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Abstract 1 

Background: Phenotypic variability of human populations is partly the result of gene polymorphism and 2 

differential gene expression. As such, understanding the molecular basis for diversity requires identifying 3 

genes with both high and low population expression variance and identifying the mechanisms underlying 4 

their expression control.  Key issues remain unanswered with respect to expression variability in human 5 

populations. For example, the statistical nature of human expression variation has not been reported and 6 

the role of gene methylation is just beginning to be understood. Moreover, the contribution that age, sex 7 

and tissue-specific factors have on expression variability are not well understood. 8 

Results: Here we used a novel analytic that accounts for sampling error to classify human genes based on 9 

their expression variability in normal human breast and brain tissues. We find that genes with high 10 

expression variability differ markedly between tissues, indicating that tissue-specific factors govern 11 

population expression variance. In addition, high expression variability is almost exclusively unimodal, 12 

indicating that variance is not the result of segregation into distinct expression states.  Importantly, we 13 

find that genes with high population expression variability are likely to have age-, but not sex-dependent 14 

expression. Lastly, we find that methylation likely has a key role in controlling expression variability insofar 15 

as genes with low expression variability are likely to be non-methylated. 16 

Conclusions: We conclude that gene expression variability in the human population is likely to be 17 

important in tissue development and identity, methylation, and in natural biological aging. The 18 

expression variability of a gene is an important functional characteristic of the gene itself. 19 

Therefore, the classification of a gene as one with Hyper-Variability or Hypo-Variability in a 20 

human population or in a specific tissue should be useful in the identification of important genes 21 

that functionally regulate development or disease. 22 
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 2 

Background 3 

 Within the last decade, many studies have established that gene expression patterns vary 4 

between individuals, across tissue types [1], and within isogenic cells in a homogenous environment [2]. 5 

These differences in gene expression lead to phenotypic variability across a population. Differential gene 6 

expression gene expression is typically detected by analyzing expression data from a population of 7 

samples in two or more genetic or phenotypic states, for example a cancerous and non-cancerous sample 8 

or between two different individuals. Various differential gene expression algorithms, such as edgeR and 9 

DESeq, are then used to identify genes whose expression mean differs significantly between the states. 10 

While differential co-expression analyses have successfully been used to identify novel disease-related 11 

genes [3], the statistical methods used in these analyses consider gene expression variance within the 12 

sample population as a component of the statistical significance estimate. However, expression variability 13 

within populations has been emerging as an informative metric of cell state an informative metric of a 14 

phenotypic state, particularly as it relates to human disease [4, 5].  15 

There are several sources of expression variability in a population.  The first are polymorphisms 16 

that contribute, both genetically and epigenetically, to promoter activity, message stability and 17 

transcriptional control.  Another source of gene expression variability is plasticity, whereby an organism 18 

adjusts gene expression to alter its phenotype in response to a changing environment [6]. However, gene 19 

expression patterns can also vary among genetically identical cells in a constant environment [7–10]. This 20 

is commonly described as “noise”.  21 
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Expression variability, whatever its source, is an evolvable trait subject to natural selection, whereby each 1 

genes have an optimal expression level and variance required for an organism’s fitness and selection 2 

minimizes this variability [7, 10–14]. In this case, genes with low variability have been subjected to heavy 3 

selection pressure to minimize population expression variance. Conversely, high variability genes have 4 

been least selected for. Genes with high expression variability could be drivers of phenotypic diversity, as 5 

suggested by position association between expression noise and growth [15–18]. In this interpretation, 6 

genes with high variability allow for growth in fluctuating environments. Understanding the role of the 7 

gene expression variability patterns across human populations will therefore provide crucial insights into 8 

how genetic differences contribute to phenotypic diversity, susceptibility to disease [19, 20], 9 

differentiation of disease subtypes [5], embryonic development [21, 22], and alterations in gene network 10 

architecture [23].  11 

In this analysis, we used a novel method to analyze global gene expression variability in non-12 

diseased human breast, cerebellum, and frontal cortex tissues. Our method differs from other protocols 13 

in that we account for sampling error in our analysis as well as estimate expression variability independent 14 

of expression magnitude. In addition, we analyzed gene methylation in conjunction with expression 15 

variability. Our work suggests that expression variability is an important part of the development and 16 

aging process and that identifying genes with very high or very low expression variability is one way to 17 

identify physiologically and important genes. 18 

 19 

Results 20 

Estimating expression variability. We measured human gene expression variability (EV) [1] in post-21 

mortem non-diseased cerebellum (n=465) and frontal cortex samples (n=455)  and biopsied normal breast 22 
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tissues (n=144). We excluded probes corresponding to non-coding transcripts as well as those with 1 

missing probe coordinates, resulting in a list of 42,084 probes. To estimate a gene’s EV independent of its 2 

expression magnitude, we modified the method initially described by Alemu et al [1]. First, we calculated 3 

