fine-mapping— this approach is also not entirely satisfactory. In numerical assessments shown later (Section 4),
we find that this approach can considerably overstate the uncertainty in which variables should be selected.

Another approach that could yield statements like (2.2), at least in principle, is the Bayesian approach to variable
selection (BVSR; see Introduction for references). BVSRmethods introduce a prior distribution on b that favours sparse
models (few effect variables), and then compute a posterior distribution assessing relative support for each combination
of variables. In our toy example, the posterior distribution would roughly have equal mass (« 0.25) on each of the
four equivalent combinations t1, 3u, t1, 4u, t2, 3u and t2, 4u. This posterior distribution contains exactly the information
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necessary to infer (2.2). Likewise, in more complex settings, the posterior distribution contains information that could,
in principle, be translated to simple statements analogous to (2.2). This translation is, however, highly non-trivial in
general. Consequently, most implementations of BVSR do not provide statements like (2.2), but rather summarize the
posterior distribution with a simpler but less informative quantity: themarginal posterior inclusion probability (PIP) of
each variable,

PIPj – Prpb j ‰ 0 |X,yq. (2.3)

In our example, PIP1 “ PIP2 “ PIP3 “ PIP4 « 0.5. While not inaccurate, the PIPs do not contain the information in
(2.2).

2.2 Credible Sets
To define ourmain goal more formally, we introduce the concept of a Credible Set (CS) of variables:
Definition 1. In the context of a multiple regression model, a level-ρ Credible Set is defined to be a subset of variables that
has probabilityě ρ of containing at least one effect variable (i.e., a variable with non-zero regression coefficient). Equivalently,
the probability that all variables in the Credible Set have zero regression coefficients isď 1´ ρ.

Our use of the term Credible Set here indicates that we have inmind a Bayesian inference approach, in which the
probability statements in the definition are statements about uncertainty in which variables are selected given the
available data andmodelling assumptions. One could analogously define a Confidence Set by interpreting the probability
statements as referring to the set, considered random.

Although the term Credible Set has been used in fine-mapping applications before, most previous uses either
assumed there was a single effect variable (Maller et al., 2012), or defined a CS as a set that contains all effect variables
(Hormozdiari et al., 2014), which is a very different definition (and, we argue, both less informative and less attainable).
Our definition here is closer to the “signal clusters” from Lee et al. (2018), and related to the idea of “minimal true
detection” inMandozzi and Bühlmann (2016).

With Definition 1 in place, our primary aim can be restated: we wish to report as many CSs as the data support,
each with as few variables as possible. For example, to convey (2.2) we would report two CSs, t1, 2u and t3, 4u. As a
secondary goal, wewould also like to prioritize the variables within each CS, assigning each a probability that reflects
the strength of the evidence for that variable being an effect variable. Ourmethods achieve both of these goals.

2.3 The single effect regressionmodel
Wenow describe the building block for our approach, the “Single Effect Regression” (SER) model, which we define as a
multiple regressionmodel in which exactly one of the p explanatory variables has a non-zero regression coefficient. This idea
was introduced in Servin and Stephens (2007) to fine-map genetic associations, and consequently has been adopted
and extended by others, including Veyrieras et al. (2008) and Pickrell (2014). Although of very narrow applicability, the
SERmodel is trivial to fit. Furthermore, when its assumptions hold, the SER provides exactly the inferences we desire,
including CSs. For example, if we simplify ourmotivating example (Section 2.1) to have a single effect variable— variable
1, for example — then the SER model would, given sufficient data, infer a 95% CS containing both of the correlated
variables, 1 and 2, with PIPs of approximately 0.5 each. This CS tells us that we can be confident that one of the two
variables has a non-zero coefficient, but we do not knowwhich one.

Specifically, we consider the following SERmodel, with hyperparameters for the residual variance, σ2, the prior
variance of the non-zero effect, σ20 , and the prior inclusion probabilities,π “ pπ1, . . . , πp q, in which πj gives the prior
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probability that variable j is the effect variable:

y “Xb` e (2.4)
e „ Nnp0,σ

2Inq (2.5)
b “ bγ (2.6)
γ „ Multp1,πq (2.7)
b „ N1p0,σ

2
0 q. (2.8)

Here,y is the n-vector of response data;X “ px1, . . . ,xp q is an nˆp matrix containing n observations of p explanatory
variables; b is a scalar representing the “single effect”; γ P t0, 1up is a p-vector of indicator variables; b is the p-
vector of regression coefficients; e is an n-vector of independent error terms; andMultpm,πq denotes themultinomial
distribution on class counts obtained whenm samples are drawnwith class probabilities given byπ. We assume that y
and the columns ofX have been centered to havemean zero, which avoids the need for an intercept term (Chipman
et al., 2001).

Under the SERmodel (2.4–2.8), the effect vector b has exactly one non-zero element (equal to b), so we refer to b as
a “single effect vector”. The element of b that is non-zero is determined by the binary vector γ , which also has exactly
one non-zero entry. The probability vectorπ determines the prior probability distribution onwhich of the p variables is
the effect variable. In the simplest case,π “ p1{p, . . . , 1{pq; we assume this uniform prior here for simplicity, but our
methods require only thatπ is fixed and known (so in fine-mapping one could incorporate different priors based on
genetic annotations; e.g., Veyrieras et al., 2008). To lighten notation, we henceforthmake conditioning onπ implicit.

2.3.1 Posterior under SERmodel
Given σ2 and σ20 , the posterior distribution on b “ γb is easily computed:

γ |X,y,σ2,σ20 „ Multp1,αq (2.9)
b |X,y,σ2,σ20 , γj “ 1 „ N pµ1j ,σ

2
1j q, (2.10)

whereα “ pα1, ¨ ¨ ¨ , αp q is the vector of PIPs, with αj – Prpγj “ 1 |X,y,σ2,σ20 q, and µ1j ,σ21j are the posterior mean
and variance of b given γj “ 1. Calculating these quantities simply involves performing the p univariate regressions of y
on columnsxj ofX , for j “ 1, . . . , p , as shown in Appendix A. Fromα, it is also straightforward to compute a level-ρ CS
(Definition 1), CSpα; ρq, as described inMaller et al. (2012), and detailed in Appendix A. In brief, this involves sorting
variables by decreasing αj , then including variables in the CS until their cumulative probability exceeds ρ.

For later convenience, we introduce a function, SER, that returns the posterior distribution for b under the SER
model. Since this posterior distribution is uniquely determined by the values of α, µ1 – pµ11, . . . , µ1p q and σ21 –

pσ211, . . . ,σ
2
1p q in (2.9–2.10), we canwrite

SERpX,y;σ2,σ20 q – pα,µ1,σ
2
1q. (2.11)

2.3.2 Empirical Bayes for SERmodel
Althoughmost previous treatments of the SERmodel assumeσ20 andσ2 arefixed and known,wenote here the possibility
of estimating σ20 and/or σ2 bymaximum-likelihood before computing the posterior distribution of b. This is effectively
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an Empirical Bayes approach. The log-likelihood for σ20 and σ2 under the SER,

`SERpy;σ20 ,σ2q – log ppy |X,σ20 ,σ2q, (2.12)

is available in closed form, and can bemaximized over one or both parameters (Appendix A).

3 THE SUM OF SINGLE EFFECTS REGRESSION MODEL

We now introduce a new approach to variable selection in multiple regression. Our approach is motivated by the
observation that the SER model provides simple inference if there is indeed exactly one effect variable; it is thus
desirable to extend the SER to allow for multiple variables. The conventional approach to doing this in BVSR is to
introduce a prior on b that allows for multiple non-zero entries (e.g., using a “spike-and-slab” prior; Mitchell and
Beauchamp, 1988). However, this approach no longer enjoys the convenient analytic properties of the SER model;
posterior distributions become difficult to compute accurately, and computing CSs is even harder.

Here we introduce a different approachwhich better preserves the desirable features of the SERmodel. The key
idea is simple: introducemultiple single-effect vectors, b1, . . . , bL , and construct the overall effect vector, b, as the sum
of these single effects. We call this the “Sum of Single Effects” (SuSiE) regressionmodel:

y “Xb` e (3.1)
e „ Nnp0,σ

2Inq (3.2)

b “
L
ÿ

l“1

bl (3.3)

bl “ γl b l (3.4)
γl „ Multp1,πq (3.5)
b l „ N1p0,σ

2
0l q. (3.6)

For generality, we have allowed the variance of each effect, σ20l , to vary among the components, l “ 1, . . . , L. The special
case in which L “ 1 recovers the SERmodel. For simplicity, we initially assume σ2 andσ2

0 “ pσ
2
01, . . . ,σ

2
0Lq are given,

and defer estimation of these hyperparameters to Section 3.1.3.
Note that if L ! p then the SuSiEmodel is approximately equivalent to a standard BVSRmodel in which L randomly

chosen variables have non-zero coefficients (see Proposition 5 in Appendix C for a formal statement). The main
difference is that with some (small) probability some of the single effects bl in the SuSiEmodel have the same non-zero
co-ordinates, and so the number of non-zero elements in b has some (small) probability of being less than L. Thus, at
most L variables have non-zero coefficients in this model. We discuss the choice of L in Section 3.3.

Although the SuSiEmodel is approximately equivalent to a standard BVSRmodel, its novel structure has twomajor
advantages. First, it leads to a simple, iterative and deterministic algorithm for computing approximate posterior
distributions. Second, it yields a simple way to calculate the CSs. In essense, because each bl captures only one effect,
the posterior distribution on each γl can be used to compute a CS that has a high probability of containing an effect
variable. The remainder of this section describes both these advantages, and other issues that may arise in fitting the
model.
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Algorithm 1 Iterative Bayesian stepwise selection (IBSS)
Require: DataX,y.
Require: Number of effects, L; hyperparameters σ2,σ2

0 .
Require: A function SERpX,y;σ2,σ20 q Ñ pα,µ1,σ1q that computes the posterior distribution for bl under the SER

model; see (2.11).
1: Initialize posterior means b̄l “ 0, for l “ 1, . . . , L. ŹOther initializations are possible (see Algorithm 4).
2: repeat
3: for l in 1, . . . , L do
4: r̄l Ð y ´X

ř

l 1‰l b̄l 1 . Ź Expected residuals without l th single effect.
5: pαl ,µ1l ,σ1l q Ð SERpX, r̄l ;σ2,σ20l q Ź Fit SER to residuals.
6: b̄l Ð αl ˝µ1l Ź “ ˝ ” denotes element-wisemultiplication.
7: until convergence criterion satisfied
returnα1,µ11,σ11, . . . ,αL ,µ1L ,σ1L .

