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Abstract: Super-resolution Optical Fluctuation Imaging (SOFI) offers a simple and affordable 

alternative to other super-resolution (SR) imaging techniques. The theoretical resolution 

enhancement of SOFI scales linearly with the order of cumulants, while the imaging conditions 

exhibits less photo-toxicity to the living samples as compared to other SR methods. High order 

SOFI could, therefore, be a method of choice for dynamic live cell imaging. However, due to 

the cusp-artifacts and dynamic range expansion of pixel intensities, this promise has not been 

materialized as of yet. Here we investigated and compared high order moments vs. high order 

cumulants SOFI reconstructions. We demonstrate that even-order moments reconstructions are 

intrinsically free of cusp artifacts, allowing for a subsequent deconvolution operation to be 

performed, hence enhancing the resolution even further. High order moments reconstructions 

performance was examined for various (simulated) conditions and applied to (experimental) 

imaging of QD labeled microtubules in fixed cells, and actin stress fiber dynamics in live cells.  

 

1. Introduction 

Fluorescence microscopy is widely utilized in biological studies due to its high sensitivity and 

specificity. These afford molecular-specific visualization of molecular structures and 

organelles in live cells in real-time. However, the spatial resolution of conventional 

fluorescence microscopy has been limited due to Abbe’s diffraction limit[1]. Advances in  

super-resolution (SR) imaging techniques such as stimulated emission depletion (STED) 

microscopy[2], photo-activated localization microscopy (PALM)[3, 4], stochastic optical 

reconstruction microscopy (STORM)[5], structured illumination microscopy (SIM)[6] and 

their derivatives allowed us to overcome the diffraction limit and achieve optical resolution 

down to a few tens of nanometers[3, 7-10]. Such a dramatic resolution enhancement has already 

yielded significant new discoveries[11-14]. A more recent addition to the SR toolbox is Super-

resolution Optical Fluctuation Imaging (SOFI)[15].  SOFI has been demonstrated using 

different imaging platforms including wide-field microscopy (with either laser or Xenon lamp 

illumination)[16], total internal reflection fluorescence (TIRF) microscopy[17-21], multi-plane 

wide-field fluorescence microscopy[22], spinning-disk confocal microscopy[23], and light 

sheet microscopy[24].  

SOFI relies on the stochastic fluctuations of optical signals originating from blinking emitters 

(see below), scatterers (as blinking Raman[25]), or absorbers[26]. Blinking fluorescence probes 

have been most commonly used, including fluorescent proteins (FPs)[21, 27], organic dyes[28], 
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quantum dots[15], and carbon nanodots[19]. Other types of optical fluctuations such as ones 

originating from diffusion of probes[29], FRET due to diffusion[30], and stochastic speckle 

illumination light[31] have also been exploited for SOFI imaging. 

Advantages of SOFI include compatibility with different imaging platforms and a wide variety 

of blinking probes, flexibility in imaging conditions[25], and a useful trade-off between spatial 

and temporal resolutions. SOFI has therefore the potential to democratized SR and be used in 

a wide variety of applications. The theoretical resolution enhancement factor for SOFI of a 

cumulant of order n is n1/2 fold[15]. When combined with deconvolution or Fourier re-

weighting, the enhancement factor becomes n fold[32]. This suggests that high-order SOFI 

would be beneficial for achieving high SR performance. In practice, however, two fundamental 

issues limit the application of high-order SOFI: (i) non-linear dynamic-range expansion of pixel 

intensities[15] and (ii) cusp-artifacts[33]. With regard to (i), a partial solution for the dynamic-

range expansion was introduced as balanced-SOFI (bSOFI) [34]. With regard to (ii), cusp-

artifacts are much harder to solve.  

High order cumulants[15, 35] are constructed from correlation functions or moments of 

different orders. In the original introduction of SOFI[15], cumulants were chosen over moments 

because combinations of nonlinear cross-terms originating from multiple emitters are 

eliminated in the cumulants. However, as discussed in greater details in our accompanying 

manuscript[33] and briefly summarized here, cumulants could yield negative virtual 

brightnesses[33] that lead to cusp-artifacts[33]. By averaging different time blocks of 

cumulants, these artifacts could potentially be eliminated[36], but it requires prolonged data 

acquisition (with no drift) and applicable to static features only. Theoretically, another way to 

avoid/eliminate cusp artifacts would be to spatially manipulate emitters’ blinking behavior, so 

as to yield a uniform pure sign for all cumulants across the image[33]. This, however, is a very 

difficult task. 