the median absolute deviation (MAD) for each probe. Then we modelled the expected MAD for all genes 4 

as a function of median expression using a locally weighted polynomial regression (Fig. 1A, red line). The 5 

expected MAD regression curves for each tissue type exhibit a flat, negative parabolic shape where the 6 

lowest and highest expression probes represent the troughs of the curve. Variability in gene expression 7 

levels has previously been shown to decrease as expression approaches either extrema [7, 9, 24].  The EV 8 

for each probe was calculated as the difference between its bootstrapped MAD and the expected MAD at 9 

each median expression level (Fig. 1A). Positive EV values indicate that the gene has a greater expression 10 

variability than genes with the same expression magnitude mean. Conversely, negative EV values imply 11 

reduced population expression variability. We next plotted the probability density function of EV for each 12 

tissue (Fig. 1B). The EV distributions in all three tissue types exhibit large peaks around the zero mean and 13 

a long tail for positive EV probes. Breast tissue exhibited a larger shoulder of the negative EV probes 14 

compared to cerebellum and frontal cortex tissues. This is likely attributable to the lower number of breast 15 

samples (144 compared to 456 and 455 samples respectively).  16 

We then confirmed the independence of EV on expression by modelling the relationship between 17 

the two variables using a linear regression (Fig 1C). Based on the poor adjusted R2 values (2x10-4, 8x10-4, 18 

and 5x10-3 for breast, cerebellum, and frontal cortex respectively) and the flat slopes, we conclude that 19 

there is no substantial correlation between EV and gene expression magnitude.  20 

Next, we then classified each probe into three categories based on their EV. We used the term 21 

“Hyper-Variable” to describe probes whose EV was greater than 𝑥̃𝐸𝑉 + 3 ∗ 𝑀𝐴𝐷𝐸𝑉. Probes with an EV less 22 

than 𝑥̃𝐸𝑉 − 3 ∗ 𝑀𝐴𝐷𝐸𝑉 were deemed “Hypo-Variable”. The remaining genes that fell within the range of 23 
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𝑥̃𝐸𝑉 ± 3 ∗ 𝑀𝐴𝐷𝐸𝑉 were considered “Non-Variable”. We propose that these three distinct gene groups, 1 

categorized based on EV, correspond to distinct functional and phenotypic gene characteristics.  2 

 3 

Figure 1. Expression variability (EV) in human breast, cerebellum, and frontal cortex tissue. (A) Expected expression MAD for 4 

curve as a function of median probe expression (solid black line). (B) Probability density function of EV. The vertical black lines 5 

represent the EV classification ranges. (C) Expression variability as a function of median gene expression. Adjusted R2 values for 6 

the linear regression model shown in red were 0.0002, 0.0008, and 0.005 for breast, cerebellum, and frontal cortex tissues 7 

respectively. 8 

 9 

Accounting for sampling error in EV classification. We were concerned that the classification of a gene 10 

into Hyper-, Hypo- and Non-Variable classes might be the result of sampling errors. To minimize this 11 

possibility and to increase the accuracy of our EV classification method, we divided each of our tissue 12 

samples into two equally sized probe subsets and repeated the EV analysis. This 50-50 split-retest 13 

procedure was repeated 100 times. Figure 2 shows the probability distribution of a concordant EV 14 

classification for each gene into Hyper-, Hypo- and Non-Variable class across the three subsets in each 15 

tissue type. Fig 2 demonstrates that classification of a gene as Hyper or Hypo-variable based on a single 16 

analysis of the population is problematic because of sampling bias.  We see a substantial decrease in the 17 

number of genes in the Hyper- and Hypo-Variable gene sets after conducting our split-retest protocol(Fig. 18 

2B). Thus, our split-retest method likely increases the robustness and accuracy of EV classification  19 

 20 

Figure 2. Cross-Validation of EV Classifications. (A) Probability distribution of gene EV classification accuracy between original 21 

distribution and 50-50 split retest replicates (n=100). (B) Number of genes in each EV gene set before and after split-retest protocol. 22 

 23 
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Statistical nature of Hyper-variability. A previously unexplored aspect of expression Hyper-variability is 1 

the statistical characteristics of expression amongst genes with this wide range of gene expression. 2 

Specifically, high EV could be the result of a multimodal distribution of gene expression with two or more 3 

distinct expression means or might simply result from a broadening of expression values around a 4 

unimodal mean value. In order to distinguish between the two possibilities, we modeled each gene 5 

expression as a mixture of two Gaussian distributions (Fig. 3). Next, we identified the peaks of the 6 

probability density function for each Gaussian distribution and compared the distance between the peaks 7 

as well as the ratio of peak heights. Probes with peaks that were greater than one median absolute 8 

deviation apart and displayed a peak ratio greater than 0.1 were classified as having a bimodal expression 9 

distribution. Probes that did not satisfy both criteria were considered to have a unimodal distribution. 10 