3.1 Fitting SuSiE: Iterative Bayesian stepwise selection
A keymotivation for the SuSiEmodel (3.1–3.6) is that, given b1, . . . , bL´1, estimating bL involves simply fitting an SER
model, which is analytically tractable. This immediately suggests an iterative approach to fitting this model: at each
iteration use the SERmodel to estimate bl given current estimates of bl 1 , for l 1 ‰ l ; see Algorithm 1. This algorithm is
simple and computationally scalable, with computational complexityO pnpLq per outer-loop iteration.

We call Algorithm 1 “Iterative Bayesian Stepwise Selection” (IBSS) because it can be viewed as a Bayesian version of
stepwise selection approaches. For example, we can compare it with an approach referred to as “forward stagewise” (FS)
selection in Hastie et al. 2009, Section 3.3.3 (although subsequent literature often uses this term tomean something
slightly different), also known as “matching pursuit” (Mallat and Zhang, 1993). In brief, FS first selects the single “best”
variable among p candidates by comparing the results of the p univariate regressions. It then computes the residuals
from the univariate regression on this selected variable, then selects the next “best” variable by comparing the results
of univariate regression of the residuals on each variable. This process repeats, selecting one variable each iteration,
until some stopping criterion is reached.

IBSS is similar in structure to FS, but instead of selecting a single “best” variable at each step, it computes a
distribution onwhich variable to select by fitting the Bayesian SERmodel. Similar to FS, this distribution is based on the
results of the p univariate regressions; consequently each selection step in IBSS has the same computational complexity
as in FS,O pnpq. However, by computing a distribution on variables — rather than choosing a single best variable — IBSS
captures uncertainty about which variable should be selected at each step. This uncertainty is taken into account when
computing residuals by using amodel-averaged (posterior mean) estimate for the regression coefficients. In IBSS, we
use an iterative procedure, whereby early selections are re-evaluated in light of the later selections (as in “backfitting”;
Friedman and Stuetzle, 1981). The final output of IBSS is L distributions on variables, parameterized by pαl ,µ1l ,σ1l q,
for l “ 1, . . . , L, in place of the L variables selected by FS. Each distribution is easily summarized, for example, by a 95%
CS for each selection.

To illustrate, consider our motivating example (Section 2.1) with x1 “ x2, x3 “ x4, and with variables 1 and 4
having non-zero effects. To simplify the example, suppose that the effect of variable 1 is substantially larger than the
effect of variable 4. Then FS would first (arbitrarily) select either variable 1 or 2, and then select (again arbitrarily)
variable 3 or 4. In contrast, given enough data, the first IBSS update would select variables 1 and 2; that is, it would
assign approximately equal weights of 0.5 to variables 1 and 2, and small weights to other variables. The second IBSS
update would similarly select variables 3 and 4 (again, with equal weights of approximately 0.5). Summarizing these
results would yield two CSs, t1, 2u and t3, 4u, and the inference (2.2) is achieved. This simple example is intended only to
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sharpen intuition; later numerical experiments demonstrate that IBSS also works well in more realistic settings.

3.1.1 IBSS computes a variational approximation to the SuSiE posterior distribution
The analogy between the IBSS algorithm and the simple FS procedure emphasizes the intuitive and computational
simplicity of IBSS, but of course does not give it any formal support. We now provide a formal justification for IBSS.
Specifically, we show that it is a coordinate ascent algorithm for optimizing a variational approximation (VA) to the
posterior distribution for b1, . . . , bL under the SuSiEmodel (3.1–3.6). This result also suggests amethod for estimating
the hyperparameters σ2 andσ2

0 .
The idea behind VAmethods for Bayesian models (e.g., Jordan et al., 1999; Blei et al., 2017) is to find an approx-

imation qpb1, . . . , bLq to the posterior distribution ppost – ppb1, . . . , bL |yq by minimizing the Kullback-Leibler (KL)
divergence from q to ppost, written asDKLpq , ppostq, subject to constraints on q that make the problem tractable. Al-
thoughDKLpq , ppostq itself is hard to compute, it can be formulated in terms of an easier-to-compute function, F , known
as the “evidence lower bound” (ELBO):

DKLpq , ppostq “ log ppy |σ2,σ2
0q ´ F pq ;σ2,σ2

0q.

Because log ppy |σ2,σ2
0q does not depend on q , minimizing DKL over q is equivalent to maximizing F ; and since F is

easier to compute, this is how the problem is usually framed. See Appendix B.1 for further details. (Note that the ELBO
also depends on the data,X and y, but wemake this dependence implicit to lighten notation.)

We seek an approximate posterior, q , that factorizes as

qpb1, . . . , bLq “
L
ź

l“1

q l pbl q. (3.7)

Under this approximation, b1, . . . , bL are independent a posteriori. We make no assumptions on the form of q l ; in
particular, we do not require that each q l factorizes over the p elements of bl . This is a crucial difference from previous
VA approaches for BVSR (e.g., Logsdon et al., 2010; Carbonetto and Stephens, 2012), and it means that q l can accurately
capture strong dependencies among the elements of bl under the assumption that exactly one element of bl is non-zero.
Intuitively, each factor q l captures one effect variable, and provides inferences of the form that “weneedoneof variables
tA,B ,Cu, andwe are unsure about which one to select.” By extension, the approximation (3.7) provides inferences of
the form “we need to select one variable among the set tA,B ,Cu, one variable among the set tD , E , F ,Gu, and so on.”

Under the assumption that the VA factorizes as (3.7), finding the optimal q reduces to the following problem:

maximize
q1,...,qL

F pq1, . . . , qL ;σ2,σ2
0q. (3.8)

Although jointly optimizing F over q1, . . . , qL is hard, optimizing an individual factor, q l , is straightforward, and in fact
reduces to fitting an SERmodel, as formalized in the following proposition.

Proposition 1.

argmax
q l

F pq1, . . . , qL ;σ2,σ2
0q “ SERpX, rl ;σ2,σ20l q, (3.9)
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where r̄l denotes the expected value of the residuals obtained by removing the estimated effects other than l ,

r̄l – y ´X
ÿ

l 1‰l

b̄l 1 , (3.10)

and where b̄l denotes the expected value of bl with respect to the distribution q l .
For intuition, note that computing the posterior distribution for bl under (3.1 – 3.6), given the other effects bl 1 for

l 1 ‰ l , involves fitting a SER to the residuals y ´Xř

l 1‰l bl 1 . Now consider computing an (approximate) posterior
distribution for bl when bl 1 are not known, and we have approximations q l 1 to their posterior distributions. Proposition
1 states that we can solve for argmaxq l F pq1, . . . , qLq using a similar procedure, except that each bl 1 is replaced with the
(approximate) posterior mean b̄l 1 .

The following is an immediate consequence of Proposition 1:
Corollary 1. IBSS (Algorithm1) is a coordinate ascent algorithm formaximizing the ELBO, F , and equivalently for minimizing
the KL divergenceDKLpq , ppostq.
Further, as a consequence of being a coordinate ascent algorithm, IBSS converges to a stationary point of F under
conditions that are easily satisfied:
Proposition 2. Provided that 0 ă σ,σ0 ă 8 and πj ą 0 for all j “ 1, . . . , p , the sequence of iterates q generated by the
IBSS method (parameterized byα1,µ11,σ11, . . . ,αL ,µ1L ,σ1L ) converges to a limit point that is a stationary point of F .

The proof of Propositions 1 and 2 and Corollary 1 are given in Appendix B.

3.1.2 Contrast to previous variational approximations
A critical point is that the VA being computed by IBSS is new, and is completely different from previous “fully factorized”
VAs for BVSR (e.g., Logsdon et al., 2010; Carbonetto and Stephens, 2012). In settings with highly correlated variables,
the new VA produces results that are not only quantitatively different, but also qualitatively different from the fully
factorized VA. For example, in our motivating example (Section 2.1), the newVA provides statements like (2.2), whereas
the fully factorized VAs do not. Rather, a fully factorized VA often selects at most one of two identical variables without
adequately capturing uncertainty in which variable should be selected (Carbonetto and Stephens, 2012). This feature
makes the fully factorized VA unsuitable for applications where it is important to assess uncertainty inwhich variables
are selected.

More generally, the newVA computed by IBSS satisfies the following intuitive condition: when two variables are
identical, inferences drawn about their coefficients are identical (assuming the priors on their coefficients are the
same). Despite the simplicity of this condition, it is not satisfied by existing VAs, nor by point estimates from penalized
likelihood approaches with L0 or L1 penalty terms. (In fact, Zou andHastie 2005 use this condition asmotivation for
the elastic net, which ensures that point estimates for coefficients of identical variables are equal.) This property is
formalized in the following proposition.
Proposition 3. Consider applying the IBSS algorithm (Algorithm1) to a data set inwhich two columns ofX are identical; that
is,xj “ xk for some j ‰ k . Further suppose that the prior distributions on selecting these two variables are equal (πj “ πk ).
Then the approximate posterior computed by IBSS will be exchangeable in j , k ; that is, ifωj k : Òp Ñ Òp denotes the function
that permutes elements j and k of a p-vector, and q denotes the approximate posterior obtained from the IBSS algorithm, then

qpωj k pb1q, . . . ,ωj k pbLqq “ qpb1, . . . , bLq. (3.11)



WANG ET AL. 11

Proof. Since qpb1, . . . , bLq “ śL
l“1 q l pbl q, it suffices to show that each q l is exchangeable in j , k ; i.e., q l pωj k pbl qq “

q l pbl q for all l “ 1, . . . , L. This exchangeability is satisfied after every iteration of the IBSS algorithm because the
algorithm computes q l (parameterized byαl ,µ1l ,σ1l ) as the exact posterior distribution under an SERmodel (Step 5 of
Algorithm 1), and this posterior is exchangeable in j , k because both the prior and likelihood are exchangeable.

Because the exchangeability is satisfied after every iteration of IBSS, and not just at convergence, the result is
not sensitive to stopping criteria. By contrast, the corresponding EN property (Zou and Hastie, 2005) holds only at
convergence— for example, in numerical implementations of the ENmethod (e.g., the glmnetRpackage), the coefficient
estimates for identical variables can differ substantially. Similarly, MCMC-based implementations of BVSRmay satisfy
this exchangeability property only asymptotically.

3.1.3 Estimating σ2,σ2
0

Algorithm1canbeextended toestimate thehyperparametersσ2 andσ2
0 byadding steps tomaximizeF pq1, . . . , qL ;σ2,σ2

0q

over σ2 and/orσ2
0 . Estimating the hyperparameters bymaximizing the ELBO can be viewed as an EM algorithm (Demp-

ster et al., 1977) in which the E-step is approximate (Heskes et al., 2004; Neal andHinton, 1998).
Optimizing F over σ2 involves computing the expected residual sum of squares under the VA, which is straightfor-

ward; see Appendix B for details.
Optimizing F overσ2

0 “ pσ
2
0l , . . . ,σ

2
0Lq can be achieved bymodifying the step that computes the posterior distri-

bution for bl under the SER model (Step 4) to first estimate the hyperparameter σ20l in the SER model by maximum
likelihood; that is, by maximizing the SER likelihood (2.12) over σ20 , keeping σ2 fixed. This is a one-dimensional optimiza-
tion which is easily performed numerically (we used the R function optim).