In this work, we examine the mathematically non-rigorous, but practical solution of moments 

reconstruction. We show that even-high-order moments reconstruction eliminates cusp artifacts 

while still providing SR enhancement. We also provide in-depth comparisons between 

cumulants and moments reconstruction for various simulated and experimental conditions. We 

also made the associated datasets[37-39] and code packages for simulation[40] and data 

processing[41] open to the public, as posted on the online repositories. 

The outline of this manuscript is as follows: in section 2 we briefly summarize SOFI theory 

and outline the relationship between correlation functions, cumulants, and moments. In section 

3, we introduce the proposed moments reconstruction method and show that even-order 

moments are free of cusp artifacts. Moments reconstruction, however, introduces new artifacts 

due to nonlinear cross-terms. Based on the theoretical formulation, we interpret these cross-

terms as contribution from ghost emitters in the traditional high order SOFI image[33]. We 

demonstrate both through theory and simulations that even-order moments yield a pure positive 

image, free of cusp artifacts, which is suitable for subsequent deconvolution operation. A 

discussion of the theoretical resolution enhancement is also discussed. In section 4 introduce a 

new method that minimizes the ill-effects of dynamic-range expansion. We dub this method 

“local dynamic range compression” (ldrc). It locally compresses the dynamic range of pixel 

intensity, and its performance is not affected by cusp artifacts. This section also includes 

extensive simulations of various (and relevant) sample conditions that are subsequently 

analyzed by even-order moments reconstruction together with ldrc. We have compared the 

simulated data results with results from alternative methods, including (1)bSOFI, which utilizes 

the balanced cumulants to correct for the expanded dynamic range of pixel intensities of high-

order SOFI cumulants, and (2) super-resolution radiality fluctuation (SRRF)[42], which 

calculates the radial fluctuations to achieve super-resolution. In section 5 we present 6th order 

moment reconstructions for experimental data together with deconvolution and ldrc. The data 
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sets include quantum dot (QDs)-labeled microtubules in fixed cells and fluorescence protein-

labeled β-actin in live cells. Our results are then compared to results obtained by operating the 

bSOFI[34] and SRRF[42] algorithms to the same data sets. A concluding discussion is given 

in section 6, summarizing our main findings: (I) even-order moments reconstruction is 

intrinsically free of cusp artifacts; (II) it can be independently combined with deconvolution 

without conflicting with the commonly used positivity constraint in image deconvolution; and 

(III) application of ldrc can correct for the expanded dynamic range of pixel intensities. These 

attributes allow for SR reconstruction of fast (~seconds) morphological changes in live cells. 

2. Review of SOFI, correlations, cumulants, and moments 

We briefly repeat here the SOFI theory[15] but re-cast it in a form that affords the virtual emitter 

interpretation of SOFI at high orders that we proposed in our accompanying manuscript[33]. 

This re-casting provides insight into high order SOFI cumulants and the proposed moments 

reconstruction.  

In the practice of SOFI, the sample is labeled with stochastically blinking emitters. This labeled 

sample is then imaged and consecutive frames are recorded. The data set is then SOFI processed 

to yield the SOFI image. Given a sample with N emitters that independently blink, the 

fluorescence signal captured at location r  and time t is given by:   

 
1

( ), ( )) (
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k
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     , (2.1) 

where k is the index of the emitter, ϵk is the ‘on’-state brightness of the kth emitter, bk(t) is the 

stochastic time dependent blinking profile of kth emitter where:  
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  (2.2) 

( )U r  is the point-spread-function (PSF) of the imaging system, and kr  is the location of the 

kth emitter. In SOFI calculations, we calculate the correlation functions along the time axis with 

time lags ( 1 2, ,..., n   ) and pixel locations 1 2( , ,..., )nr r r :  

                  1 2 1 2 1 1 2 2,..., ,( , ; ,..., ) ( , ) ( , ) ( , )n n n n n
t

r r r F r t F r t F r tG                 (2.3) 

It is common to set the first time lag  to 0, and if all the pixel locations are identical, we get 

auto-correlation function. Similarly, if the pixel locations are different, the correlation function 

is cross-correlation function. By replacing ( , )i iF r   with the notation iF  , equation (2.3) 

can be simplified: 

 1 2 1 2( , . ),.. ,n n n
t

G F F F F F F          (2.4) 

We address 21( , ,..., )n nF F FG     as the joint correlation function for set { | }[1, ]iF i n  , 

which is defined by the chosen combinations of pixels and time lags. For a given instance of 

time lags 21{ , ,..., }n   , we also address 21( , ,..., )n nF F FG     as the joint-moment of set 

{ | }[1, ]iF i n  . The next step is to calculate the nth order cumulant, denoted as 

21( , ,..., )n nF F FC    , which we address as the joint-cumulant of set { | }[1, ]iF i n  . Note 

that the special case of equation (2.3)  with 1 nr r r   reduces to equation , where the 

former addresses cross-correlation functions and the later addresses auto-correlation functions. 

