
 1 

Ageing affects DNA methylation drift and transcriptional cell-to-cell 1 

variability in muscle stem cells 2 

 3 

Authors: Irene Hernando-Herraez1*, Brendan Evano2,3,4*, Thomas Stubbs1*, Pierre-Henri 4 

Commere5, Stephen Clark1, Simon Andrews1, Shahragim Tajbakhsh2,3 #, Wolf Reik1 # 5 

	  6 

Affiliations: 7 

1 Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom 8 

2 Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut 9 

Pasteur, 25 rue du Dr. Roux, 75015, Paris, France. 10 

3 CNRS UMR 3738, Institut Pasteur, Paris 75015, France. 11 

4 Current address: CNRS UMR 3664, Nuclear Dynamics, Institut Curie, Pavillon Pasteur, 26 12 

rue d’Ulm 75005 Paris, France. 13 

5 Cytometry and Biomarkers, Center for Technological Resources and Research, Institut 14 

Pasteur, 28 rue du Dr. Roux, 75015, Paris, France. 15 

* Equal contributions. 16 

# Equal contributions.  17 

Correspondence to Irene.Herraez@babraham.ac.uk, shahragim.tajbakhsh@pasteur.fr and 18 

wolf.reik@babraham.ac.uk	    19 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500900doi: bioRxiv preprint 

https://doi.org/10.1101/500900
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract: 19 

Age-related tissue alterations have been associated with a decline in stem cell number and 20 

function1. Although increased cell-to-cell variability in transcription or epigenetic marks has 21 

been proposed to be a major hallmark of ageing2–5, little is known about the molecular diversity 22 

of stem cells during ageing.  Here, by combined single-cell transcriptome and DNA methylome 23 

profiling in mouse muscle stem cells, we show a striking global increase of uncoordinated 24 

transcriptional heterogeneity together with context-dependent alterations of DNA methylation 25 

with age. Importantly, promoters with increased methylation heterogeneity are associated with 26 

increased transcriptional heterogeneity of the genes they drive. Notably, old cells that change 27 

the most with age reveal alterations in the transcription of genes regulating cell-niche 28 

interactions. These results indicate that epigenetic drift, by accumulation of stochastic DNA 29 

methylation changes in promoters, is a substantial driver of the degradation of coherent 30 

transcriptional networks with consequent stem cell functional decline during ageing.   31 
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Epigenetic alterations have been proposed to be a major cause of age-related decline in 32 

tissue function6. Changes in DNA methylation are well correlated with ageing and methylation 33 

of specific loci has been used as age biomarker in a large number of tissues6,7. However, age-34 

related methylation changes are poorly correlated with transcriptional variation, presumably 35 

because the changes are generally small and may not occur homogeneously in all cells7, a 36 

phenomenon also known as epigenetic drift. Although epigenetic drift has long been 37 

hypothesised to be an important hallmark of ageing8, this proposal has been challenging to test 38 

because of technical constraints. However, powerful combined single cell methods9,10 are now 39 

available, and epigenetic changes during ageing together with their functional consequences 40 

can now be read out in single cells11.  41 

Degenerative changes in tissue-specific stem cells have been proposed to be a major 42 

cause of age-related decline in tissue function12. While several reports indicate a loss of clonal 43 

diversity during early life stages13–15 little is known about how cell-to-cell variability at the 44 

molecular level is involved in stem cell ageing. Here, we performed parallel single-cell DNA 45 

methylation and transcriptome sequencing (scM&T-seq) on the same cell10 to investigate how 46 

ageing affects transcriptional and epigenetic heterogeneity of tissue-specific stem cells, using 47 

mouse muscle stem cells as a model. Muscle satellite (stem) cells express the transcription 48 

factor Pax716 and are largely quiescent in adult muscles. They activate upon injury to 49 

differentiate and fuse to form new fibers, or self-renew to reconstitute the stem cell pool16. Age-50 

associated muscle defects have been attributed to a decrease in stem cell number together with 51 

impaired regenerative potential17. In addition, clonal lineage-tracing of mouse satellite cells 52 

showed that population diversity is unaltered during homeostatic ageing18.  53 

Satellite cells with high expression of Pax7 were shown to be in a deep quiescent state19,20. 54 