Algorithm 4 in Appendix B extends Algorithm 1 to include both these steps.

3.2 Posterior inference: posterior inclusion probabilities and Credible Sets
Algorithm 1 provides an approximation to the posterior distribution of b under the SuSiE model, parameterized by
pα1,µ11,σ11q, . . . , pαL ,µ1L ,σ1Lq. From these results it is straightforward to compute approximations to various
posterior quantities of interest, including PIPs and CSs.

3.2.1 Posterior inclusion probabilities
Under the SuSiEmodel, the effect of explanatory variable j is bpj q :“ řL

l“1 b l j , which is zero if and only if b l j “ 0 for all
l “ 1, . . . , L. Under our VA the b l j are independent across l , and therefore

PIPj – Prpbpj q ‰ 0 |X,yq « 1´
ź

l PL
p1´αl j q. (3.12)

Here, we set L – tl : σ20l ą 0u to treat the case where some σ20l are zero, which can happen ifσ2
0 is estimated.

3.2.2 Credible Sets
Computing the sets CSpαl ; ρq (A.4), for l “ 1, . . . , L, immediately yields L CSs that satisfy Definition 1 under the VA to
the posterior.

If L exceeds the number of detectable effects in the data, then in practice many of the L CSs are large, often
containing themajority of variables. The intuition is that once all the detectable signals have been accounted for, the
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IBSS algorithm becomes very uncertain about which variable to include at each step, and so the distributionsα become
very diffuse. CSs that contain verymany uncorrelated variables are of essentially no inferential value—whether or not
they contain an effect variable— and so in practice it makes sense to ignore them. To automate this, in this paper we
discard CSs with “purity” less than 0.5, where we define purity as the smallest absolute correlation among all pairs of
variables within the CS. (To reduce computation for CSs containing over 100 variables, we sampled 100 variables at
random to estimate the purity.) The purity threshold of 0.5was chosen primarily for comparing with Lee et al. (2018),
who use a similar threshold in a related context. While any choice of threshold is somewhat arbitrary, in practice
we observed that most CSs are either very pure (ą0.95) or very impure (ă0.05), with intermediate cases being rare
(Figure S2), somost results are robust to this choice of threshold.

3.3 Choice of L
It may seem that SuSiEwould be sensitive to the choice of L. In practice, however, key inferences are often robust to
overstating L; for example, in our simulations below, the simulated number of effects was between 1 and 5, whereas
we still obtain good results with L “ 10. This is because, when L is larger than necessary, themethod is very uncertain
about where to place the extra effects — consequently, it distributes them broadly amongmany variables, and therefore
they are too diffuse to impact key inferences. For example, setting L to be larger than necessary inflates the PIPs of
many variables, but only slightly, and the extra components result in CSs with low purity.

While inferences are generally robust to overstating L, we also note that the Empirical Bayes version of ourmethod,
which estimatesσ2

0 , also effectively estimates the number of effects: when L is greater than the number of signals in the
data, themaximum likelihood estimate of σ20l will be zero or close to zero for many l , which in turn forces b l to zero. This
is closely related to the idea behind “automatic relevance determination” (Neal, 1996).

4 NUMERICAL COMPARISONS
We performed numerical comparisons on data generated to closely mimic our main motivating application: genetic
fine-mapping. Specifically, we generated data for fine-mapping of expression quantitative trait loci (eQTLs), which are
genetic variants associated with gene expression. We used these simulations to assess our methods, and compare
with state-of-the-art BVSRmethods that were specifically developed for this problem. We also compared against a
(frequentist) hierarchical testingmethod (Mandozzi and Bühlmann, 2016; Renaux et al., 2018).

In genetic fine-mapping,X is a matrix of genotype data, in which each row corresponds to an individual, and each
column corresponds to a genetic variant, typically a single nucleotide polymorphism (SNP). In our simulations, we used
the real human genotype data from n “ 574 genotype samples collected as part of the Genotype-Tissue Expression
(GTEx) project (GTEx Consortium, 2017). To simulate fine-mapping of cis effects on gene expression, we randomly
selected 150 genes out of theą 20, 000 genes on chromosomes 1–22, then assignedX to be the genotypes for genetic
variants nearby the transcribed region of the selected gene. For a given gene, between p “ 1,000 and p “ 12,000 SNPs
were included in the fine-mapping analysis; for more details on how SNPswere selected, see Appendix D.

These matricesX exhibit very high levels of correlations among variables; for a randomly chosen variable, the
median number of other variables with which its correlation exceeds 0.9 is 8; and the median number of other vari-
ables with which its correlation exceeds 0.99 is 1. Correspondingmeans are even larger — 26 and 8 other variables,
respectively — because some variables are strongly correlated with hundreds of other variables.

We generated synthetic outcomes y under themultiple regressionmodel (2.1), with assumptions on b specified by
two parameters: S , the number of effect variables; andφ, the proportion of variance in y explained byX (abbreviated
as “PVE”). Given S andφ, we simulated b and y as follows:
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(a) Sample the indices of the S effect variables, S, uniformly at random from t1, . . . , pu.
(b) For each j P S, independently draw b j „ N p0, 0.62q, and for all j R S, set b j “ 0.
(c) Set σ2 to achieve the desired PVE,φ; specifically, we solve for σ2 inφ “ VarpXbq

σ2`VarpXbq
, where Varp ¨ q denotes sample

variance.
(d) For each i “ 1, . . . , n , draw yi „ N pxi1b1 ` ¨ ¨ ¨ ` xi pbp ,σ

2q.

We generated data sets under two simulation scenarios. In the first scenario, each data set has p “ 1, 000 SNPs.
We generated data sets using all pairwise combinations of S P t1, . . . , 5u and φ P t0.05, 0.1, 0.2, 0.4u. These settings
were chosen to span typical expected values for eQTL studies. We simulated two replicates for each gene and for each
combination of S andφ. Therefore, in total we generated 2ˆ 150ˆ 5ˆ 4 “ 6,000 data sets for the first simulation
scenario.

In the second simulation scenario, we generated data sets withmore SNPs, ranging from 3,000 to 12,000 SNPs, and
to generate the outcomes y, we set S “ 10 andφ “ 0.3. We generated two replicates for each gene, resulting in a total
of 2ˆ 150 “ 300 data sets in the second simulation scenario.

4.1 Illustrative example
We begin with an example to illustrate that the IBSS algorithm (Algorithm 1) can perform well in a challenging fine-
mapping setting. This example is summarized in Figure 1.

We draw this example from one of our simulations in which the variable most strongly associated with y is not one
of the actual effect variables (in this particular example, there are two effect variables). This situation occurs because at
least one variable has moderate correlation with both effect variables, and these effects combine tomake its marginal
association stronger than themarginal associations of the individual effect variables. Standard forward selection in this
case would select the wrong variable in the first step; by contrast, the iterative nature of IBSS allows it to escape this
trap. Indeed, in this example IBSS yields two high-purity CSs, each containing one of the effect variables (Figure 1).

It is also notable that themost strongly associated variable does not appear in eitherCS. This illustrates thatmultiple
regression can sometimes result in very different conclusions than a marginal association analysis. Our manuscript
resource repository (Wang et al., 2018) includes an animation showing the iteration-by-iteration progress of the IBSS
algorithm.

4.2 Posterior inclusion probabilities
Next, we seek to assess the effectiveness of our methodsmore quantitatively. We focus initially on one of the simpler
tasks in BVSR: computing posterior inclusion probabilities (PIPs). Most implementations of BVSR compute PIPs, making
it possible to compare results across several implementations. Here we compare our methods (henceforth SuSiE,
implemented in R package susieR, version 0.4.29) with three other software implementations specifically developed
for genetic fine-mapping applications: CAVIAR (Hormozdiari et al., 2014, version 2.2), FINEMAP (Benner et al., 2016,
version 1.1) andDAP-G (Wen et al., 2016; Lee et al., 2018, git commit ef11b26). Thesemethods are all implemented
as C++ programs. They implement similar BVSR models, and differ in the algorithms used to fit these models and
the priors on the effect sizes. CAVIAR exhaustively evaluates all possible combinations of up to L non-zero effects
among the p variables. FINEMAP and DAP-G approximate this exhaustive approach by heuristics that target the
best combinations. Another important difference amongmethods is that FINEMAP and CAVIAR perform inference
using summary statistics computed from each data set — specifically, themarginal association Z scores and the p ˆ p
correlationmatrix for all variables —whereas, as we apply them here, DAP-G and SuSiE use the full data. The summary
statistic approach can be viewed as approximating inferences from the full data; see Lee et al. (2018) for discussion.
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F IGURE 1 Fine-mapping example to illustrate that IBSS algorithm can deal with a challenging case. Results are
from a simulated data set with p “ 1, 000 variables (SNPs). Two of the variables are effect variables, labeled as “SNP 1”
and “SNP 2” (in red). We chose this example from our simulations because the strongest marginal association is with a
non-effect variable, at position 780 on the x-axis; see the p values in the left-hand panel. Despite being a simple
algorithm, IBSS converges to a solution in which the two 95%CSs— represented by the dark blue and green open
circles in the right-hand panel — each contain a true effect variable. Additionally, neither CS contains the variable that
has the strongest marginal association. One CS contains only 3 SNPs (minimum pairwise absolute correlation, or purity,
is 0.85), whereas the other CS contains 37 very highly correlated variables (the purity is 0.97). In the latter CS, the
individual PIPs are small, but the inclusion of the 37 variables in this CS indicates, correctly, high confidence in one
effect variable among them.

For SuSiE, we set L “ 10 for all data sets generated in the first simulation scenario, and L “ 20 for the second
scenario. We assessed performance both estimating the hyperparameters σ2,σ2

0 , and fixing one or both of these
hyperparameters. Overall performance of these different approaches were similar, and here we show results when
σ2 was estimated, and σ20l was fixed to 0.1Varpyq (consistent with data applications in Section 5); other results are in
Supplementary Data (Figure S4, Figure S5). Parameter settings for other methods are given in Appendix D. We ran
CAVIAR and FINEMAP only on simulations with S ď 3 since thesemethods are computationally more intensive than
the others (particularly for larger S ).