Consequently, the differences between auto-correlation functions and cross-correlation 
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functions are diminished while we form our discussion under the framework of joint-moments 

and joint-cumulants.  

 

Fig. 1. Calculation of 5thth order joint-cumulants. A set of five elements is shown in (a), where 
the elements are the fluctuation profiles of five pixels. Repeating pixels are allowed. For 

example, if element A and B are repeating pixels, we have 1 2r r  . Simplified notations for the 

five elements are {FA, FB, FC, FD, FE} respectively. (b) demonstrates all possible partitions 

of a set of five elements, and how each partition contributes a term to the summation series (as 

the product of f1 and f2) to yield the joint-cumulant. Note that all the partitions that contain a part 

of size 1 are equal to 0, because 0( )
t

F t  . The graphical demonstration of partitions is inspired 

by the work by Tilman Piesk [43]. 

The calculation of the joint-cumulant of set { | }[1, ]iF i n   is illustrated in (2.5), using the 

case of 5th order as an example. In the general sense, regardless of the choices of 

{ | }[1, ]iF i n  , n fluorescence fluctuations profiles are selected from individual pixels (with 

or without duplicated pixel) to form the set { | }[1, ]iF i n  (Fig. 1 (a)), from which all the 

possible partitions are identified as shown in Fig. 1(b). Partitions can possess different numbers 

of parts where each part can possess different numbers of elements (1st and 2nd columns in Fig. 

1(b)). For each partition, the elements of set { | }[1, ]iF i n   are grouped into specific parts, 

where each part is a subset of { | }[1, ]iF i n   (3rd column in Fig. 1(b)). Each specific partition 

of set { | }[1, ]iF i n   contributes a term to a summation series to construct the joint-cumulant, 

where each term can be expressed as the product of two factors. This is shown in the 4th and 5th 

column in Fig. 1(b). The first factor f1 depends on the size of this partition (denoted as q in 1st 

column in Fig. 1(b)) and is defined as: 1
1 ( 1) ( 1)!qf q    (4th column in Fig. 1(b)). The second 

factor f2 is the product of all the joint-moments of each part within this partition, as illustrated 
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in the 5th column in Fig. 1(b): if we use I to represent set { | }[1, ]iF i n   and Ip (with 

p=1,2,3,…,q) to represent different parts that belong to this partition (as different subsets of I 

), we have 1 2 qI I I I    . The joint-moments for each part Ip (denote as G(Ip)) are 

multiplied together to yield G(I1)⸱G(I2)⸱⸱⸱G(Iq) as the second factor (f2).  

In conclusion, given a set of intensity trajectories from a group of pixels (set I) (either with or 

without duplicated pixels), the joint-cumulant of I is constructed as a function of the joint-

moments of all parts over all possible partitions of set I, based on the following formula[44]: 
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         (2.5) 

Note here that in equation (2.9), the joint-moments G(Ip) are essentially the lower order 

correlation functions discussed in the original SOFI paper[15]. If a partition contains a part that 

has only one element, we have the corresponding G(Ip) as ( ) 0tF t   . As a result, the 

corresponding f2 factor will be 0, and this partition will not contribute to the joint-cumulant. 

The calculation of C5(I) is shown in Fig. S1 as an example.  

By substituting equation (2.1) - (2.4) into equation (2.5), we find that the nth order joint-

cumulant of set { | }[1, ]iF i n   can be expressed as follows: 
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  (2.6)   

Where 1( ,..., )n nW r r  is the distance factor[15]. The PSF can be approximated by a Gaussian:  
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Detailed derivation of equation (2.6) can be found in Appendix 1[45]. Once the distance factor 

is solved and divided from both sides of equation (2.6), the cumulant value at location gcr  is 

obtained.  