To investigate the molecular effects of ageing in a defined population that is less poised to 55 

enter the cell cycle, we isolated single satellite cells by fluorescence-activated cell sorting 56 
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(FACS) from young (2 months) and old (24 months) Tg:Pax7-nGFP mice21 and selected those 57 

with high levels of GFP, to which we applied scM&T-seq (Fig. 1A).  58 

After quality control and filtering, a total of 377 transcriptomes were analysed. Young 59 

and old cells from different individuals clustered together, respectively, indicating no global 60 

differences with age and absence of sequencing-related batch effects (Fig. 1B). Furthermore, 61 

we did not observe significant differences in the levels of Pax7, the myogenic factors Myod 62 

and Myf5 and the cell cycle inhibitor Cdkn1b, nor of senescent markers such as Cdkn2a, 63 

suggesting that some molecular signatures are conserved between the analysed cell populations 64 

(Fig. 1C). Nevertheless, 940 genes were differentially expressed between young and old 65 

individuals (SCDE, FDR P < 0.05, Table S1). Spry1, which is a key factor for maintaining 66 

quiescence22, and the cell cycle regulators Ccnd1, Btg1 and Gas1 were down-regulated, while 67 

ageing markers such as the chemokine genes Ccl11 and Ccl19 were up-regulated20 (Fig. 1C). 68 

Furthermore, we uncovered genes not previously reported to change in expression with age, 69 

such as the early activation markers Fosb and Egr123 and the metalloproteinase Mmp2 (Fig. 70 

1C).  71 

To investigate if ageing affects transcriptional heterogeneity of the stem cell pool, we 72 

calculated pairwise correlation coefficients between cells within each individual (see Methods) 73 

and observed that old individuals showed consistently lower correlation (1.3 mean-fold 74 

decrease, Mann-Whitney-Wilcoxon test; P < 2.2e-16, Fig. 1D), indicating a remarkably lower 75 

degree of similarity between cells and no obvious population substructure. We also computed 76 

an expression-level normalised measure of gene expression heterogeneity (named distance to 77 

the median)24, which proved to be higher in old individuals (Mann-Whitney-Wilcoxon test; P 78 

< 2.2e-16, Fig. 1E) revealing a striking global increase of uncoordinated transcriptional 79 

variability with age. Strikingly, the proportion of cells expressing a given gene (frequency of 80 

gene expression) was reduced with age (Mann-Whitney-Wilcoxon test; P < 2.2e-16, Fig. 1F), 81 
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even in genes that did not significantly change mean expression levels (SCDE, FDR P > 0.05, 82 

Fig. 1F). Importantly, we observed that this was independent of gene expression levels and not 83 

restricted to lowly expressed genes suggesting that this global feature is unrelated to technical 84 

effects (Fig. 1G).  85 

Genes that displayed increased expression variability with age (expression frequency 86 

difference > 15%) include several collagen genes (Col4a2, Col5a3, Col4a1) and other 87 

extracellular matrix-related genes such as Dag1, Sparc, Cdh15 or Itgb1 (Fig. 2A). Interestingly, 88 

satellite cells without Itgb1 (β1-integrin) cannot maintain quiescence and its experimental 89 

activation improves ageing-related decline in muscle regeneration25. Similarly, reduction of N-90 

cadherin and M-cadherin (Cdh15) leads to a break of quiescence of satellite cells26. Notably, 91 

none of the above-mentioned genes were shown to change in expression level during the 92 

isolation procedure of satellite cells27. 93 

The observed increase in transcriptional variability with age could reflect the presence of 94 

cell subpopulations or be a purely stochastic process. Despite not observing clear substructure 95 

(Fig. 1B and Fig. 1D right), we further investigated the origin of this variability by ranking old 96 

cells based on their transcriptome-wide similarity to young cells, and performed correlation 97 

analyses to identify the genes driving this ranking. Gene ontology analysis indicated that old 98 

cells that differed the most from young cells were enriched in processes such as translation and 99 

peptide biosynthesis (Fig. 2B top), while old cells that were most similar to young ones were 100 

enriched in extracellular matrix-related functions (Fig. 2B bottom). For example, Fos and 101 