Since thesemethods differ in their modelling assumptions, one should not expect their PIPs to be equal. Nonethe-
less, we found generally reasonably good agreement (Figure 2A). For S “ 1, the PIPs from all fourmethods agree closely.
For S ą 1, the PIPs from different methods are also highly correlated; correlations between PIPs from SuSiE and other
methods vary from 0.94 to 1 across individual data sets, and the number of PIPs differing bymore than 0.1 is always
small — the proportions vary from 0.013% to 0.2%. In the scatterplots, this agreement appears less strong because the
eye is drawn to the small proportion of points that lie away from the diagonal, but the vast majority of points lie on or
near the origin. In addition, all four methods produce reasonably well-calibrated PIPs (Figure S1).

The general agreement of PIPs from four different methods suggests that: (i) all four methods aremostly accurate
for computing PIPs for the data set sizes explored in our numerical comparisons; and (ii) the PIPs themselves are usually
robust to details of themodelling assumptions. Nonetheless, some non-trivial differences in PIPs are clearly visible from
Figure 2A. Visual inspection of these differences suggests that the SuSiE PIPsmay better distinguish effect variables
from non-effect variables, in that there appears a higher ratio of red-gray points below the diagonal than above the
diagonal. This is confirmed in our analysis of power versus False Discovery Rate (FDR), obtained by varying the PIP
threshold independently for eachmethod; at a given FDR, the SuSiE PIPs always yield higher power (Figure 2B).

Notably, even though SuSiE is implemented in R, its computations aremuch faster than the othermethods imple-
mented in C++: for example, in the data sets simulated with S “ 3, SuSiE is, on average, roughly 4 times faster than
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TABLE 1: Runtimes from data sets simulated
with S “ 3 (all runtimes are in seconds)
method mean min. max.
SuSiE 0.64 0.34 2.28
DAP-G 2.87 2.23 8.87
FINEMAP 23.01 10.99 48.16
CAVIAR 2907.51 2637.34 3018.52

DAP-G, 30 times faster than FINEMAP, and 4,000 times faster than CAVIAR (Table 1).
Because SuSiE computations scale linearly with data size (computational complexityO pnpLq per iteration) it can

easily handle data sets much larger than the ones in these simulations. To illustrate, running SuSiE (L “ 10) on two
larger simulated data sets — one with n “ 100, 000, p “ 500; another with n “ 1, 000, p “ 50, 000; each with 4 effect
variables — took 25s and 43s on amodern Linuxworkstation (see Appendix D.2 for details). This is competitive with
lasso, implemented in the glmnet R package, version 2.0.18, which with 10-fold cross-validation (and other parameters
at their defaults) took 82s for each data set.

In summary, in the settings considered here, SuSiE produces PIPs that are as ormore reliable than existing BVSR
methods, and does so at a fraction of the computational effort.

4.3 Credible Sets
Comparisonwith DAP-G
A key feature of SuSiE is that it yields multiple Credible Sets (CSs), each aimed at capturing an effect variable (Definition
1). The only other BVSRmethod that attempts something similar, as far aswe are aware, is DAP-G, which outputs “signal
clusters” defined by heuristic rules (Lee et al., 2018). Although the authors do not refer to their signal clusters as CSs,
and they do not give a formal definition of signal cluster, the intent of these signal clusters is similar to our CSs, and so
for brevity we henceforth refer to them as CSs.

We compared the level 95%CSs produced by SuSiE andDAP-G in several ways. First we assessed their empirical
(frequentist) coverage levels; that is, the proportion of CSs that contain an effect variable. Since our CSs are Bayesian
Credible Sets, 95%CSs are not designed, or guaranteed, to have frequentist coverage of 0.95 (Fraser, 2011). Indeed,
coverage will inevitably depend on simulation scenario; for example, in completely null simulations, in which the data
are simulated with b “ 0, every CS would necessarily contain no effect variable, and so the coverage would be zero
Nonetheless, under reasonable circumstances that include effect variables, onemight hope that the Bayesian CSswould
have coverage near the nominal levels. And, indeed, we confirmed this was the case: in the simulations, CSs from both

F IGURE 2 (preceding page) Evaluation of posterior inclusion probabilities (PIPs). Scatterplots in Panel A compare
PIPs computed by SuSiE against PIPs computed using other methods (DAP-G, CAVIAR, FINEMAP). Each point depicts a
single variable in one of the simulations: dark red points represent true effect variables, whereas light gray points
represent variables with no effect. The scatterplot in Panel B combine results across the first set of simulations. Panel B
summarizes power versus FDR from the first simulation scenario of. These curves are obtained by independently
varying the PIP threshold for eachmethod. The open circles in the left-hand plot highlight power versus FDR at PIP
thresholds of 0.9 and 0.95). These quantities are calculated as FDR – FPTP`FP (also known as the “false discovery
proportion”) and power – TPTP`FN , where FP, TP, FN and TN denote the number of False Positives, True Positives, FalseNegatives and True Negatives, respectively. (This plot is the same as a precision-recall curve after reversing the x-axis,
because precision “ TPTP`FP “ 1´ FDR, and recall = power.) Note that CAVIAR and FINEMAPwere run only on data
sets with 1´ 3 effect variables.
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F IGURE 3 Comparison of 95% credible sets (CS) from SuSiE andDAP-G. Panels showA) coverage, B) power, C)
median size andD) average squared correlation of the variables in each CS. These statistics are taken asmean over all
CSs computed in all data sets; error bars in Panel A show 2ˆ standard error. Simulations with 1–5 effect variables are
from the first simulation scenario, and simulations with 10 effect variables are from the second scenario.

methods typically had coverage slightly below 0.95, and in most cases above 0.90. (Figure 3; see Figure S3 for additional
results).

Having established that themethods produce CSs with similar coverage, we compared them by three other criteria:
(i) power (overall proportion of simulated effect variables included in a CS); (ii) average size (median number of variables
included in a CS) and (iii) purity (here, measured as the average squared correlation of variables in CS since this statistic
is provided by DAP-G). By all three metrics, the CSs from SuSiE are consistently an improvement over DAP-G—they
achieve higher power, smaller size, and higher purity (Figure 3).

Although the way that we construct CSs in SuSiE does not require that they be disjoint, we note that the CSs rarely
overlapped (after filtering out low purity CSs; see Section 3.2.2). Indeed, across the thousands of simulations, there was
only one example of two CSs overlapping.

Comparisonwith hierarchical testing
Finally, we compared our CSs with results produced by the R package hierinf (Renaux et al., 2018) (version 1.3.1),
which implements a frequentist approach to identifying significant clusters of variables based on hierarchical testing
(Meinshausen, 2008; Mandozzi and Bühlmann, 2016). In brief, this approach starts by assuming that the variables
are organized in a given hierarchy. Then, starting from the top of the hierarchy, it proceeds to test whether groups
of variables (clades in the hierarchy) contain at least one non-zero effect. Each time a group is deemed significant,
themethod proceeds to test clades in the next level of the hierarchy. The procedure ultimately reports the smallest
significant clades detected, where the significance criteria are designed to control the overall family-wise error rate
(FWER) at a pre-specified level, α . We note that FWER control is not guaranteedwhen p ą n and variables are highly
correlated (Mandozzi and Bühlmann, 2016), which is the situation in our simulations.

Although the theory for controlling FWER in hierarchical testing is elegant, genetic variants do not come in a
natural hierarchy, and so for fine-mapping the need to specify a hierarchy is a drawback. Here we use the cluster var

function from hierinf, which infers a hierarchical clustering. There is no simple correspondence between the level α
and (frequentist) coverage rates of the significant clusters, so selecting a suitable α is non-trivial; in our simulations, we
found that empirical coverage was typically close to 0.95when α “ 0.1, so we report results for α “ 0.1.

The results (Table 2) show that the hierinf clusters are substantially larger, and have lower purity than the CSs
from SuSiE, as well as DAP-G. For example, in simulations with 5 effect variables, the SuSiECSs have amedian size of 7
variables with an average r 2 of 0.97, whereas the hierinf clusters have amedian size of 54 variables with an average
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TABLE 2: Comparison of CSs from SuSiE andDAP-G to significant clusters from hierarchical inference (hierinf
software, with FWER level α “ 0.1). Results are averages across all data sets in the first simulation scenario.
#effects power coverage median size average r 2

SuSiE DAP-G hierinf SuSiE DAP-G hierinf SuSiE DAP-G hierinf SuSiE DAP-G hierinf
1 0.99 0.89 0.97 0.98 0.99 0.94 3 3 8 0.99 0.99 0.82
2 0.67 0.60 0.55 0.95 0.92 0.96 4 5 20 0.99 0.97 0.71
3 0.52 0.49 0.39 0.93 0.91 0.95 6 7 34 0.98 0.96 0.64
4 0.45 0.40 0.29 0.92 0.89 0.95 6 8 37 0.98 0.95 0.60
5 0.37 0.32 0.24 0.90 0.87 0.98 7 9 54 0.97 0.95 0.56

r 2 of 0.56. Further, the number of CSs reported by SuSiE andDAP-G is higher than the number of significant clusters
from hierinf.

We believe that themuch larger number of variables included in the hierinf clusters partly reflects a fundamental
limitation of the hierarchical approach to this problem. Specifically, by assuming a hierarchy that does not truly exist,
themethod artificially limits the clusters of variables it can report. This will sometimes force it to report clusters that
are larger than necessary. For example, with 3 variables, if variables 2 and 3 are grouped together at the bottom of the
hierarchy, then themethod could never report a cluster t1, 2u, representing the statement “either variable 1 or 2 is an
effect variable, but we cannot tell which,” even if the data support such an inference. Instead, it would have to report the
larger cluster, t1, 2, 3u.

5 APPLICATION TO FINE-MAPPING SPLICE QTLS
To illustrate SuSiE for a real fine-mapping problem, we analyzed data from Li et al. (2016) aimed at detecting genetic
variants (SNPs) that influence splicing (known as “splice QTLs”, sQTLs). These authors quantified alternative splicing
by estimating, at each intron in each sample, a ratio capturing how often the intron is used relative to other introns in
the same “cluster” (roughly, gene). The data involve 77,345 intron ratios measured on lymphoblastoid cell lines from
87 Yoruban individuals, together with genotypes of these individuals. Following Li et al. (2016), we preprocessed the
intron ratios by regressing out the first 3 principle components of thematrix of intron ratios; the intent is to control
for unmeasured confounders (Leek and Storey, 2007). For each intron ratio, we fine-mapped SNPswithin 100 kb of
the intron, which is approximately 600 SNPs on average. In short, we ran SuSiE on 77,345 data sets with n “ 87 and
p « 600.

To specify the prior variance σ20l , we first estimated typical effect sizes from the data on all introns. Specifically, we
performed univariate (SNP-by-SNP) regression analysis at every intron, and estimated the PVE of the top (strongest
associated) SNP. Themean PVE of the top SNP across all introns was 0.096, so we applied SuSiEwith σ20l “ 0.096Varpyq,
and with the columns ofX standardized to have unit variance. The residual variance parameter σ2 was estimated by
IBSS.