The SOFI pixel location vector is equivalent to the vector average of the selected pixels’ 

locations (in case of pixel repetitions, repeat the corresponding location vectors as well). The 

choice of pixel combination imposes a trade-off between noise contribution and the attenuation 

imposed by the distance factor 1( ,..., )n nW r r  (defined in (2.6)). On one hand, noise could 

potentially contribute to the resultant cumulant value if there is pixel repetition in the selection. 

On the other hand, when the selected pixels are distributed too far away from each other, the 

distance factor becomes small and attenuates the correlation signal. Existing approaches have 

been focused on avoiding the noise contribution from duplicated pixels[46], but here we 

explore and present the opposite of this trade off, where we want to diminish the effect of the 

distance factor at the cost of potential noise contribution. A detailed explanation for our choice 

of pixel combinations for high order SOFI is given in Appendix 2 and Fig. S2. 

Under the framework of virtual emitter interpretation[33], the physical meaning of the joint-

cumulant calculated for a set of pixels (either with or without pixel repetition) is taken to mean 

as the image formed by virtual emitters at the locations of the original emitters, but having 

virtual brightnesses. These virtual brightnesses are the products of ϵn (meaning the nth power of 

the original ‘on-state’ brightness of the emitter) and wn(bk(t)) (meaning the nth order cumulant 
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of the blinking profile of the corresponding emitter with the time lags defined for the overall 

joint-cumulant function). Because the blinking statistics of emitters across the image are not 

necessarily spatially uniform, the ‘on-time ratio’, defined as the percentage of time the emitter 

spent at ‘on’ state, can vary, causing cumulant values to have different signs at different parts 

of the image (Fig. 2). Since images are usually presented with positive pixel values, the absolute 

value operator could yield an image with cusp-artifacts, degrading the image quality of high-

order SOFI cumulants[33]. 

3. High-order moments reconstruction – theory and Interpretation 

Inspired by the interchangeable relation between cumulant and moment[35], we investigated 

the statistical behavior of high-order moments of emitter blinking trajectories expressed as a 

function of the ‘on time ratio’ in a similar way to cumulant analysis[33]. Considering only 

the blinking profile (with unit brightness) as shown in equation (2.2), the ‘on’ state signal is 1, 

the ‘off’ state signal is 0, the time average of the blinking trajectory is , therefore, after 

subtraction of the time average , the blinking trajectory exhibits (1-) and (-) for the ‘on’ and 

‘off’ states respectively. Additionally, the percentage of ‘on’ and ‘off ’state in the overall 

trajectory is and (1-) respectively, providing the weighting factors for both states when 

calculating the moments. The nth order moment can be readily calculated as the weighted 

summation of the nth power of the signal for both states: 

 ) ( ) (1( ) (1 )n n
n

Fig. 2 shows moments of different orders as a function of  (Fig. 2(a)) in comparison to 

cumulants of different orders as a function of  (Fig. 2(b)). While cumulants exhibit oscillation 

between positive and negative values, even-order moments have pure positive values (and odd-

order moments are bi-modal and have a single node).  

 

Fig. 2. Moments and cumulants as a function of the ‘on time ratio’ . (a) shows different 

moments as a function of  and denoted as Mn(), and (b) shows different cumulants as a 

function of  and denoted as Wn(). In both notations, n represents the order. 

In practice, blinking behavior of fluorophores are not well controlled, therefore, can be 

composed of mixtures of positive and negative virtual brightnesses[33], leading to cusp 

artifacts[33]. Since even-order moments are always positive and could therefore eliminate cusp 

artifacts, we decided to examine their ability and fidelity in reconstructing SR images of high 

order. As explained in the introduction, such a reconstruction is mathematically non-rigorous 

due to nonlinear cross-terms containing mixed signals from multiple emitters. Our examination 

could, however, evaluate the benefits of eliminating cusp artifacts vs. the drawbacks of 

introducing additional virtual emitters (originated from cross-terms). Moreover, since even-

order moments reconstruction contains pure sign (purely positive), and the absolute image is 

free of cusp artifacts, subsequent deconvolution operation (that often carries positivity 

constrain) could further enhance the resolution.  