Only a small minority of the Hyper-Variable (high EV) probes (15/3453 breast tissue probes, 6/2980 11 

cerebellum probes, and 6/3487 frontal cortex probes) showed a bimodal distribution of gene expression. 12 

The remaining majority of Hyper-Variable probes had a unimodal distribution. This indicates that high 13 

expression variability is a result of a widening of possible expression values across a single mean rather 14 

than the gene expression existing in two or more discrete states. 15 

 16 

Figure 3. Bimodal Hyper-Variable gene expression detection. Gaussian mixture modelling method of detecting bimodal probes. 17 

The dashed lines represent the overall gene probability density function of gene expression. The two Gaussian models are shown 18 

in dark grey and light grey, and the dotted vertical lines represent the distribution means. 19 

 20 

Tissue-specificity of EV. Because we have calculated EV from different tissues, we were able to determine 21 

the extent to which tissue-specific factors might contribute to EV. This is an important question because 22 

expression variability exists not only between individuals but between different tissues in the same 23 
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organism.  Characterizing tissue-specific EV will therefore shed light on tissue specification and identity 1 

processes. As shown in Fig. 4A, there was limited overlap between the Hyper-Variable, Hypo-Variable, and 2 

Non-Variable genes between the three different tissues. 13-16% of the Hyper-Variable genes were 3 

classified as such in the three tissues and 18-26% of the Hypo-Variable were so classified. The Non-4 

Variable probe sets contained over 82% of genes in each tissue type, with over 71% of the measured genes 5 

commonly classified as NV in all three tissue types. The poorly overlapping nature of each EV classification 6 

suggests that population expression variability is largely determined by tissue-specific pathways.  7 

 8 

Figure 4. Tissue Specificity of EV. (A) Venn diagrams comparing EV classifications between breast, cerebellum, and frontal cortex 9 

tissues. (B) Effect of genomic position on EV. Each chromosome is divided into 100 bins (x-axis) based on the maximum gene 10 

coordinate annotation, and the average EV in each bin is measured (y-axis). 11 

 12 

EV and gene structural characteristics. To understand possible genomic mechanisms by which population 13 

expression variability occurs, we first explored the relationship between EV and various structural features 14 

of the genes. Expression variability has previously been reported to be associated with gene size, gene 15 

structure, and surrounding regulatory elements [1]. However, we found no significant linear correlation 16 

between EV and a gene’s exon count, sequence length, transcript size, or number of isoforms (Additional 17 

file 1). While certain linear models exhibited statistical significance (p < 0.05), the fit of the model and 18 

subsequent comparison of the linear model against a local polynomial regression curve showed that the 19 

correlation was either not correctly defined by a linear model or simply too small to draw a conclusion.  20 

While we did not find that the physical gene characteristics were correlated to EV, previous 21 

studies have shown that the position of a gene on a chromosome has considerable effects on stochastic 22 

gene expression variability, independent of gene- and promoter-specific variables [25]. We next tested if 23 
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there is a relationship between expression variability and chromosomal position (Fig. 4B). To this end, 1 

each chromosome was divided into 100 bins and the average EV all the genes within each bin was 2 

determined. If there was no relationship between the two, we would expect to see EV to be uniformly 3 

distributed throughout the genome. We found that EV is not uniformly distributed across the genome, 4 

and individual regions of chromosomes exhibited peaks of high expression variability or troughs of low 5 

expression variability. To further confirm our conclusion, we tested the cosine similarities of the 6 

chromosomes within and across the tissue types (Additional file 2). The EV distributions across 7 

chromosomes exhibited low similarities within each tissue type, further establishing that EV is not 8 

randomly distributed throughout the genome.  9 

Essentiality enrichment in variable genes. Previous studies in yeast have shown that gene expression 10 

variability is reduced in genes that are essential for survival. It is believed that evolution has selected for 11 

transcriptional networks that limit stochastic expression variation of essential genes [13]. If this were true 12 

for humans, we would expect a significant number of essential genes to exhibit Hypo-Variable expression. 13 

Conversely, we expect a depletion of essential genes within the Hyper-Variable probe sets. 14 

Table 1. Pearson’s Chi-squared test for Essentiality in Hyper-Variable, Hypo-Variable, and Non-Variable probe sets.  15 

Tissue Probe Set Total Gene Count Essential 
Gene Counts 

Standardized 
Residuals P-Value 

Breast 
Hyper 1448 180 12.22 

1.50 x 10-34 Hypo 957 108 8.27 
NV 33957 1657 -14.94 

Cerebellum 
Hyper 1640 170 8.66 

8.27 x 10-63 Hypo 837 83 5.54 
NV 35257 1849 -10.42 

Frontal Cortex 
Hyper 1760 196 10.6 

1.52 x 10-92 Hypo 1254 125 7.04 
NV 34831 1764 -12.89 

 16 
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 In order to examine a potential correlation between expression variability and essentiality in 1 

human tissues, we first tested the independence between EV classification and annotation of human 2 

essentiality (Table 2). Essentiality annotations were obtained from the CCDS [26] and MGD [27] databases. 3 