We then ran SuSiE to fine-map sQTLs at all 77,345 introns. After filtering for purity, this yielded a total of 2,652 CSs
(level 0.95) spread across 2,496 intron units. These numbers are broadly in line with the original study, which reported
2,893 significant introns at 10% FDR. Of the 2,652 CSs identified, 457 contain exactly one SNP, representing strong
candidates for being the causal variants that affect splicing. Another 239 CSs contain exactly two SNPs. Themedian
size of a CSwas 7, and themedian purity was 0.94.

The vast majority of intron units with a CS had exactly one CS (2,357 of 2,496). Thus, SuSiE could detect at most
one sQTL for most introns. Of the remainder, 129 introns yielded 2 CSs, 5 introns yielded 3 CSs, 3 introns yielded 4
CSs, and 2 introns yielded 5 CSs. This represents a total of 129` 10` 9` 8 “ 156 additional (“secondary”) signals that
would bemissed in conventional analyses that report only one signal per intron. Both primary and secondary signals
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were enriched in regulatory regions (Appendix E), lending some independent support that SuSiE is detecting real signals.
Although these data show relatively few secondary signals, this is a small study (n “ 87); in larger studies, the ability of
SuSiE to detect secondary signals will likely be greater.

6 AN EXAMPLE BEYOND FINE-MAPPING: CHANGE POINT DETECTION
Although our methods were motivated by genetic fine-mapping, they are also applicable to other sparse regression
problems. Hereweapply SuSiE to an example quite different fromfine-mapping: changepoint detection. This application
also demonstrates that the IBSS algorithm can sometimes produce a poor fit — due to getting stuck in a local optimum—
which was seldom observed in our fine-mapping simulations. We believe that examples where algorithms fail are just as
important as examples where they succeed— perhapsmore so— and that this example couldmotivate improvements.

We consider a simple change point model

yt “ µt ` e t , t “ 1, . . . ,T , (6.1)

where t indexes a dimension such as space or time, and the errors e t are independently normal with zero mean and
variance σ2. Themean vectorµ – pµ1, . . . , µT q is assumed to be piecewise constant; the indices t where changes toµ
occur, µt ‰ µt`1, are called the “change points.”

To capture change points being rare, we formulate the change point model as a sparsemultiple regression (2.1) in
whichX hasT ´ 1 columns, and the t th column is a step function with a step at location t ; that is,xst “ 0 for s ď t , and
xst “ 1 for all s ą t ). The t th element of b then determines the change in themean at position t , µt`1 ´ µt . Therefore,
the non-zero regression coefficients in this multiple regressionmodel correspond to change points inµ.

The designmatrixX in this setting has a very different structure from fine-mapping applications; the pT ´ 1q ˆ

pT ´ 1q correlation matrix gradually decays away from the diagonal, whereas the correlation structure in genetic
fine-mapping setting typically exhibits a “block-like” structure. (A side note on computation: by exploiting the special
structure ofX here, SuSiE computations can bemadeO pT Lq rather than theO pT 2Lq of a naive implementation; for
example thematrix-vector productXT y, naively anO pT 2q computation, can be computed as the cumulative sum of
the elements of the reverse of y, which is anO pT q computation.)

Change point detection has a wide range of potential applications, such as segmentation of genomes into regions
with different numbers of copies of the genome. Software packages in R that can be used for detecting change points
include changepoint (Killick and Eckley, 2014), DNAcopy (Seshan andOlshen, 2018; Olshen et al., 2004), bcp (Erdman
and Emerson, 2007) and genlasso (Tibshirani, 2014; Arnold and Tibshirani, 2016); see Killick and Eckley (2014) for a
longer list. Of these, only bcp, which implements a Bayesianmethod, quantifies uncertainty in estimated change point
locations, and bcp provides only PIPs, not CSs for change point locations. Therefore, the ability of SuSiE to provide CSs
is unusual, and perhaps unique, among existing change point detectionmethods.

To illustrate its potential for change point estimation, we applied SuSiE to a simulated example includedwith the
DNAcopy R package. In this example, all settings for running SuSiE remain unchanged from the fine-mapping simulations
(Section 4). The top label of Figure 4 shows results of applying SuSiE and DNAcopy to the data set. Bothmethods provide
accurate estimates of the change points; indeed all change point locations except the left-most one are recovered nearly
exactly. However, only SuSiE provides 95%CSs for each estimate of a change point location. And, indeed, SuSiE is most
uncertain about the left-most change point. All the true change points in this example are contained in a SuSiECS, and
every CS contains a true change point. This occurs even thoughwe set L “ 10 to be greater than the number of true
change points (7); the three extra CSs were filtered out because they contained variables that were very uncorrelated.
(To be precise, SuSiE reported 8 CSs after filtering, but two of the CSs overlapped and contained the same change point;
this observation of overlapping of CSs contrasts with the fine-mapping simulations in Section 4where overlapping CSs
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F IGURE 4 Illustration of SuSiE applied to two change point problems. The top panel shows a simulated example
with seven change points (the vertical black lines). The blue horizontal lines show themean function inferred by the
segmentmethod from the DNAcopyR package (version 1.56.0). The inference is reasonably accurate— all change points
except the left-most one are nearly exactly recovered— but provides no indication of uncertainty in the locations of the
change points. The red regions depict the 95%CSs for change point locations inferred by SuSiE; each of these CSs
contains a true change point. The bottom panel shows a simulated example with two change points in quick succession.
This example is intended to illustrate convergence of the IBSS algorithm to a (poor) local optimum. The black line shows
the fit from the IBSS algorithmwhen it is initialized to a null model in which there are no change points; this fit results in
no change points being detected. The red line also shows the result of running IBSS, but this time the fitting algorithm is
initialized to the truemodel with two change points. The latter accurately recovers both change points, and attains a
higher value of the objective function (´148.2 versus´181.8).

occurred very rarely.)

To demonstrate that IBSS can converge to a poor local optimum, consider the simulated example shown in the
bottom panel of Figure 4, which consists of two change points in quick succession that cancel each other out (the means
before and after the change points are the same). This example was created specifically to illustrate a limitation of
the IBSS procedure: IBSS can only introduce or update one change point at a time, and every update is guaranteed to
increase the objective, whereas in this example introducing one change point will make the fit worse. Consequently,
when SuSiE is run from a null initialization, IBSS finds no change points, and reports no CSs.

This poor outcome represents a limitation of the IBSS algorithm, not a limitation of the SuSiEmodel or the variational
approximation. To show this, we re-ran the IBSS algorithm, but initializing at a solution that contained the two true
change points. This yielded a fit with two CSs, each containing the one of the correct change points. This also resulted in
amuch improved value of the objective function (´148.2 versus´181.8). Better algorithms for fitting SuSiEmodels, or
more careful initializations of IBSS, will be needed to address this shortcoming,
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7 DISCUSSION
Wehave presented a simple new approach to variable selection in regression. Comparedwith existingmethods, the
main benefits of our approach are its computational efficiency, and its ability to provide CSs summarizing uncertainty in
which variables should be selected. Our numerical comparisons demonstrate that for genetic fine-mapping ourmethods
outperform existingmethods at a fraction of the computational cost.

Although our methods apply generally to variable selection in linear regression, further work may be required
to improve performance in difficult settings. In particular, while the IBSS algorithmworkedwell in our fine-mapping
experiments, for change point problemswe showed that IBSSmay converge to poor local optima. We have also seen
convergence problems in experiments with many effect variables (e.g. 200 effect variables out of 1,000). Such problems
may be alleviated by better initialization, for example using fits from convex objective functions (e.g. lasso) or from
more sophisticated algorithms for non-convex problems (Bertsimas et al., 2016; Hazimeh andMazumder, 2018). More
ambitiously, one could attempt to develop better algorithms to reliably optimize the SuSiE variational objective function
in difficult cases. For example, taking smaller steps each iteration, rather than full coordinate ascent, may help.

At its core, the SuSiEmodel is based on adding up simple models (SERs) to create more flexible models (sparse
multiple regression). This additive structure is the key to our variational approximations, and indeed our methods apply
generally to adding up any simple models for which exact Bayesian calculations are tractable, not only SER models
(Appendix B; Algorithm 3). These observations suggest connections with both additive models and boosting (e.g.,
Friedman et al., 2000; Freund et al., 2017). However, our methods differ frommost work on boosting in that each “weak
learner” (here, SERmodel) itself yields amodel-averaged predictor. Other differences include our use of backfitting,
the potential to estimate hyper-parameters bymaximizing an objective function rather than cross-validation, and the
interpretation of our algorithm as a variational approximation to a Bayesian posterior. Althoughwe did not focus on
prediction accuracy here, the generally good predictive performance ofmethods based onmodel averaging and boosting
suggest that SuSiE should work well for prediction as well as variable selection.

It would be natural to extend ourmethods to generalized linear models (GLMs), particularly logistic regression. In
genetic studies with small effects, Gaussianmodels are often adequate tomodel binary outcomes (e.g. Pirinen et al.,
2013; Zhou et al., 2013). However, in other settings this extensionmay bemore important. One strategy would be to
directly modify the IBSS algorithm, replacing the SER fitting procedure with a logistic or GLM equivalent. This strategy
is appealing in its simplicity, although it is not obvious what objective function the resulting algorithm is optimizing.
Alternatively, for logistic regression one could use the variational approximations developed by Jaakkola and Jordan
(2000).

For genetic fine-mapping, it would also be useful to modify our methods to deal with settings where only summary
data are available (e.g. the p univariate regression results). Many recent fine-mapping methods deal with this (e.g., Chen
et al., 2015; Benner et al., 2016; Newcombe et al., 2016) and ideas used by thesemethods can also be applied to SuSiE.
Indeed, our software already includes preliminary implementations for this problem.

Beyond genetic fine-mapping, one could consider applying SuSiE to related tasks, such as genetic prediction of
complex traits and heritability estimation (Yang et al., 2011). However, we do not expect SuSiE to provide substantial
improvements over existingmethods for these tasks. This is because, in general, the best existing approaches to these
problems do not make strict sparsity assumptions on the effect variables; they allow for models in whichmany (or all)
genetic variants affect the outcome (Meuwissen et al., 2001;Moser et al., 2015; Speed and Balding, 2014; Vilhjálmsson
et al., 2015; Zhou et al., 2013). Nonetheless, it is possible that the ideas introduced here for sparsemodelling could be
combinedwith existingmethods allowing non-sparse effects to improve prediction and heritability estimation, similar
to Zhou et al. (2013).