In order to better understand the physical meaning of moments, we look at the form of 

moments derived from cumulants according to: 
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Where [{ 1| }, ]pI p    is one partition of set { }| [1, ]iF i n  ,  is the size of this partition (i.e. 

the total number of parts within this partition), Sp is the size of Ip, and , 0( )ps rC    is the Sp
th order 

cumulant of fluorescence fluctuation at location r  with all the time lags equal to 0. Note here 

that we use  to represent the partition size instead of using q to distinguish moments 

reconstruction from cumulants reconstruction. The reconstruction algorithm is shown in the 

flow diagram of Fig. S3. With the goal of achieving nth order moments reconstruction, we can 

interpolate all calculated cumulants (2nd order to nth order) onto a unified high resolution spatial 

grid that supports all orders. This re-mapping provides a full set of cumulants for each pixel if 

we need interpolation. Next, different orders of cumulants are combined (as shown in equation 

(3.2)) to reconstruct the moments at each pixel, thus achieving the nth order moment 

reconstruction. A similar re-mapping could be achieved using fSOFI[47] with interpolation 

performed on each individual frame of the acquired before correlation calculations to directly 

compute moments. When all the time lags used in the correlation calculation are 0, the 

computational cost for the moments computation at each interpolated pixel is greatly reduced. 

The analytical expression for reconstructed moments can then be expressed as: 
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where W is the ‘emitter distance factor’, whose analytical form is the same with that of the 

distance factor[15], and isthat is dependent on the mutual distances between different pixels as 

shown in (2.6). Detailed derivations of equation (3.3) is given in Appendix 3[45]. We also 

define mr  as: 
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pm p k
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r r
n

s




   , (3.4) 

to be the mass center of the mass points (indexed with p as shown in (3.4)) at locations pr  with 

mass values Sp. We can re-index the summation series of equation (3.3) into the summation 

over all possible mass centers. Consequently, the moments reconstruction is formed as the 

convolution between a virtual PSF ( ( )nU r ) and a virtual ground truth location map constitutes 

of all the mass centers. The virtual PSF is the original PSF raised to the power of n that 

maintains the theoretical resolution enhancement, and the virtual ground truth location map is 

described by superposition of virtual emitters with locations described by (3.4). To gain more 

intuitive insight, the summation series in equation (3.3) can be divided into two parts. The first 

part is the case when all the emitter vectors in (3.4) are the same, they describe the virtual 

emitter that is located at the original real emitter location. As shown below: 
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M1n is the part with identical location vectors  representing real emitters at locations kr  . The 

equation can be simplified into the following form (as shown in Appendix 8[45]):  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/500819doi: bioRxiv preprint 

https://doi.org/10.1101/500819


 
1

1 ( ) ( ) ( ( )); 0
N

n n
n m n kk

k

M U Mr r tr b 


    (3.6) 

From equation (3.6) we deduce that this portion of the signal (M1n) is equivalent to an image 

formed by virtual emitters that are located at the same locations as the original emitters with 

brightnesses ϵk
nMn(bk(t)) (for the kth virtual emitter). These brightnesses differ from the ones 

derived for cumulants[33]: ϵk
nCn(bk(t)). For the kth virtual emitter, its virtual brightness is the 

product between the nth power of its on-state brightness ϵk
n multiplied by the nth order moment 

(instead of cumulant) of its blinking fluctuation bk(t). Because ϵk
n is always positive, even 

order moments are always positive, therefore the virtual brightness for this portion of the 

moments signal are always positive.  

The second, non-physical part of the summation series in equation (3.3) is the case where the 

partitions contains non-identical emitter location vectors. The corresponding virtual emitters 

are located at locations where there are no real emitters (unless by coincidence the mass center 

overlaps with the location of a real emitter, but not guaranteed). This part represents additional 

virtual (artificial) emitters at locations vectors that are not identical. It originates from cross-

terms of signals coming from non-identical emitters. They take the form of virtual emitters at 

new locations (different from locations of original real emitters; dubbed here as ‘ghost’-

emitters). The brightnesses of these ‘ghost’-emitters are attenuated by the emitter distance 

factor, ranging from 0 to 1 as represented in the same analytical form of the original distance 

factor[15]. 

4. High-order moments reconstruction of simulated data 

To take a close-look of the resolution enhancement and assess the contribution of ‘ghost’-

emitters, we simulated 3 near-by Poisson-blinking fluorophores and calculated the moments of 

the simulated movie (Fig. 3). The parameters used to generate the blinking trajectories are 

tabulated in Fig. 3(a), and the positions of the 3 emitters are shown in Fig. 3(b). In Fig. 3(c), 

the 6th order moments are compared with the theoretical prediction, which is calculated from 

equation (3.3) from the ground truth parameters. The resolution enhancement also confirmed 

in Fig. 3(d) with increasing order of moments and decreasing size of the PSFs of the three 

emitters. We note that the prediction is affected by the time-binning introduced by the camera’s 

integration time for each frame. A correction for the binning effect could be introduced to the 

theoretical framework as was done by Kendall et al[35] (but this is beyond the scope of the 

work presented here).  