Mmp2 were preferentially expressed in the most different old cells, while extracellular markers 102 

such as Dag1, Itgb1, Cdh15 or Bgn were expressed in the most similar ones (Fig. 2C). These 103 

results indicate that cells that have accumulated more differences with age are likely to have 104 

impaired cell-niche interactions and are more prone to exit quiescence (Fig. 2D). 105 
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 For the analysis of DNA methylation patterns, we limited potential biases due to uneven 106 

sequencing depth between cells or different number of cells per individual by randomly 107 

subsampling 1 million reads from each cell and 35 cells per individual (140 cells in total, 2 108 

million CpG sites on average per cell). Global mean DNA methylation levels were around 109 

50%, as previously reported for muscle stem cells28 (Fig. S1C). As with the transcriptomes, we 110 

did not observe clear subpopulations in any of the methylome samples (Fig. S2). Overall, CpG 111 

islands, promoters and enhancers were hypomethylated; exons, myoblast enhancers (marked 112 

by H3K27ac) and shores (flanking region of the CpG islands) were around 30% methylated, 113 

while repeats and bodies of active genes (marked by H3K36me3) were highly methylated (Fig. 114 

3A). We found that DNA methylation levels increased slightly with age, as reported for human 115 

muscle stem cells22, mostly in repeat elements and H3K36me3 regions (Fig. 3B, 3C and 3D).  116 

Identical average methylation levels for a given genomic region may reflect different 117 

scenarios, from uniform populations to completely random heterogeneous patterns (Fig. 3E). 118 

Since we did not observe substructure in our data (Fig. S2) and as stochastic epigenetic drift 119 

has been suggested to be a major hallmark of ageing8, we computed a score to measure levels 120 

of stochastic intrapopulation heterogeneity (Fig. S3, Methods). As expected, our initial 121 

measure of heterogeneity depended on average methylation levels (Fig. 3F). Hence, we 122 

developed an independent measure of heterogeneity by calculating the distance between the 123 

observed heterogeneity for each genomic region and a rolling median (Fig. 3F, Methods). 124 

Interestingly, this analysis showed that different genomic contexts displayed different levels of 125 

methylation heterogeneity between cells, for example CpG islands were more heterogeneous 126 

than enhancers (Fig. 3G).  127 

Global levels of methylation heterogeneity were similar between ages (Fig. S4); we next 128 

computed localised Z-score comparisons between young and old to examine changes in 129 

specific genomic elements. Notably, methylation of LINE-1 elements became more 130 
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homogeneous with age whereas regions marked by H3K27me3 became more heterogeneous 131 

(Fig. 4A). Specifically, LINE-1 elements also experienced the highest increase in absolute 132 

DNA methylation levels, both of which may reflect a coordinated mechanism to prevent 133 

deleterious somatic retrotranspositions during ageing. Most of the H3K27me3 regions were 134 

associated with genes that are repressed but poised for rapid activation29. We hypothesize that 135 

this increase in methylation heterogeneity may contribute to an impaired transcriptional 136 

response upon activation.  137 

Interestingly, we observed a negative correlation between changes in methylation levels 138 

and changes in methylation heterogeneity (Promoters: Pearson’s coefficient= -0.35, P < 2.2e-139 

16, Fig. 4B). Regions becoming more homogeneous showed an increase in methylation, 140 

suggesting that de novo methylation enzymes (Dnmt3a,b) are recruited to specific sites and add 141 

methylation in a coordinated manner between cells. In contrast, regions becoming more 142 

heterogeneous showed a decrease in their methylation levels. Despite the low proliferative 143 

history of these cells, this pattern could reflect errors in DNA methylation maintenance during 144 

DNA replication, or an active demethylation mechanism via TET enzymes (Fig. S5). 145 

Epigenetic changes may contribute to the age-associated pattern of transcriptional 146 

heterogeneity. To explore this possibility, we analysed the association between promoter DNA 147 

methylation and gene expression. We calculated a correlation coefficient for each cell and 148 

confirmed the expected negative correlation for methylation and transcription (Fig. 4C). 149 