Here, direct human orthologs of genes essential for prenatal, perinatal, or postnatal survival of mice were 4 

classified as essential. Using the Pearson’s chi-square test for the number of essential genes in each probe 5 

set, we find that that the Hypo-Variable gene set in breast, cerebellum, and frontal cortex tissues were 6 

significantly enriched for genes with essentiality annotation (p-value = 1.50 x 10-34, 8.27 x 10-63, and 1.52 7 

x 10-92, respectively). Thus, expression variability for many essential genes is constrained in humans, likely 8 

reflecting a similar biology to essential yeast genes. However, we also observe a significant enrichment of 9 

essential genes within the Hyper-Variable gene sets. This was a surprise to us since essential genes are 10 

thought of as being dose-sensitive and changes in the level of gene expression would be predicted to be 11 

deleterious or lethal.  12 

To better understand the implications of high variability in essential genes, we examined the 13 

functional annotations associated with Hyper-Variable essential genes (Table 3 and Additional file 4). The 14 

breast essential Hyper-Variable gene set was enriched for embryonic development, responses to growth 15 

factors, cell-substrate junction assembly, regulation of epithelial cell proliferation, and positive regulation 16 

of cellular component movement. The cerebellum essential Hyper-Variable gene set was enriched for cell 17 

differentiation, anion transport, trans-synaptic signaling, response to growth factors, and cell projection 18 

organization. Lastly, the frontal cortex essential Hyper-Variable gene set was enriched for cell 19 

differentiation, secretion, tyrosine kinase signaling, cell projection organization, and heart contractions. 20 

Overall, the Hyper-Variable essential gene sets tended to be enriched for morphogenic, tissue, and organ 21 

system development. This suggests that tight regulation of some essential genes may only be required for 22 

embryonic and morphogenic development and dose-sensitivity is lost in adults, allowing for high 23 

expression variability. 24 
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Table 2. Top 5 common and unique REVIGO GO annotation subsets of Hyper-Variable and Hypo-Variable essential genes in breast, 1 
cerebellum, and frontal cortex tissues. 2 

  Unique Breast Annotations Unique Cerebellum Annotations Unique Frontal Cortex Annotations 

Hyper-Variable 
Essential Genes 

Embryo development ending in birth or 
egg hatching 

Positive regulation of cell 
differentiation 

Positive regulation of cell 
differentiation 

Cellular response to growth factor 
stimulus 

Anion transport Regulation of secretion 

Cell-substrate junction assembly Trans-synaptic signalling Transmembrane receptor protein 
tyrosine kinase signaling pathway 

Regulation of epithelial cell 
proliferation 

Cellular response to growth factor 
stimulus 

Regulation of cell projection 
organization 

Positive regulation of cellular 
component movement 

Regulation of cell projection 
organization 

Heart contraction 

Hypo-Variable 
Essential Genes 

Negative regulation of cellular 
component organization 

DNA repair DNA repair 

DNA repair Negative regulation of cellular 
component organization 

Covalent chromatic modification 

Regulation of cellular protein 
localization 

Positive regulation of viral release from 
host cell 

mRNA transport 

Embyro development ending in birth or 
egg hatching 

Regulation of cellular protein 
localization 

Progesterone receptor signaling 
pathway 

Apoptotic process Regulation of cell cycle process Regulation of cell cycle process 

 3 

 4 

Functional analysis of Hyper-, Hypo- and Non-Variable genes. In order to understand the overall 5 

biological significance of gene EV, we examined the functional aspects that are enriched in the Hyper-6 

Variable, Hypo-Variable, and Non-Variable probe sets by conducting a gene set enrichment analysis for 7 

each probe set group. We determined the over-represented Gene Ontology (GO) terms that were unique 8 

in each tissue type, as well as GO terms that were common in all three tissue types. The resulting GO 9 

annotations were simplified and visualized using a REVIGO treemap. The top five terms for each tissue 10 

type can be found in Table 1, while the complete list of GO term treemaps can be found in Additional file 11 

3. 12 
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Table 3. Top 5 common and unique REVIGO GO annotations in the Hyper-Variable and Hypo-Variable gene sets of breast, 1 

cerebellum, and frontal cortex tissues. 2 

  Common Annotations Unique Breast Annotations Unique Cerebellum 
Annotations 

Unique Frontal Cortex 
Annotations 

Hyper-Variable 
  

Regulation of bone 
remodeling 

Epithelial cell differentiation Regulation of nervous system 
development 

Histamine secretion 

Regulation of inflammatory 
response 

Primary alcohol metabolism Regulation of transmembrane 
transport 

Regulation of cell 
morphogenesis 

Response to zinc ion Positive regulation of cellular 
component movement 

Regulation of neuron death Trans-synaptic signaling 

Carboxylic acid biosynthesis Response to corticosteroid Negative regulation of 
response to external stimulus 