 

Fig. 3. Moments reconstruction of simulated data for 3 near-by blinking fluorophores. (a) shows 

the photophysical parameters used in the blinking simulation of the three emitters. (b) shows the 
ground truth location of the three emitters. Other parameters used for the simulations: emission 

wavelength of 520nm, numerical aperture of NA=1.4, frame integration time of 2 ms. The pixel 

size was set to be small (17.78 nm) to avoid artifacts due to binning. (c) shows the comparison 
between the prediction (Pred.) and reconstruction (Recon.) of the 6th order moment. (d) shows 

the average image (Ave.) and moments of the simulated movie (M2 to M7). Scale bars: 160 nm. 
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Besides, equation (3.3) indicates that the emitter distance factor W(sp, rk) attenuates the virtual 

brightnesses of the ghost emitters, and their contribution to the image is to ‘fill-in’ the space in 

between of the real emitters #1, #2 and #3. Such insight is confirmed in Fig. S6 and Fig. S5, 

where the distances of the three emitters are progressively increased, and the ghost emitters’ 

intensities are more attenuated with the increase of such increased distances(Fig.S6), indicating 

that the ‘ghosting’ effect is a near-range effect, and Fig. S6 indicates that the critical distance 

is between 160 nm to 177.8 nm. We further simulated two lines that are placed in parallel at a 

distance of 160 nm. Results are shown in in Fig. S7, with different total number of frames, 

labeling densities and pixel sizes. Comparisons are performed between the average, 6th order 

cumulants with and without taking the absolute value, and 6th order moments with and without 

ldrc. ‘Ghost’ emitters in between the two lines are attenuated because of the relatively large 

distance. ‘Ghost’ emitters along the same line are not much less attenuated, but contribute to 

the overall ‘smoothing’ of the filamentous feature.  Nonetheless, despite this smoothing-out, 

SR enhancement is still maintained, as shown in Fig. S7. The two lines are resolved in the 6th 

order moments reconstruction, even with larger pixel sizes and less frames. Fig. S7 shows that 

using less total number of frames and larger pixel sizes can negatively impact both cumulants 

and moments (Fig. S7), but moments reconstruction is more robust as compared to cumulant 

reconstruction. 

Considering the existence of ghost emitters, the limit of  the resolution enhancement of nth order 

moment reconstruction (where n is an even number) is the resolution enhancement acquired in 

the 2nd order moment (equivalent to the 2nd order cumulant in our case): 2 . However, even 

order moments are strictly free of cusp-artifacts (see Fig. 2(a)), deconvolution algorithms could 

be readily applied to further enhance the resolution by up to an addition of n1/2 fold[32] , 

resulting in a theoretical 2n  fold resolution enhancement. This resolution enhancement factor 

is higher than that for pure cumulants without deconvolution (n1/2), but lower than that for 

cumulants with deconvolution (n), but cusp-artifacts greatly corrupt the high-order cumulants, 

rendering such deconvolution impractical. A similar argument holds for bSOFI reconstructions 

which assumes perfect deconvolution. In summary, the artifacts introduced by ‘ghost’ emitters 

in moments are manageable. Even-order moments indeed exhibit ‘ghosting’ artifacts, but they 

are limited due to the brightness attenuation. Importantly, even-order moments are free of cusp 

artifact because virtual and real brightnesses are positive, allowing for a subsequent 

deconvolution step that improves the total resolution enhancement of up to a factor of 2n . 

 

Fig. 4. Comparison of high-order moments reconstruction with high-order bSOFI and SRRF 

reconstructions on simulated filaments. A simulated dataset consisting of filaments in a 3D space 
was generated with: 50 emitters per 1 um labeling density along the line, 10 nm cross-section 

thickness with a Gaussian profile, 520 nm emission wavelength, 1.4NA and 90x magnification 
and a grid of 125×125 pixels with a pixel size of 1.6 x 1.6 um2. The Gibson Lanni’s PSF model 

was used in the simulations. Small field of views are cropped with different feature densities for 

comparison. (a) Sparse filaments. All methods yield satisfactory results. While M6-ldrc exhibits 
some grids artifacts, SRRF emphasizes thin features with oscillatory intensities and bSOFI 