Interestingly, old cells that were most transcriptionally different from young cells showed 150 

lower levels of correlation (Mann-Whitney-Wilcoxon test; P < 0.05, Fig. 4C). Furthermore, we 151 

calculated changes in transcriptional variability between young and old cells (see Methods) 152 

and observed that promoters with increased methylation heterogeneity tended to have increased 153 

transcriptional heterogeneity (Mann-Whitney-Wilcoxon test; P <0.001) (Fig. 4D). It appears 154 

therefore that deterioration of transcriptional coherence during ageing is associated with 155 
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increased promoter methylation heterogeneity and with decreased connectivity between the 156 

epigenome and the transcriptome. 157 

 In summary, we report transcriptional and epigenetic signatures associated with ageing 158 

in a deeply quiescent population of muscle stem cells. Previous studies have investigated 159 

transcriptional heterogeneity changes with age in mixed cell populations4 which are affected 160 

by differences in cellular composition, such as an increase in senescent cells4. In contrast, our 161 

study is focused on a specific population of cells in which known stemness, activation and 162 

senescent markers were not affected by ageing. Even in this restricted population, we observe 163 

a global increase of uncoordinated transcriptional variability with age, indicating an intrinsic 164 

mechanism of cellular ageing. Interestingly, mouse muscle stem cells were shown to maintain 165 

clonal diversity during homeostatic ageing by lineage-tracing18, however, our study uncovers 166 

a dramatic underlying molecular heterogeneity in these stem cells that extends beyond 167 

maintenance of clonal homogeneity. We also observe that cells that have acquired more 168 

differences with age showed alterations in multiple extracellular matrix related genes 169 

potentially affecting cell-niche interactions.  170 

Elevated transcriptional variability with age has been reported in several studies2–4, 171 

however the underlying causes remain largely unknown. The accumulation of somatic 172 

mutations only partially accounts for the increased cell-to-cell transcriptional variability4, 173 

suggesting that epigenetic mechanisms might be a contributing factor5.  In this study, by 174 

applying for the first time a combined single cell method for DNA methylation and the 175 

transcriptome, we show that epigenetic drift, or the uncoordinated accumulation of methylation 176 

changes in promoters, contributes to the increased transcriptional variability with age (Fig. 4E). 177 

Due to the deep quiescent state of the homeostatic cells chosen for study, our data highlight the 178 

possibility that the observed epigenetic patterns could be independent of extensive cell 179 

proliferation. We propose that this variability is detrimental due to uncoordinated transcription, 180 
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thereby affecting the ability of stem cells to maintain quiescence or activate coherently upon 181 

injury. Future studies of different stem cell populations integrating multiple layers of molecular 182 

information will be highly informative for a more complete understanding of the underlying 183 

molecular mechanisms of ageing and age-related diseases.  184 
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Methods 185 

Mice 186 

Animals were handled according to national and European Community guidelines, and an 187 

ethics committee of the Institut Pasteur (CETEA) in France approved protocols. Young (2 188 

months-old) and old (24 months-old) Tg:Pax7-nGFP21 mice were used in this study. 189 

 190 

Isolation of satellite cells 191 

Mice were sacrificed by cervical dislocation. Tibialis anterior muscles were dissected and 192 

placed into cold DMEM (ThermoFisher, 31966). Muscles were then chopped and put into a 15 193 

ml Falcon tube containing 10 ml of DMEM, 0.08% collagenase D (Sigma, 11 088 882 001), 194 

0.1% trypsin (ThermoFisher, 15090), 10 µg/ml DNaseI (Sigma, 11284932) at 37°C under 195 

gentle agitation for 25 min. Digests were allowed to stand for 5 min at room temperature and 196 

the supernatants were collected on 5 ml of foetal bovine serum (FBS; Gibco) on ice. The 197 

digestion was repeated 3 times until complete digestion of the muscle. The supernatants were 198 

filtered through a 70-µm cell strainer (Miltenyi, 130-098-462). Cells were spun for 15 min at 199 

515g at 4°C and the pellets were resuspended in 1 ml freezing medium (10% DMSO (Sigma, 200 