Regulation of neurological 
system process 

Regulation of ion transport Transmembrane receptor 
protein tyrosine kinase 
signaling pathway 

Response to calcium ion Dephosphorylation 

Hypo-Variable 
  

Proteolysis involved in cellular 
protein catabolism 

Golgi vesicle transport DNA conformation change ncRNA metabolism 

Ribonucleoprotein complex 
assembly 

Nucleoside monophosphate 
metabolism 

Modification-dependent 
macromolecule catabolism 

Response to interleukin-1 

Regulation of cellular amino 
acid metabolism 

Proteolysis involved in cellular 
protein catabolism 

Response to camptothecin Regulation of enter of 
bacterium into host cell 

Innate immune response 
activating cell surface receptor 
signaling pathway 

Cellular response to nitrogen 
starvation 

Retrograde transport, 
endosome to Golgi 

 

Negative regulation of 
autophagy 

Mitochondrial respiratory 
chain complex I assembly 

Regulation of ubiquitin-protein 
transferase activity 

 

 3 

 The breast Hyper-Variable gene set was uniquely enriched for epithelial cell differentiation, 4 

primary alcohol metabolism, and positive regulation of cellular component movement. The cerebellum 5 

Hyper-Variable gene set was uniquely enriched for regulation of nervous system development, 6 

transmembrane transport, and neuron death. The frontal cortex Hyper-Variable gene set was enriched 7 

for histamine secretion, regulation of cell morphogenesis, and trans-synaptic signalling. The breast, 8 

cerebellum, and frontal cortex Hyper-Variable gene sets were commonly enriched for regulation of tissue 9 

remodeling, inflammatory responses, and responses to inorganic substances. Of note, many of the 10 

enriched GO annotations of the Hyper-Variable genes are involved in signalling pathways. These pathways 11 
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require dynamic control based on internal and external stimuli and their high EV likely represents differing 1 

environmental or hormonal conditions amongst the individuals. 2 

 In the case of the Hypo-Variable gene sets, all three tissue types were enriched for protein 3 

catabolism and metabolism, ribonucleoprotein complexes, and negative regulation of autophagy. The 4 

breast Hypo-Variable gene set was enriched for Golgi vesicle transport, nucleoside metabolism, and 5 

protein catabolism. The cerebellum Hypo-Variable gene set was enriched for DNA conformation change, 6 

modification-dependent macromolecule catabolism, and retrograde transport.  7 

Genes with higher expression variability have previously been shown to be functionally and 8 

physically involved with the physical cell periphery, localizing in the membrane, transmembrane, or 9 

extracellular matrix regions [23]. Our results corroborated these findings as the Hyper-Variable gene sets 10 

from breast, cerebellum, and frontal cortex were enriched for GO annotations associated with cell surface 11 

signalling pathways, as well as cellular component ontologies enriched at the plasma membrane. In 12 

contrast, genes with low variability genes tended to regulate nucleic acid and metabolic pathways, 13 

localizing in the cell interior. These Hypo-Variable genes are likely involved in complex, dose-sensitive 14 

gene networks and require tight regulation of their expression to function correctly. 15 

DNA methylation and expression variability. One factor that has been postulated to regulate EV is DNA 16 

methylation. While the relationship between methylation and gene expression is complex, low promoter 17 

methylation is associated with high levels of gene expression [28–31]. Like gene expression, DNA 18 

methylation is highly variable at the cell, tissue, and individual level [32], suggesting that EV could result 19 

from variations in gene methylation. To explore this idea, we used DNA methylation annotations that 20 

were available in 724 out of 911 brain tissue samples.  21 

DNA methylation in CpG sites is thought to be bimodal, meaning that the gene is either 22 

hypomethylated or hypermethylated [31]. In order to differentiate between low, medium, and high 23 
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methylation states in our samples, we modelled gene methylation using Gaussian mixture models for the 1 

mean methylation for each gene. The distribution of gene methylation in both cerebellum and frontal 2 

cortex tissue was best modelled as a three-component system. The first component was a sub-population 3 

Gaussian mixture while the second and third components were modelled as single Gaussian distributions. 4 

Genes whose methylation fell within the first component were classified as Non-Methylated genes. Genes 5 

were classified as Medium Methylated for those in the second component and Highly Methylated if they 6 

were in third. The distribution of methylation amongst the genes is predominantly bimodal with only a 7 

minority of genes being Medium Methylated (Fig. 4A).  In contrast, over 62% of cerebellum genes are non-8 

methylated and 23% highly methylated. Similarly, 58% of frontal cortex genes are non-methylated and 9 