exhibits granular and discontinuous features. (b) Dense filaments. Compared to the ground truth 

image, M6-ldrc exhibits the most faithful representation, while SRRF-TRA omits filaments 
(circled area for example). bSOFI exhibits discontinues filaments and features at locations that 

have no ground-truth signal (boxed area for example). (c) and (d) shows the ground truth for (a) 

and (b) as labeled in the image respectively. Scale bars: 640 nm. 
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We further increased the complexity of the simulations for various sample conditions and 

assessed the performance of the 6th order moments reconstructions in comparison to the 

performance of bSOFI and SRRF reconstructions for the same data sets. bSOFI is designed to 

solve the dynamic range expansion of the high order SOFI cumulants, but assumes perfect 

deconvolution, rendering the method vulnerable to the cusp artifacts. While SRRF calculates 

the fluctuation of radiality fluctuations, exhibiting as an alternative SR method that utilizes 

fluctuations information of the acquired image. The moment reconstruction was combined with 

a cusp-independent dynamic range compression method termed ‘local dynamic range 

compression (ldrc)’. In ldrc, the dynamic range of the pixel intensities of high order SOFI image 

is compressed in a local manner with a lower order SOFI image serving as a reference image. 

Specifically, a small window (typical width is 35 to 75 pixels) is defined, and the pixel 

intensities within the window are rescaled to the range of the same windowed area in the 

reference image. The window is moved across the field of view while each windowed area is 

rescaled independently. The output image with compressed dynamic range is the average of all 

the rescaled windows. The reference image is usually the 2nd order SOFI image that has 

excellent background removal and moderate dynamic range expansion.  A more detailed 

discussion about ldrc is provided in Appendix 4[45]. All reconstructions were compared to the 

ground truth image. As shown in Fig. 4, bSOFI reconstructions exhibits discontinuities in the 

simulated filaments while SRRF artificially narrows them down. moments reconstructions 

yield a more faithful representation of the simulated data as compared to the ground truth. 

Further reconstructions results for a variety of simulated challenging image conditions are 

summarized in the Supplementary Figures, including for different labeling density (Fig. S8), 

increased filaments thickness (or equivalently labeling uncertainty) (Fig. S9), increased 

nonspecific binding emitter density (Fig. S10), and various signal levels (Fig. S11).  

Details of the simulations are given in Appendix 5[45]. We further tested the 3D sectioning 

capability on an additional set of simulations where acquisitions of the same simulated sample 

at 100 different focal planes were generated[37] and processed independently and subsequently 

combined for 3D reconstruction. ldrc together with moments reconstruction have yielded better 

sectioning performance than SRRF when compared to the ground truth of the simulation (Fig. 

5, Supplementary Movie 1, and Supplementary Movie 2).  

 

Fig. 5. Comparison of high-order moments reconstruction with high-order SRRF reconstruction 

for 3D sectioning performance. 3D sectioning results of ldrc-M6 and SRRF on simulated data 

are shown for a small field-of-view (2.15 μm × 2.15 μm). The full field-of-view results during a 
continuous scan of of the focal plane is provided in SI Movie 1. (a) shows the ground truth image 

of the simulated filaments projected onto x-y plane. Emitters are represented by 3D delta 

functions convolved with a 3D Gaussian with FWHM = 86.27 nm for the purpose of display. 
The color scale represents the z coordinate of the emitters. (b) x-z scan corresponding to the 

dashed line in (a), where 4 filaments are penetrating through the plane (a fifth filament (yellow) 

is missing at this plane because the sparse, stochastic labeling algorithm did not place an emitter 
at the corresponding (x, y, z) coordinate. (c) A z-direction cross section of the first (green) 

filament for ground-truth and ldrc-M6 and SRRF reconstructions. 
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5. High-order moments reconstruction of experimental data 

High-order moments reconstruction (6th order) in combination with ldrc and deconvolution 

were applied to experimental data of quantum dots-labeled α-tubulin filaments in fixed Hela 

cells. The results are compared to bSOFI and SRRF results (Fig. 6).  As shown already in the 

previous section, SRRF exhibit the highest visual resolution enhancement, but at the expense 

of introduction of distortions, while ldrc-M6 exhibits more faithful results (to the average 

image).  