D2438) in foetal calf serum (FCS, Invitrogen)) for long term storage in liquid nitrogen. 201 

Before isolation by FACS, samples were thawed in 50 ml of cold DMEM, spun for 15 202 

min at 515g at 4°C. Pellets were resuspended in 300 µl of DMEM 2% FCS 1 µg/mL propidium 203 

iodide (Calbiochem, 537060) and filtered through a 40-µm cell strainer (BD Falcon, 352235). 204 

Viable cells were isolated based on size, granulosity and GFP expression level (top 10% 205 

nGFPHi cells, Fig. S6) using a MoFlo Astrios cell sorter (Beckmann Coulter). 206 

Single cells were collected in 2.5 µL cold RLT Plus buffer (Qiagen, 1053393) containing 207 

1U/µL RNAse inhibitor (Ambion, AM2694) in 96 well-plates (LoBind Eppendorf, 208 

0030129504), flash-frozen on dry ice and stored at -80°C. 209 
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 210 

Library preparation and data alignment 211 

We prepared scM&T-seq libraries10 by isolating mRNA on magnetic beads and separating from 212 

the single-cell lysate as described30 prior to reverse transcription and amplification using 213 

Smartseq231 but with 25 PCR cycles. We then processed the lysate containing genomic DNA 214 

according to the published single-cell bisulfite sequencing protocol32. Single-cell RNA-seq 215 

libraries were aligned using HiSat2 with options --sp 1000,1000 --no-mixed --no-discordant33. 216 

Single-cell bisulfite libraries were processed using Bismark34 as described10. Mapped RNA-seq 217 

data were quantitated using the RNA-seq quantitation pipeline in Seqmonk software 218 

(www.bioinformatics.babraham.ac.uk/projects/seqmonk/).  219 

 220 

Quality control RNA-seq 221 

Cells expressing fewer than 1,000 genes or less than 105 mapped reads allocated to nuclear 222 

genes were removed in quality control (Fig. S7). These cells were also verified to have less 223 

than 10% of mapped on mitochondrial genes. Out of the 768 cells that were captured across 224 

the experiment, 377 passed our quality and filtering criteria (Table S2). 225 

 226 

Data analysis RNA-seq 227 

Gene expression levels were estimated in terms of reads per million of mapped reads to the 228 

transcriptome. A score of variability per gene (named distance to the median) was calculated 229 

by fitting the squared coefficient of variation as a function of the mean normalized counts and 230 

then calculating the distance to a rolling average (window size=100) (Fig. S8)24. We included 231 

only genes with an average normalized read count of at least 10. The top 1000 most variable 232 

genes of the entire data set were used to perform principal component analyses (as log2-233 

transformed and median-cantered values) (Fig. 1B, Table S3). Single cell differential 234 
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expression (SCDE) was used to calculate differential expression analysis between young and 235 

old cells (Table S1)35.  236 

Cell-to-cell correlation analyses were performed using the top 500 most variable genes 237 

within each individual and using Spearman’s correlation as the measure of similarity between 238 

cells (Fig. 1D). Distance to the median of the top 500 most variable genes within each 239 

individual was computed for Fig. 1E, similar results are observed when restricting the analysis 240 

to genes that are expressed in all the individuals (average normalized read count of at least 10) 241 

and different numbers of genes (Fig. S9). 242 

An average young reference transcriptome was computed by calculating the mean of 243 

log transformed expression values for each gene across cells from young individuals. We then 244 

performed Spearman’s correlation analyses to assess the similarity between each cell from old 245 

samples and the young transcriptome. Spearman’s correlation analyses were then also used to 246 

find gene expression patterns associated with this genome-wide similarity score. Genes 247 

expressed in fewer than five cells were excluded from the analysis. The top 200 correlated and 248 

anticorrelated genes (Table S4) were used for GO enrichment analysis36 . 249 

 250 

DNA-methylome 251 

We discarded cells that had less than 1 million paired-end alignments or less than 500,000 CpG 252 

sites covered (Fig. S1). To avoid biases that might occur due to different sequencing depths or 253 

number of cells between individuals, we down-sampled the data to 1 million reads for each cell 254 

and randomly selected 35 cells from each individual (2 young and 2 old). ChIP-seq datasets 255 

for H3K4me3, H3K27me3, H3K36me3 in satellite cells and H3K27ac in myoblast were 256 

obtained from existing studies23,29. Bowtie2 and MACS2 were used for mapping and peak 257 

calling respectively. 258 

 259 
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DNA methylation heterogeneity 260 