22% are highly methylated).  10 

Next, we explored the correlation between methylation and expression based on the EV. When 11 

we subset the methylation distribution by EV classification (Fig. 4B), we observe that Hypo-Variable genes 12 

have a visibly different methylation pattern than Hyper- or Non-Variable genes insofar as Hypo-Variable 13 

genes are visibly overrepresented in the Non-Methylated gene group compared to both the Hyper-14 

Variable and Non-Variable genes.  15 

 16 

Figure 5. Methylation in human cerebellum and frontal cortex tissue. (A) Probability density function of average gene 17 

methylation. Gaussian mixture models were used to classify the genes into Non-, Medium- and Highly- methylated clusters. (B) 18 

Probability density function of average gene methylation by EV classification. The dashed vertical lines represent the methylation 19 

state cluster cut-offs generated by the Gaussian mixture modelling. The y-axis is scaled by the square root of the methylation 20 

density. 21 

 22 
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To further quantify the overrepresentation of Hypo-Variable genes in the Non-Methylated gene 1 

group, we conducted a chi-squared test of independence between the methylation state clusters and the 2 

EV classifications (Table 4). Both the cerebellum and frontal cortex tissues exhibited a significant 3 

relationship between the methylations clusters and EV classifications (p = 7.57 x 10-36 and p = 1.58 x 10-59, 4 

respectively). By examining the standardized residuals of the chi-square test of independence, we 5 

quantitatively confirmed the enrichment of Non-Methylated genes within the Hypo-Variable gene set. We 6 

also observe a significant enrichment of Highly Methylated genes in the Non-Variable gene set as well as 7 

an enrichment of Medium Methylated genes in the Hyper-Variable gene set. The high significance and 8 

non-overlapping enrichments across each of the three groups suggests that there is a strong relationship 9 

between methylation and EV classifications: low gene methylation is important for the tight expression 10 

constraint in Hypo-Variable genes while high gene methylation contributes to Non-variable expression. 11 

Table 4. Chi-Squared Test Standardized Residuals. We tested the independence between the methylation state clusters and the 12 

EV classifications in cerebellum and frontal cortex tissues and found a significant relationship between the two variables (p = 13 

7.57 x 10-36 and p = 1.58 x 10-59, respectively).  14 

 
Cerebellum Tissue  Frontal Cortex Tissue 

Non-
Methylated 

Medium 
Methylated 

Highly 
Methylated  Non-

Methylated 
Medium 

Methylated 
Highly 

Methylated 
Hypo-Variable 11.98 -5.69 -9.04  14.84 -7.11 -10.79 
Non-Variable -7.52 0.06 8.59  -10.00 -0.04 11.73 

Hyper-Variable 0.07 4.21 -3.58  -0.23 6.23 -5.47 
 15 

 16 

Effects of age, sex, and PMI on variability. To further understand the biological relevance of EV, we 17 

focused on the Hyper-Variable genes to identify potential mechanisms of decreased constraint on gene 18 

expression across the samples. We systematically analyzed EV as a function of sex, age, and post-mortem 19 

interval (PMI). The breast tissue lacked these clinical annotations and were excluded from this analysis. 20 

We employed a probe-wise linear regression analysis to model the relationship between Hyper-Variable 21 
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gene expression and age, sex, and PMI (Table 5). The resulting p-values were adjusted for multiple 1 

comparisons using the Benjamini-Hochberg procedure and considered significant when the adjusted p-2 

value was less than 0.01. 3 

 4 

Table 5. Probe-Wise Multiple Linear Regression of PMI, Sex, and Age. Probes that exhibit an FDR < 0.01 are considered significant 5 

for the specific coefficient. 6 

 PMI Sex Age 
 Up Down Total Up Down Total Up Down Total 

Cerebellum 12 10 22 2 0 2 247 267 514 
Frontal 8 15 23 7 9 16 373 354 727 

 7 

PMI might be a source of apparent expression variability because an extended PMI might 8 

compromise sample RNA integrity and lead to degradation of labile RNA [33]. Brain samples had PMI times 9 

ranging from 1 hour to 94 hours (mean = 36.14 hr), but we observe a negligible number of probes that are 10 

correlated with PMI. This suggests that sample integrity is unlikely to be a source of EV changes. Somewhat 11 

more surprisingly, however, is the low number of probes that are correlated with sex. Only 2 out of 1640 12 

Hyper-Variable cerebellum genes and 16 out of 1760 Hyper-Variable frontal cortex genes show sex-13 

dependent differences in EV. While other studies have shown widespread sex differences in post-mortem 14 

adult brain gene expression [34], we conclude that in our analysis, EV is overwhelmingly sex-independent. 15 