 

Fig. 6. High-order moments reconstruction of experimental data (fixed cells). α-tubulin filaments 

in fixed Hela cells were labeled with QD800. 1000 frames were acquired with 30 ms integration 

per frame and processed. (a) shows the average image (b) shows the ldrc-M6 results from the 

full field-of-view. Three zoom-in panels in (a) are shown in panel (c) as FOV1, FOV2 and FOV3 

respectively, for single frame, average image, and results from ldrc-M6, SRRF and bSOFI 

respectively. The displayed SRRF result is optimized among options of temporal radiality 
average (TRA) and temporal radiality auto-cumulants (TRAC) of different orders. bSOFI exhibit 

discontinuities, SRRF provides higher resolution details but with distortions (blue arrows) and 

extra features which could be perceived as extra filaments with perpendicular branching angle 
to the robustly visualized microtubules. However, the microtubule branching angles are most 

commonly distributed within a range of 20 o to 60 o with average of 40o[48], the perpendicular 

branching displayed in the SRRF could be an artifact. The ldrc-M6 image is similar to the 
average image but with less background and improved resolution. Scale bars: 800 nm. 

The ldrc-M6 results for live cell imaging[38] are shown in Fig. 7. Fluorescence labeling was 

performed by fusing β-Actin protein sequence to either Skylan-S[21] or Dronpa-C12 (Fig. S16 

and Appendix 6[45], R. A. et al., manuscript in preparation) with a (GGGGS)×3 linker.  The 

bSOFI algorithm does not perform particularly well for this frame rate (33 Hz). SRRF, on the 

other hand, exhibits excellent performance in terms of resolution enhancement and highlighting 

and preserving small features (green arrows), but at the cost of introducing extra features that 

could be artifacts (blue arrows). In addition, M6 results afford deconvolution post processing 

(DeconvSK[49]), while deconvolution performed on SRRF results highlights the artifacts. The 
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reproducibility of the reconstruction algorithms and their comparisons could be assed from 

reconstructions of additional experimental data sets (Fig. S12, S13, S14, S15 and 

Supplementary Movies #3 - #8). Details of the experiments can be found in Appendix 6[45], 

and details of data processing can be found in Appendix 7[45]. Both SRRF and Moments 

reconstruction (M6+ldrc+deconvolution) outperform bSOFI and SOFI cumulants, especially 

when applied to fast live cell imaging data. 

 

Fig. 7. High-order moments reconstruction of experimental data (live cells). Hela cells were 

transfected with plasmid encoding (a) Skylan-S fused to β-Actin and (b) Dronpa-C12 fused to 

β-Actin. Live cells were imaged with 30 ms frame integration. 200 frames of the movie were 
processed per block. For each panel, the top row shows the full field-of-view, the middle row 

shows a zoom-in region (green box in the Average image), and the bottom row shows the further 

zoom-in region (green and blue boxes in the middle row image with or without a triangle marker 
at the left bottom corner). Each column shows results for the reconstruction method labeled at 

the top. We can see that while SRRF exhibit excellent performance on highlighting small 
features (green arrows), but at the cost of introducing shadow artifacts (along and under the 

green dashed lines) along the sides of bright filaments, and extra feature that could be artifacts 

(blue arrows). The displayed SRRF result is optimized among options of temporal radiality 
average (TRA) and temporal radiality auto-cumulants (TRAC) of different orders. Scale bars: 8 

μm. 

6. Conclusions 

As explained in our accompanying work[33], cusp artifacts greatly affect the quality of high-

order SOFI (cumulant) reconstruction. In this paper we reexamined the mathematically non-

rigorous moments reconstruction and compared its results with SRRF and bSOFI 
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reconstructions. Moments reconstructions (combined with ldrc and deconvolution) of 

simulated and experimental data sets exhibited satisfactory results with resolution enhancement 

and minimal distortions. Although they inherently introduce additional, spurious signals from 

the ghost emitters, in practice, the reconstructions are faithful to the ground-truth of simulated 

data and average image of experimental data. Moments reconstruction and SRRF both 

outperform bSOFI due to the latter’s heavy reliance on deconvolution. In contrast to bSOFI, 

Moments reconstruction allows for the subsequent application of deconvolution to the 

reconstruction, independent of the dynamic range compression process. The theoretical 

resolution enhancement factor for even order moments is at least 2 , and once combined with 

subsequent deconvolution algorithm, such factor can be improved to . Lastly, we have 

demonstrated a super-resolved M6-reconstructed live cell movie with a temporal resolution of 

6 seconds per frame (requiring only 200 frames of the original movie for each frame of the 

reconstructed movie) using a conventional wide field fluorescence microscope. 
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