Finally, we are particularly interested in extending thesemethods to select variables simultaneously for multiple
outcomes (multivariate regression andmulti-task learning). Joint analysis of multiple outcomes should greatly enhance
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power and precision to identify relevant variables (e.g., Stephens, 2013). The computational simplicity of our approach
makes it particularly appealing for this complex task, and we are currently pursuing this direction by combining our
methods with those fromUrbut et al. (2018).

8 DATA AND RESOURCES
SuSiE is implemented in the R package susieR available at https://github.com/stephenslab/susieR. Source code and a
website detailing the analysis steps for numerical comparisons and data applications are available at ourmanuscript
resource repositoryWang et al. (2018), also available at https://github.com/stephenslab/susie-paper.
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O’Hara, R. B. and Sillanpää, M. J. (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian
Analysis, 4, 85–117.

Olshen, A. B., Venkatraman, E. S., Lucito, R. andWigler, M. (2004) Circular binary segmentation for the analysis of array-based
DNA copy number data. Biostatistics, 5, 557–572.

Ott, J. (1999) Analysis of human genetic linkage. Baltimore, MD: Johns Hopkins University Press, 3 edn.
Pickrell, J. K. (2014) Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Ameri-

can Journal of Human Genetics, 94, 559–573.
Pirinen, M., Donnelly, P. and Spencer, C. C. A. (2013) Efficient computation with a linear mixed model on large-scale data sets
with applications to genetic studies. Annals of Applied Statistics, 7, 369–390.
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Appendices
A DETAILS OF POSTERIOR COMPUTATIONS FOR THE SER MODEL
A.1 Bayesian simple linear regression
To derive posterior computations for the SERmodel (2.4–2.8), it helps to start with an even simpler linear regression
model:

y “ xb ` e

e „ Nnp0,σ
2Inq

b „ N1p0,σ
2
0 q.

Here, y is an n-vector of response data (centered to have mean zero), x is an n-vector containing values of a single
explanatory variable (similarly centered), e is an n-vector of independent error termswith variance σ2, b is the scalar
regression coefficient to be estimated, σ20 is the prior variance of b , and In is the n ˆ n identity matrix.

Given σ2 and σ20 , the posterior computations for this model are very simple; they can be conveniently written in
terms of the usual least-squares estimate of b , b̂ – pxTxq´1xTy, its variance s2 – σ2{pxTxq, and the corresponding z
score, z – b̂{s . The posterior distribution for b is

b |y,σ2,σ20 „ N1pµ1,σ
2
1 q,

where

σ21 px;σ2,σ20 q –
1

1{s2 ` 1{σ20
(A.1)

µ1px,y;σ2,σ20 q – pσ21 {s
2qb̂, (A.2)

and the Bayes Factor (BF) for comparing this model with the null model (b “ 0) is

BFpx,y;σ2,σ20 q –
ppy |x,σ2,σ20 q

ppy |x;σ2, b “ 0q

“

d

s2

σ20 ` s
2
exp

˜

z 2

2
ˆ

σ20

σ20 ` s
2

¸

. (A.3)

This expressionmatches the “asymptotic BF” ofWakefield (2009), but here, becausewe consider linear regression given
σ2, it is an exact expression for the BF, not just asymptotic.

A.2 The single effect regressionmodel
Under the SERmodel (2.4–2.8), the posterior distribution of pb1, . . . , bp q “ pbγ1, . . . , bγp q conditioned on σ2,σ20 ,π is
given in themain text (eqs. 2.9 and 2.10), and is reproduced here for convenience:

γ1, . . . , γp |X,y,σ
2,σ20 „ Multp1,αq

b |X,y,σ2,σ20 , γj “ 1 „ N1pµ1j ,σ
2
1j q,
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where the vector of posterior inclusion probabilities (PIPs),α “ pα1, . . . , αp q, can be expressed in terms of the simple
linear regression BFs (A.3),

αj “ Prpγj “ 1 |X,y,σ2,σ20 q “
πjBFpxj ,y;σ2,σ20 q

řp

j 1“1
πj 1BFpxj 1 ,y;σ2,σ20 q

,

where µ1j and σ21j are the posterior mean (A.2) and variance (A.1) from the simple regressionmodel of y onxj :

µ1j “ µ1pxj ,y;σ2,σ20 q
σ1j “ σ1pxj ;σ2,σ20 q.

Our algorithm requires the first and secondmoments of this posterior distribution, which are

Erb j |X,y,σ2,σ20 s “ αj µ1j

Erb2j |X,y,σ2,σ20 s “ αj pσ
2
1j ` µ

2
1j q.

A.3 Computing Credible Sets
As noted in themain text, under the SERmodel it is straightforward to compute a level-ρ CS (Definition 1), CSpα; ρq.
The procedure is given inMaller et al. (2012), and for convenience we describe it here as well.

Givenα, let r “ pr1, . . . , rp q denote the indices of the variables ranked in order of decreasingαj , so thatαr1 ą
αr2 ą ¨ ¨ ¨ ą αrp , and let Sk denote the cumulative sum of the k largest PIPs:

Sk –

k
ÿ

j“1

αrj .

Now take

CSpα; ρq – tr1, . . . , rk0u, (A.4)

where k0 “ mintk : Sk ě ρu. This choice of k0 ensures that the CS is as small as possible while satisfying the
requirement that it is a level-ρ CS.

A.4 Empirical Bayes approach
As noted in themain text, it is possible to take an Empirical Bayes approach to estimating the hyperparameters σ2,σ20 .
The likelihood is

`SERpy;σ20 ,σ2q – ppy |X,σ20 ,σ
2q “ p0py |σ

2q

p
ÿ

j“1

πj BFpxj ,y;σ2,σ20 q, (A.5)

where p0 denotes the distribution of y under the “null” that b “ 0 (i.e. Nnp0,σ2Inq), and BFpx,y;σ2,σ20 q is given in
eq. A.3. The likelihood (A.5) can bemaximized over one or both parameters using available numerical algorithms.
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B DERIVATION OF VARIATIONAL ALGORITHMS
B.1 Background: Empirical Bayes and variational approximation
Herewe introduce some notation and elementary results which are later applied to our specific application.

B.1.1 Empirical Bayes as a single optimization problem
Consider the followingmodel:

y „ ppy | b, θq

b „ g pbq,

where y represents a vector of observed data, b represents a vector of unobserved (latent) variables of interest, g P G
represents a prior distribution for b (which in the Empirical Bayes paradigm is treated as an unknown to be estimated)
and θ P Θ represents an additional set of parameters to be estimated. This formulation also includes as a special case
situations where g is pre-specified rather than estimated simply bymaking G contain a single distribution.

Fitting this model by Empirical Bayes typically involves the following two steps:

1. Obtain estimates pĝ , θ̂q of pg , θq bymaximizing the log-likelihood:

pĝ , θ̂q – argmax
g PG, θ PΘ

`pg , θ;yq,

where

`pg , θ;yq – log ş ppy | b, θq g pbq db.

2. Given these estimates, ĝ and θ̂, compute the posterior distribution for b,

p̂postpbq – ppostpb;y, g , θq “ ppb |y, g , θq 9 ppy | b, θq g pbq.

This two-step procedure can be conveniently expressed as a single optimization problem:

pp̂post, ĝ , θ̂q “ argmax
q , g PG, θ PΘ

F pq , g , θ;yq, (B.1)

with

F pq , g , θ;yq – `pg , θ;yq ´ DKLpq } p̂postq, (B.2)

andwhere

DKLpq || pq –

ż

qpbq log qpbq
ppbq

db

is the Kullback-Leibler (KL) divergence from q to p , and the optimization of q in (B.1) is over all possible distributions on b.
The function F (B.2) is often called the “evidence lower bound”, or ELBO, because it is a lower bound for the “evidence”
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(the log-likelihood). (This follows from the fact that KL divergence is always non-negative.)

This optimization problem (B.1) is equivalent to the usual two-step EB procedure, and this equivalence follows from
two observations:

1. Since the log-likelihood, ` , does not depend on q , we have

argmax
q

F pq , g , θ;yq “ argmin
q

DKLpq } p̂postq “ p̂post .

2. Since themaximum ofDKL with respect to q is zero for any pθ, g q, we have that maxq F pq , g , θ;yq “ `pg , θ;yq, and
as a result

pĝ , θ̂q “ argmax
g PG, θ PΘ

`pg , θ;yq “ argmax
g PG, θ PΘ

max
q

F pq , g , θ;yq.

B.1.2 Variational approximation

The optimization problem (B.1) is often intractable. The idea of variational approximation is to adjust the problem to
make it tractable, simply by restricting the optimization over all possible distributions on b to q P Q, where Q denotes a
suitably chosen class of distributions. Therefore, we seek to solve B.1 subject to the additional constraint that q P Q:

pp̂post, ĝ , θ̂q “ argmax
q PQ, g PG, θ PΘ

F pq , g , θ;yq. (B.3)

From the definition of F , it follows that optimizing F over q P Q (for a given g and θ) corresponds tominimizing the
KL divergence from q to the posterior distribution, and so can be interpreted as finding the “best” approximation to the
posterior distribution for b among distributions in the class Q. And the optimization of F over pg , θq can be thought of
as replacing the optimization of the log-likelihoodwith optimization of a lower bound to the log-likelihood (the ELBO).

We refer to solutions of the general problem (B.1), in which q is unrestricted, as “empirical Bayes (EB) solutions,”
andwe refer to solutions of the restricted problem (B.3) as “variational empirical Bayes (VEB) solutions.”

B.1.3 Form of ELBO

It is helpful to note that, by simple algebraic manipulations, the ELBO (B.2) can be decomposed as

F pq , g , θ;yq “ Eq
„

log ppy, b | g , θq
qpbq



“ Eq rlog ppy | b, θqs ` Eq
„

log g pbq
qpbq



. (B.4)
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B.2 The additive effects model
Wenow apply the above results to fitting an additivemodel,M, that includes the SuSiEmodel (3.1–3.6) as a special case:

y “
L
ÿ

l“1

µl ` e

e „ Nnp0,σ
2Inq

µl „ gl , independently for l “ 1, . . . , L,

where y “ py1, . . . , ynq, e “ pe1, . . . , enq,µl “ pµl 1, . . . , µl nq P Òn . We letMl denote the simpler model that is derived
fromM by settingµl 1 “ 0 for all l 1 ‰ l (i.e.,Ml is themodel that contains only the l th additive term), andwe use ` l to
denote themarginal log-likelihood for this simpler model:

` l py; gl ,σ2q – log ppy |Ml , gl ,σ
2q. (B.5)

The SuSiEmodel corresponds to the special case ofM whereµl “Xbl and gl is the “single effect prior” in (2.6–2.8).
Further, in this special case eachMl is a “single effect regression” (SER) model (2.4–2.8).