We developed a heterogeneity score based on Hamming distances and Shannon entropy 261 

between cell pairs from the same sample. This value captures the properties we desire: i) ability 262 

to detect cell-to-cell stochastic heterogeneity ii) not affected by population substructure iii) not 263 

biased by missing values. Precisely, let r be a matrix with methylation values of cells for a 264 

particular gene, each row corresponding to a cell and each column corresponding to a CpG site, 265 

and w be the weight corresponding to the number of covered CpGs within each pairs of cells. 266 

For each pair of cells (c), we then computed the Hamming distance (D) and the Shannon 267 

entropy score of the pairs (S) considering sites with coverage in both cells. Then weighted 268 

heterogeneity score of the regions is: 269 

 270 

Here is the normalised Hamming distance of a given a pair of cells, which measures the 271 

number of bits that are different in two binary sets: 272 

 273 

 is the joint Shannon Entropy between a pair of cells which measures the complexity of the 274 

pattern: 275 

 
276 

Here p is the frequency of pairs of methylation values. 277 

We validated our approach by applying the method in simulated data with increasing 278 

levels of methylation heterogeneity (Fig. S3). We also observed that our algorithm is highly 279 

robust to missing data (Fig. S3). 280 

We applied this method across multiple genomic regions for each individual 281 

H (r) =
wc ×Dcc=1

n
∑

wcc=1

n
∑

×
wc × Scc=1

n
∑

wcc=1

n
∑

Dc

Dc = xii=1

k
∑ − x j

Sc

Sc = − pii=1

k
∑ ⋅ log2(pi )
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independently and then computed the average of young and old samples. Pairwise comparisons 282 

with fewer than 4 CpG sites were not considered in the analysis. Furthermore, to avoid 283 

misinterpretations because of poor coverage depth we excluded regions with: i) less than 284 

20CpG sites, ii) less than an average of 2 CpG sites covered per cell, iii) less than 100 cell-to-285 

cell pairwise comparisons. We also excluded regions with high coverage differences between 286 

ages (more than an average of 10 CpG sites or more than 200 cell-to-cell pairwise 287 

comparisons). A total of 63,823 genomic regions were used in the analysis (average window 288 

size= 2,267 bp).  289 

Coverage-weighted cell methylation values were used to calculate the mean 290 

methylation levels of each region. A normalised measure of DNA methylation heterogeneity 291 

was calculated for each region (from young or old samples) by fitting the score of heterogeneity 292 

as a function of the mean methylation levels and then calculating the distance to a rolling 293 

median of 1,000 observations (Fig. 3F). Regions with less than 0.05 or more than 0.9 mean 294 

methylation levels were excluded from the analysis.  295 

Differences between young and old DNA methylation heterogeneity values were Z-score 296 

normalised using a sliding window of 100 observations ordered by the mean value of young 297 

and old (Fig. S10 and Table S5). Same approach was used to calculate differences between 298 

young and old transcriptional heterogeneity (mean distance to the median) (Fig S9 and Table 299 

S5). 300 

 301 

Data availability 302 

Sequencing data have been deposited in GEO with the accession: GSE121364 303 

 304 

Software 305 

Custom software is available upon request. 306 
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Figures: 413 
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Fig. 1. Aged satellite cells have increased cell-to-cell transcriptional variability 415 

(A) Experimental scheme. Single cells were isolated from Tg:Pax7-nGFP young and old mice 416 

and subjected to parallel single-cell methylation and RNA sequencing.  417 

(B) PCA of a total of 377 cells from young (n=4) and old (n=2) individuals.  418 

(C) Selected markers and differentially expressed genes between young and old cells (mean ± 419 

standard error). 420 

(D) Cumulative distribution of cell-to-cell Spearman correlation values per individual (left) 421 

showing that transcriptional heterogeneity dramatically increases with age. Heatmap showing 422 

cell-to-cell Spearman correlation values from a young and an old mouse (right).  423 