However, we observe that age has a substantial effect on gene expression variability. Age is 16 

correlated with over 31% of Hyper-Variable cerebellum probes and over 41% of Hyper-Variable frontal 17 

cortex probes. This means that the expression of these genes becomes either more or less constrained 18 

during aging. In the cerebellum, there were 247 Hyper-Variable genes whose expression increased as a 19 

function of age and 267 genes with decreased expression. Similarly, the frontal cortex contained 373 20 

genes with increased expression and 354 genes with reduced expression. Given that age is correlated with 21 
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a considerable number of Hyper-Variable genes, we classified the age of the samples in the cerebellum 1 

and frontal cortex tissues into three age clusters according to BIC for expectation-maximization (EM) 2 

initialized by hierarchical clustering for parameterized Gaussian mixture models. The oldest cluster 3 

contained samples whose ages were between 58 and 98 (𝑥̅1 = 79). The second cluster ranged between 4 

32 and 57 years (𝑥̅2 = 45), while the youngest age cluster contained samples aged 1 through 31 (𝑥̅3 =5 

17).  6 

To further explore this effect, we examined the age-dependent changes in expression of the 7 

Hyper-Variable probes across the three clusters. In each tissue type, we labeled genes whose expression 8 

was positively correlated with age as “Upregulated”, while the negatively correlated genes were termed 9 

“Downregulated”. Then, we used a hierarchical clustering method with an expression heatmap to visualize 10 

how these upregulated and downregulated genes are expressed throughout the age clusters (Fig. 6). The 11 

resulting gene hierarchical trees were clustered into groups via manual tree cutting. The complete list of 12 

GO term treemaps for significant gene clusters can be found in Additional file 5. 13 

While the cerebellum is generally considered a regulator of motor processes, it is also implicated 14 

in cognitive and non-motor functions [35]. Many of these age-dependent upregulated Hyper-Variable 15 

genes corroborate previous studies exploring the relationship between brain aging and changes in gene 16 

expression, including cellular responses to chemical stimuli (gold cluster). In particular, reactive oxygen 17 

and nitrogen species have been shown to change ion transport channel activity, and serve as an important 18 

mechanism in brain aging [36]. While all the genes selected were age-regulated, some genes exhibit 19 

outlier samples whose expression remains high across all genes in the dark orange cluster, regardless of 20 

age. These genes are more likely to be overexpressed in the samples as age increases and are enriched 21 

for peripheral nervous system neuron development and neuron apoptotic pathways. Similar enrichments 22 

of neurogenic and chemical stimuli response pathways are seen in the upregulated frontal cortex genes 23 

(gold cluster). The dark orange cluster in the upregulated frontal cortex age-dependent genes exhibits an 24 
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entirely sample-specific over- or under-expression of genes. These bimodally expressed genes are 1 

enriched for glial cell differentiation, adenosine receptor signaling pathways, and antigen processing. 2 

Lastly, we see a random scattering of expression in the yellow cluster of the frontal cortex heatmap that 3 

steadily increases with age. These genes are enriched for glial cell differentiation, cellular response to 4 

alcohol, and defense responses to fungus. 5 

 6 

Figure 6. Hierarchical clustering of Hyper-Variable genes by age in (A) cerebellum tissue, and (B) frontal cortex tissue. The 7 

vertical axis represents the age-regulated Hyper-Variable genes while the samples were clustered by age and plotted on the 8 

horizontal axis. The top heatmaps represent the positively correlated age-regulated genes while the bottom heatmaps represent 9 

the negatively correlated age-regulated genes. The age clusters decrease in age from left to right in both heatmaps and 10 

correspond to the following age ranges: 𝑥̅1 = 79 [58,98], 𝑥̅2 = 45 [32,57], and 𝑥̅3 = 17 [1,31]. 11 

 12 

Most of the downregulated age-dependent Hyper-variable genes in the cerebellum fall into the 13 

green cluster where expression of the genes in the cluster increases with age. These genes are involved 14 

in leukocyte-mediated immunity and defense responses to other organisms, which is supported by 15 

previous studies [37]. Interestingly, the yellow cluster exhibits U-shaped expression levels, whereby the 16 

lowest expression is seen in the middle age cluster. These genes are enriched for optic nerve 17 

development, response to interferon-gamma, and synaptic signalling. In the frontal cortex, the majority 18 

of downregulated age-dependent genes fall in the red cluster, and are enriched for ion transport, cell 19 

morphogenesis, and trans-synaptic signalling. Overall, the functional annotations of the age-regulated 20 
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Hyper-Variable gene clusters suggest that population EV is one outcome of age-dependent gene 1 

expression changes.  2 

We next investigated a possible impact of methylation changes on gene expression in the Up- and 3 

Down-regulated Hyper-Variable genes. Fig. 7 shows the histogram distribution of correlation between the 4 

sample-specific gene expression and gene methylation. We observe no strong correlation between 5 

expression and methylation, suggesting age-dependent changes in expression of the age-regulated Hyper-6 