The key idea introduced in this section is that we can fitM by VEB providedwe can fit each simpler modelMl by
EB. To expand on this, consider fitting themodelM by VEB, where the restricted family Q is the class of distributions on
pµ1, . . . ,µLq that factorize overµ1, . . . ,µL ; that is, for any q P Q,

qpµ1, . . . ,µLq “
L
ź

l“1

q l pµl q.

For q P Q, using expression (B.4), we obtain the following expression for the ELBO, F :

F pq, g ,σ2;yq “ ´ n
2
logp2πσ2q ´ 1

2σ2
Eq “‖y ´řL

l“1µl ‖
2
‰

`

L
ÿ

l“1

Eq l
„

log gl pµl q
q l pµl q



, (B.6)

in which ‖ ¨ ‖ denotes the Euclidean norm, g denotes the priors pg1, . . . , gLq, and q is shorthand for the collection of
factors pq1, . . . , qLq. The expected value in the second term of (B.6) is the expected residual sumof squares (ERSS) under
the variational approximation q , and depends on q only through its first and secondmoments. Indeed, if we denote the
posterior first and secondmoments by

µ̄l i – Eq l rµl i s (B.7)
Ďµ2
l i

– Eq l
“

µ2l i
‰

, (B.8)

andwe define µ̄l – pµ̄l 1, . . . , µ̄l nq,Ďµ2l – p
Ďµ2
l 1
, . . . , Ďµ2

l n
q, µ̄ – pµ̄1, . . . , µ̄Lq,Ďµ2 – p

Ďµ21, . . . ,
Ďµ2
L
q, then we have that

ERSSpy, µ̄,Ďµ2q “ Eq “‖y ´řL
l“1µl ‖

2
‰

“ ‖y ´
řL
l“1 µ̄l ‖

2 `

L
ÿ

l“1

n
ÿ

i“1

Varrµl i s, (B.9)

where Varrµl i s “ Ďµ2
l i
´ µ̄2

l i
. This expression follows from the definition of the expected residual sum of squares, and

independence across l “ 1, . . . , L, after some algebraic manipulation; see Section B.7.
FittingM by VEB involves optimizing F in (B.6) over q, g ,σ2. Our strategy is to apply “coordinate ascent” updates
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Algorithm 2Coordinate ascent for fitting additivemodelM by VEB (outline)
1: for t in 0, 1, 2, . . . do
2: for l in 1, . . . , L do
3: pq l , gl q Ð argmaxq l ,gl F pq, g ,σ2;yq
4: σ2 Ð argmaxσ2 F pq, g ,σ2;yq

Algorithm 3Coordinate ascent for fitting additivemodelM by VEB
Require: Initial settings of σ2 and gl , µ̄l , for l “ 1, . . . , L.
1: for t in 0, 1, 2, . . . do
2: r̄l Ð y ´

řL
l“1 µl ŹCompute expected residuals.

3: for l in 1, . . . , L do
4: r̄l Ð r̄ ´ µ̄l ŹRemove l th effect from residuals.
5: gl Ð argmax ` l pr̄l ; gl ,σ2q Ź EB update of gl (optional).
6: Compute posterior distribution q l pµl q “ ppµl | r̄l ,Ml , gl ,σ

2q.
7: µ̄l Ð Eq l rµl s
8: Ďµ2

l
Ð Eq l rµ2l s

9: r̄Ð r̄l ` µ̄l ŹUpdate expected residuals.
10: σ2 Ð ERSSpy, µ̄,Ďµ2q{n ŹUpdate σ2 (optional); see (B.9).

for each pq l , gl q, for l “ 1, . . . , L, while keeping other elements of q, g fixed, andwith a separate optimization step for
σ2 with q, g fixed. This strategy is summarized in Algorithm 2.

The update for σ2 in Algorithm 2 is easily obtained by taking partial derivative of (B.6), setting to zero, and solving
for σ2, giving

σ̂2 –
ERSSpy, µ̄,Ďµ2q

n
. (B.10)

The update for q l , gl corresponds to finding the EB solution for the simpler (single effect) modelMl in which the
data y are replacedwith the expected residuals,

r̄l – Eq rrl s – Eq “y ´ř

l 1‰l µl 1
‰

“ y ´
ř

l 1‰l µ̄l 1 .

The proof of this result is given in the next section (Proposition 4).
Substituting these ideas into Algorithm 2 yields Algorithm 3, which generalizes the IBSS algorithm (Algorithm 1)

given in themain text.

B.3 Special case of SuSiEmodel
The SuSiEmodel is a special case of the above additive effects model whenµl “Xbl . In this case,Ml is the SERmodel,
and the first and secondmoments ofµl are easily found from the first and secondmoments of bl :

Erµl i s “ E“řp
j“1

xi j b l j
‰

“
řp
j“1

xi j Erb l j s
Erµ2l i s “ E

“

p
řp
j“1

xi j b l j q
2
‰

“
řp
j“1

x2
i j
Erb2

l j
s.
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Algorithm 4 Iterative Bayesian stepwise selection (extended version)
Require: DataX,y.
Require: Number of effects, L; initial estimates of hyperparameters σ2,σ2

0 .
Require: A function SERpX,y;σ2,σ20 q Ñ pα,µ1,σ1q that computes the posterior distribution for bl under the SER

model; see (2.11).
Require: Initial setting of b̄l , an estimate of the posterior mean of bl , for l “ 1, . . . , L.
1: repeat
2: r̄Ð y ´X

řL
l“1 b̄l . ŹCompute expected residuals.

3: for l in 1, . . . , L do
4: r̄l Ð r̄ `Xb̄l ŹRemove l th single effect from residuals.
5: σ20l Ð argmaxσ2

0
`SERpr̄l ;σ20 ,σ2q Ź EB update of σ2

l
(optional); see (A.5).

6: pαl ,µ1l ,σ1l q Ð SERpX, r̄l ;σ2,σ20l q Ź Fit SER to residuals.
7: b̄l Ð αl ˝µ1l Ź “ ˝ ” denotes element-wisemultiplication.
8: Ďb2

l
Ð αl ˝ pσ

2
1l `µ

2
1l q ŹCompute posterior secondmoments.

9: r̄Ð r̄l ´Xb̄l ŹUpdate expected residuals.
10: σ2 Ð ERSSpy, b̄,Ďb2q{n . ŹUpdate σ2 (optional).
11: until convergence criterion satisfied

return σ2,σ2
0 ,α1,µ11,σ11, . . . ,αL ,µ1L ,σ1L .

The expression for the secondmoment simplifies because only one element of bl is non-zero under the SERmodel, and
so b l j b l j 1 “ 0 for any j ‰ j 1 . Because of this, we can easily formulate ERSSpy, µ̄,Ďµ2q as a function of the first and second
moments of bl —denoting this as ERSSpy, b̄,Ďb2q—and Algorithm 3 can be implemented using posterior distributions of
b instead of posterior distributions ofµ.

For completeness, we give this algorithm, which is Algorithm 4. This algorithm is the same as the IBSS algorithm in
themain text (Algorithm 1), with additional steps for fitting the hyperparameters σ2 andσ2

0 . This is the algorithm imple-
mented in the susieR software. The step to update σ20l is a one-dimensional optimization problem; we implemented
this step using the R function optim, which finds a stationary point of the likelihood surface with respect to σ20l . The
algorithm terminates when the increase in the ELBO between successive iterations is smaller than a small non-negative
number, δ (set to 0.001 unless otherwise stated). This is a commonly used stopping criterion in algorithms for fitting
variational approximations.

B.4 Update for q l , g l in additive effects model is EB solution for simpler model,Ml

Here we establish that the update to q l , gl in Algorithm 2 can be implemented as the EB solution forMl (Steps 5 and 6
in Algorithm 3). This result is formalized in the following proposition, which generalizes Proposition 1 in themain text.
Proposition 4. The q l , gl that maximizes F in (B.6), the ELBO for the additive model, M, can be found by maximizing the
ELBO for the simpler model,Ml , in which the observed responses y are replaced by the expected residuals, r̄l :

argmax
q l ,gl

F pq, g ,σ2;yq “ argmax
q l ,gl

Fl pq l , gl ,σ
2; r̄l q,

where µ̄l is the vector of posterior mean effects defined above (see eq. B.7), and we define

Fl pq l , gl ,σ
2;yq “ ´ n

2
logp2πσ2q ´ 1

2σ2
Eq l

“

‖y ´µl ‖2
‰

` Eq l
„

log gl pµl q
q l pµl q



. (B.11)
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Proof. Omitting terms in the expression for F (from eq. B.6) that do not depend on q l , gl (these terms are captured by
“const”), we have

F pq, g ,σ2;yq “ ´ 1

2σ2
Eq

”

prl ´µl q
T prl ´µl q

ı

` Eq l
„

log gl pµl q
q l pµl q



` const

“ ´
1

2σ2
Eq

”

´2rTl µl `µ
T
l µl

ı

` Eq l
„

log gl pµl q
q l pµl q



` const

“ ´
1

2σ2
Eq l

”

´2r̄Tl µl `µ
T
l µl

ı

` Eq l
„

log gl pµl q
q l pµl q



` const
“ Fl pq l , gl ,σ

2; r̄l q ` const.

Further note that the optimization of Fl does not restrict q l , so themaximum yields the exact EB solution forM l

(refer to Section B.1.1); that is, q l pµl q “ ppµl | r̄l ,Ml , gl ,σ
2q at themaximum.

B.5 Convergence of IBSS algorithm
B.5.1 Proof of Corollary 1
Proof. Step 5 of Algorithm 1 is simply computing the right-hand side of (3.9), in which the posterior distribution is
determined by parametersαl ,µ1l ,σ1l . Therefore, by Proposition 1, it is a coordinate ascent step for optimizing the l th
coordinate of F pq1, . . . , qL ;σ2,σ2

0q in which q l is determined by the parametersαl ,µ1l ,σ1l .