(E) Distance to the median of the top 500 most variable genes among all genes (left) and of the 424 

top 500 most variable genes among the 5,127 common genes expressed in the six individuals 425 

(right).  426 

(F) Frequency of gene expression in young and old cells.  427 

(G) Independence between frequency of gene expression differences and gene expression level. 428 
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Fig. 2. Variability within aged satellite cells and cell-niche interactions 430 

(A) Dag1 and Itgb1 expression in young and old cells. Each dot represents a cell. Vertical lines 431 

on the x-axis indicate cells that do not express the gene.  432 

(B) P-values of the GO terms associated with the top 200 anticorrelated (top) and correlated 433 

(bottom) genes with the similarity score to young cells. 434 

(C) Similarity between old and young cells. Each dot represents an old cell; on the x-axis cells 435 

are ordered according to their similarity (Spearman correlation coefficient) to young cells 436 

(young mean expression). Colours indicate the normalized levels of expression of selected 437 

genes correlated with the x-axis. 438 

(D) Old cells diverging from young cells are likely to have impaired cell-niche interactions. 439 
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Fig. 3. Changes in methylation levels and methylation heterogeneity 441 

(A) Levels of DNA methylation per cell across different genomic regions (Chip-seq data from 442 

2-months-old mice 23, Ac: activated satellite cells 23, MB: myoblast 29).  443 

(B) Mean methylation difference between old and young cells across different genomic 444 

elements. 445 

(C) Genome-wide mean methylation values in old and young cells. Each dot represents a 446 

genomic region.  447 

(D) Levels of DNA methylation per cell and individual across Line L1 elements. 448 

(E) Examples of different distributions of DNA methylation heterogeneity at loci with similar 449 

average methylation. Empty circles represent unmethylated CpG sites and filled circles 450 

methylated CpG sites. 451 

(F) DNA methylation levels and DNA methylation heterogeneity. Each dot represents a 452 

genomic region from young or old cells. Colour scale represents the methylation-level 453 

normalised measure of DNA methylation heterogeneity.  454 

(G) Boxplot showing the normalised DNA methylation heterogeneity across different genomic 455 

elements in young cells (top). Normalised methylation heterogeneity and methylation levels 456 

across all the different genomic elements (grey) and across CpG Islands (purple) or enhancer 457 

regions (purple) in young cells (bottom). 458 
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Fig. 4. Changes in cell-to-cell methylation heterogeneity during ageing 460 

(A) Normalised methylation heterogeneity changes with age (Δ methylation heterogeneity: 461 

old–young) across different genomic features (Ac: activated satellite cells 23, MB: myoblast 29).  462 

(B) Genome-wide normalised methylation heterogeneity difference with ages (Δ methylation 463 

heterogeneity: old–young) binned by 0.1 methylation level differences (left). Changes in 464 

promoter methylation heterogeneity (y-axis) and methylation levels (x-axis) with age (right). 465 

(C) Distribution of Pearson’s correlation coefficients between promoter DNA methylation and 466 

gene expression (one association test per cell, number of cells: young = 64, old more similar 467 

to young = 30, old less similar to young = 20, * P < 0.05).  468 

(D) Increase of transcriptional heterogeneity with age across all promoters (n=394) and 469 

promoters with increased DNA methylation heterogeneity (Δ methylation heterogeneity > 0.3, 470 

n=113) (P <0.001). 471 

(E) Global increase of transcriptional cell-to-cell variability with age with enhanced 472 

heterogeneity in the multiple extracellular matrix related genes (top). Relationship between 473 

transcriptional and DNA methylation heterogeneity in aged satellite cells (bottom). Empty 474 

circles represent unmethylated CpG sites and filled circles methylated CpG sites. Repeat 475 

elements become more homogeneous with age by increasing their methylation levels in a 476 

coordinated manner. In contrast, promoter regions become more heterogeneous by randomly 477 

loosing DNA methylation and this is coupled with an increase of transcriptional variability of 478 

the genes they drive.   479 
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Extended data: 480 

 481 

Fig. S1. Quality control of single-cell DNA methylation data. 482 

(A) Number of pair-end alignments per cell. Cells below the threshold were excluded from the 483 

study.  484 

(B) Number of CpG sites per cell and individual.  485 

(C) Mean methylation per cell showing no global differences between ages.   486 
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 487 

Fig. S2. Cell clustering based on DNA methylation data 488 

(A) PCA on gene body methylation showing no clear differences between ages.  489 

(B) Heatmap showing Hamming distances between the average methylation from young cells 490 

and individual old cells (columns) across different genomic context (rows) (left). Same 491 

measure normalised by genomic context (right) showing no cellular substructure. 492 
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 493 

Fig. S3. DNA methylation heterogeneity on simulated data.  494 

Four cases with different population substructure and missing values tested with simulated data 495 

of increasing heterogeneity. Missing values are represented in white.  496 
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 497 

Fig. S4. Global levels of DNA methylation heterogeneity between ages. 498 

(A) DNA methylation levels and methylation heterogeneity in young and old cells.  499 

(B) Normalised DNA methylation heterogeneity in young and old cells.  500 
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 501 

 502 

Fig. S5. Expression levels of the DNA methylation enzymes.  503 

(A) Expression levels of the enzymes for active demethylation in young and old samples.  504 

(B) Expression levels of the DNA methylation enzymes in young and old samples. 505 
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506 

Fig. S6. Isolation of single satellite cells by FACS. 507 

Satellite cells were isolated by FACS by gating first on size and granulosity (R2 gate), 508 

excluding doublets (R1 gate) and gating on the GFP+/PI- population (R3 gate). Pax7-nGFPHi 509 

cells (top 10% highest nGFP-expressing cells, R4 gate) were sorted as single cells.  510 

Fig. S6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500900doi: bioRxiv preprint 

https://doi.org/10.1101/500900
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 511 

Fig. S7. Quality control of single-cell RNA-seq data. 512 

Plot representing number of genes and total expression counts expressed in each cell per 513 

individual. Cells above highlighted threshold (1000 genes, 105 counts) were included in the 514 

study.  515 
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 516 

Fig. S8. Transcriptional variability.  517 

Gene variability: squared coefficients of variation are plotted against the means of normalized 518 

read counts for gene using data from all individuals (top) or each individual separately. 519 
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 520 

Fig. S9. Transcriptional variability: distance to the median 521 

Distance to the median of the top 300 (A) and 1000 (B) most variable genes among all genes 522 

(left) and among the 5,127 common genes expressed in the six individuals (right).  523 
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 524 

Fig. S10. Changes in transcriptional and DNA methylation heterogeneity with age. 525 

(A) Differences in transcriptional heterogeneity measures where Z-score normalised using a 526 

sliding window of 100 observations (color code). Transcriptional heterogeneity represents the 527 

mean distance to the median for every gene from young (y-axis) and old (x-axis) individuals. 528 

(B) Differences in DNA methylation heterogeneity measures where Z-score normalised using 529 

a sliding window of 100 observations (color code). DNA methylation heterogeneity represents 530 

the normalised measure of methylation heterogeneity from young (y-axis) and old (x-axis) 531 

individuals.  532 
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Supplementary tables:  533 

Table S1. Differentially expressed genes between cells from young and old mice. 534 

Table S2. scM&T quality control. 535 

 536 

 537 

Table S3. Top 1000 most variable genes across the entire data set. 538 

Table S4. Top 200 genes correlated and anticorrelated with the similarity score to the 539 

young reference transcriptome. 540 

Table S5. Increase of transcriptional and methylation heterogeneity with age in 541 

promoter regions (Δ: Old-young). 542 

Sequencing label Individual Total cells  After QC Total cells After QC
Y2 Young 1 96 0 78 35
Y8 Young 2 96 75 86 35
Y5 Young 3 96 44 NA NA
Y7 Young 4 96 74 72 35
Y4 Young 5 96 60 NA NA
O1 Old 1 96 56 80 35
O5 Old 2 96 68 90 35
O8 Old 3 96 5 8 0

RNA DNA
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