B.5.2 Proof of Proposition 2
Proof. ByProposition 2.7.1 of Bertsekas (1999), the sequence of iteratesq converges to a stationary point of F provided
that argmaxq l ,gl Fl pq l , gl ,σ2; r̄l q is uniquely attained for each l . WhenMl is the SERmodel andµl “Xbl , the lower
bound Fl (B.11) is

Fl pq l , gl ,σ
2;yq “ ´ n

2
logp2πσ2q ´ ‖y ´Xb̄‖2

2σ2
`

‖Xb̄‖2

2σ2
´

1

2σ2

p
ÿ

j“1

xTj xj αj pµ
2
1j ` σ

2
1j q

`

p
ÿ

j“1

αj

2

«

1` log σ
2
1j

σ20
´
µ21j ` σ

2
1j

σ20

ff

`

p
ÿ

j“1

αj log πj
αj
,

To lighten notation in the above expression, the l subscript is omitted from the quantities α “ pα1, . . . , αp q, µ1 “
pµ11, . . . , µ1p q and σ1 “ pσ11, . . . ,σ1p q specifying the SER approximate posterior, q l , and likewise for the vector of
posterior means, b̄ – b̄l with elements b̄ j “ αj µ1j . Taking partial derivatives of this expression with respect to the



WANG ET AL. 9

parametersα,µ1 andσ1, themaximum can be expressed as the solution to the following system of equations:

αj

«

1

σ2
1j

´

˜

xT
j
xj

σ2
`

1

σ20

¸ff

“ 0 (B.12)

αj

«

µ1j

σ2
1j

´
pXT yq

σ2

ff

“ 0 (B.13)

logαj ´ log πj ´ log σ1j
σ0
´

µ21j

2σ2
1j

` λ “ 0, (B.14)

where λ is an additional unknown, set so that α1 ` ¨ ¨ ¨ ` αp “ 1 is satisfied. The solution to this set of equations is finite
and unique if 0 ă σ,σ0 ă 8 and πj ą 0 for all j “ 1, . . . , p . Also note that the solution to (B.12–B.14) recovers the
posterior expressions for the SERmodel given in Appendix A.2.

B.6 Computing the evidence lower bound
Although not strictly needed to implement Algorithms 3 and 4, it can be helpful to compute the objective function, F
(e.g., to monitor the algorithm’s progress, or to compare solutions). Here we outline a practical approach to computing
F .

Refer to the expression for the ELBO, F , given in (B.6). Computing the first term is straightforward. The second
term is the ERSS (B.9). The third term can be computed from themarginal log-likelihoods ` l in (B.5), and computing this
is straightforward for the SERmodel, involving a sum over the p possible single effects (see eq. A.5). This is shown by the
following lemma:

Lemma 1. Let q̂ l – argmaxq Fl pq l , gl ,σ2; r̄l q. Then

Eq̂ l
„

log gl pµl q
q̂ l pµl q



“ ` l pr̄l ; gl ,σ2q ` n

2
logp2πσ2q ` 1

2σ2
Eq̂ l ‖r̄l ´µl ‖2 . (B.15)

Proof. Rearranging (B.11), and replacing y with r̄l , we have

Eq l
„

log gl pµl q
q l pµl q



“ Fl pq l , gl ,σ
2; r̄l q ` n

2
logp2πσ2q ` 1

2σ2
Eq l ‖r̄l ´µl ‖2 . (B.16)

The result then follows from observing that Fl is equal to ` l at the maximum, q l “ q̂ l ; that is, Fl pq̂ l , gl ,σ2; r̄l q “
` l pr̄l ; gl ,σ2q.

B.7 Expression for the expected residual sum of squares (ERSS)
The expression (B.9) is derived as follows:

ERSSpy, µ̄,Ďµ2q “ Eq “‖y ´řL
l“1 µl ‖

2
‰

“ yT y ´ 2yT
L
ÿ

l“1

µ̄l `
L
ÿ

l“1

L
ÿ

l 1“1

µ̄Tl µ̄l 1 ´
L
ÿ

l“1

µ̄Tl µ̄l `
L
ÿ

l“1

Eq l rµTl µl s

“ ‖y ´
řL
l“1µ̄l ‖

2 `

L
ÿ

l“1

n
ÿ

i“1

Varrµl i s,
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where Varrµl i s “ Ďµ2
l i
´ µ̄2

l i
.

C CONNECTING SUSIE TO STANDARD BVSR
When L ! p , the SuSiEmodel (3.1–3.6) is closely related to a standard BVSRmodel in which a subset of L regression
coefficients are randomly chosen to have non-zero effects.

Tomake this precise, consider the following regressionmodel:

y “Xb` e

e „ Nnp0,σ
2Inq

with n observations and p variables, so that b is a p-vector. Let ΠstandardL,p p ¨ ;σ20 q denote the prior distribution on b
that first randomly selects a subset S Ă t1, . . . , pu uniformly among all `pL

˘ subsets of cardinality |S | “ L, and then
randomly samples the non-zero values bS – tb j : j P Su independently from N1p0,σ

2
0 q, setting the other values

bS̄ :“ tb j : j R Su to 0. (This is a version of the prior considered by Castillo et al. 2015, with |S | “ L.) Further, let
ΠsusieL,p p ¨ ;σ20 q denote the prior distribution on b induced by the SuSiE model (3.1–3.6) with identical prior variances
σ2
l 0 “ σ20 for all l “ 1, . . . , L.
Proposition 5. With L fixed, letting p Ñ8, the SuSiE prior is equivalent to the standard prior. Specifically, for any eventA,

lim
pÑ8

´

ΠsusieL,p pA;σ20 q ´ ΠstandardL,p pA;σ20 q
¯

“ 0.

Proof. Fix L and p , and let B denote the event that the L vectors γ1, . . . ,γL in the SuSiEmodel are distinct from one
another. Conditional on B , it is clear from symmetry that the SuSiE prior exactly matches the standard prior; that is,
ΠsusieL,p pA |Bq “ ΠstandardL,p pAq, dropping notational dependence on σ20 for simplicity. Thus,

ΠsusieL,p pAq ´ ΠstandardL,p pAq “ ΠsusieL,p pAq ´ ΠsusieL,p pA |Bq

“ ΠsusieL,p pA |BqPrL,p pBq ` ΠsusieL,p pA | B̄qPrL,p pB̄q ´ ΠsusieL,p pA |Bq,

where the last line follows from the law of total probability. The result then follows from the fact that the probability
PrL,p pBq Ñ 1 as p Ñ8:

PrL,p pBq “ rp{psrpp ´ 1q{psrpp ´ 2q{ps ¨ ¨ ¨ rpp ´ L ` 1q{ps Ñ 1 as p Ñ8.

D SIMULATION DETAILS
D.1 Simulated data
For the numerical simulations of eQTL fine-mapping in Section 4, we used n “ 574 human genotypes collected as part of
the Genotype-Tissue Expression (GTEx) project (GTEx Consortium, 2017). Specifically, we obtained genotype data from
whole-genome sequencing, with imputed genotypes, under dbGaP accession phs000424.v7.p2. In our analyses, we
only included SNPswithminor allele frequencies 1% or greater. All reported SNP base-pair positions were based on
Genome Reference Consortium human genome assembly 38.
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To select SNPs nearby each gene, we considered two SNP selection schemes in our simulations: (i) all SNPs within 1
Megabase (Mb) of the gene’s transcription start site (TSS), and (ii) the p “ 1, 000 SNPs closest to the TSS. Since the GTEx
data set contains a very large number of SNPs, the 1,000 closest SNPs are always less than 0.4Mb away from the TSS,
irrespective of the gene considered. Selection scheme (i) yields genotypematricesX with at least p “ 3,022 SNPs and
at most p “ 11,999 SNPs, with an average of 7,217 SNPs.

D.2 Software and hardware specifications for numerical comparisons study
In CAVIAR, we set all prior inclusion probabilities to 1{p tomatch the default settings used in othermethods. In CAVIAR
and FINEMAP, we set the maximum number of effect variables to the value of S that was used to simulate the gene
expression data. Themaximum number of iterations in FINEMAPwas set to 100,000 (which is the default in FINEMAP).
We estimate σ2 in SuSiE for all simulations.

All computations were performed on Linux systemswith Intel Xeon E5-2680 v4 (2.40 GHz) processors. We ran
SuSiE in R 3.5.1, with optimizedmatrix operations provided by the dynamically linkedOpenBLAS libraries. DAP-G and
CAVIARwere compiled from source using GCC 4.9.2, and pre-compiled binary executables, available from the author’s
website, were used to run FINEMAP. The result was averaged over 300 data-sets.

E FUNCTIONAL ENRICHMENT OF SPLICE QTL FINE-MAPPING
To strengthen results of Section 5we provide evidence that splice QTLs identified by SuSiE are enriched in functional
genomics regions, thus likely to have true causal effects. To perform this analysis we labelled one CS at each intron
the “primary” CS, and we chose the CS with highest purity at each intron as the primary CS; remaining CSs at each
intron (if any) were labelled “secondary” CSs. We then tested both primary and secondary CSs for enrichment of SNPs
with various biological annotations, by comparing SNPs inside these CSs (with PIPą 0.2) against random control SNPs
outside CSs.

We used the same annotations in our enrichment analysis as Li et al. (2016). Thesewere: LCL-specific histonemarks
(H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, H4K20me1),
DNase I hypersensitive sites, transcriptional repressor CTCF binding sites, RNA polymerase II (PolII) binding sites and
extended splice sites (defined as 5bp up/down-stream of intron start site and 15bp up/down-stream of intron end site),
and intron and coding annotations.

Figure S6 shows the enrichments in both primary and secondary CSs, for annotations that were significant at
p-value ă 10´4 in the primary signals (Fisher’s exact test, two-sided). The strongest enrichment in both primary
and secondary signals was for extended splice sites (odds ratio« 5 in primary signals), which is reassuring given that
these results are for splice QTLs. Other significantly enriched annotations in primary signals include PolII binding,
several histonemarks, and coding regions. The only annotation showing a significant depletion was introns. Results for
secondary signals were qualitatively similar to those for primary, though all enrichments are less significant due to the
much smaller numbers of secondary CSs.
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SupplementaryMaterials

F IGURE S1 Assessment of PIP calibration. Variables across all simulations were grouped into bins according to
their reported PIP (using 20 equal bins from 0 to 1). Shown on the plot are themean reported PIP for each bin (X-axis)
against the the empirical proportion of effect variables in that bin (Y-axis). A well calibratedmethod should produce
points near the y “ x line (red). Gray vertical lines show˘2 standard errors for the empirical proportions in each bin.

F IGURE S2 Distribution of purity for 95%CS sets, for different number of effect variables.
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F IGURE S3 Assessment of CS coverage. Coverage were set to nominal levels 75%–99% (X-axis), and the
corresponding empirical coverage were computed (Y-axis). Consistent with observation in Figure 3, coverage became
lower asmore weaker signals were analyzed.

F IGURE S4 Comparisons of Posterior Inclusion Probabilities (PIPs) with SuSiE prior variance estimated. Panel
A directly compares PIPs with DAP-G. Panel B show power vs FDR curve for different methods.
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F IGURE S5 Comparison of 95% credible sets (CS). Same plot as Figure 3, but prior varianceσ2
0 were estimated forSuSiE rather than fixing to σ20l “ 0.1.

F IGURE S6 Results of enrichment analysis for spliceQTLs. The plot shows the estimated odds ratio,˘ 2 standard
errors, for each annotation, obtained by comparing the annotations of SNPs inside primary/secondary CSs against
random control SNPs outside CSs (see text for definitions of primary and secondary). The p-values are from two-sided
Fisher’s exact test.