Variable genes are not the result of methylation changes.  7 

 8 

Figure 7. Expression and methylation correlation plot. Histogram of Pearson correlation coefficient between paired gene 9 

expression and gene methylation levels in Hyper-Variable and Hypo-Variable genes. 10 

 11 

Discussion 12 

Gene expression variability in a population is the cumulative result of intrinsic genetic factors, 13 

extrinsic environmental factors, and stochastic noise. A fundamental issue in biology is understanding the 14 

cause of expression variability within an individual organism and between isogenic and genetically 15 

dissimilar individuals of a population. In this report, we study population gene expression variability in 16 

human breast, cerebellum, and frontal cortex tissues.  17 

Our investigation into human gene expression variability yielded several main findings. First, we 18 

find that Hyper-Variability in gene expression is fundamentally unimodal and does not represent 19 

population switching between two or more discrete expression stages. In addition, both Hypo-Variable 20 

(highly constrained expression) and Hyper-Variable (lowly constrained expression) gene sets are enriched 21 

for essential genes and that both Hyper- and Hypo-variability are largely regulated by tissue specific 22 
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factors.  We also find that gene methylation has an important role in expression variability. Lastly, we find 1 

that Hypervariability is primarily associated with age and not sex.  2 

Our observation that Hyper-Variable genes have a unimodal expression pattern is significant 3 

because population gene expression diversity could manifest itself in multimodal or unimodal 4 

distributions. Unimodal distributions represent a continuum of expression levels in a population while 5 

multimodal distributions represent two or more distinct expression states between which cells might 6 

switch between [39]. Since Hyper-Variability is almost exclusively unimodal, high EV in both brain and 7 

breast is the result of a wide range of permissible expression levels in a population rather than the 8 

existence of discrete expression subpopulations. In the case of organismal phenotypes, the benefits of a 9 

unimodal phenotype distribution is highest in environments with very rapid or very noisy changes [40]. 10 

The unimodal distribution of Hyper-Variability indicates that similar evolutionary constraints apply to gene 11 

expression. 12 

The enrichment of essential genes in the Hypo-Variable gene sets is in agreement with previous 13 

findings in yeast showing that essential yeast genes are likely to have low expression variability.  However, 14 

we detected a significant number of essential genes amongst the Hyper-Variable genes in breast, 15 

cerebellum, and frontal cortex tissue. Inactivation of these essential genes leads to pre- or neonatal 16 

fatality in mice and humans [41] and functional enrichment analysis indicates that the essential genes are 17 

indeed involved in developmental pathways. This was a surprise to us since we expected that expression 18 

of developmental genes should be tightly regulated, yet we observe highly variable expression being 19 

tolerated in obligate developmental pathways. It is possible that these “essential” genes are required for 20 

embryonic development but have different post-embryonic roles and may not be essential post-natally. 21 

Alternatively, it is possible that these essential genes are not dose-sensitive in humans, meaning that only 22 

a certain level of baseline expression is required and expression above this baseline might be well 23 

tolerated. One additional possibility is that their protein abundance could be regulated translationally 24 
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rather than transcriptionally. Inefficient translation of certain genes may have been selected for during 1 

evolution to prevent fluctuations in protein concentrations32. Perhaps a combination of these factors is at 2 

play. Regardless, tight regulation of some embryonically essential pathways is not required in fully 3 

developed adults, allowing for a wider range of expression values within the human population, resulting 4 

in high expression variability. 5 

The non-random distribution of Hyper-Variable and Hypo-Variable genes across the genome 6 

suggests that EV is dependent on epigenetic factors. Examining the methylation status of the genes 7 

allowed us to determine the relationship between gene methylation and expression variability. Firstly, we 8 

find that Non-Variable genes in the cerebellum and frontal cortex are likely to have high gene methylation. 9 

Secondly, we find that Hypo-Variable genes are likely to be non-methylated. We propose a model for 10 

methylation-dependent expression variability where the highly constrained levels of Hypo-Variable gene 11 

expression require non-methylated genes. We speculate that the lack of methylation allows 12 

transcriptional regulators requiring non-methylated DNA for binding to tightly control gene expression. 13 

On the other hand, high gene methylation reduces transcription noise and epigenetically inhibits 14 

promoter variability in human populations. Future studies should investigate the role that these putative 15 

regulators of expression play on EV, including cis-regulatory elements and transcription factors (TF).  16 

We find that there is limited overlap in gene identity between Hyper- and Hypo-Variable genes in 17 

breast and brain tissue.  This suggests that expression variability is controlled by tissue-specific factors. 18 

We propose that tissue identity is created and preserved, at least in part, by changes in gene expression 19 

control pathways.  Thus, genes that are Hypo-Variable in any given tissue have a constrained expression 20 

pattern because they are likely to be important in the tissue-specific function and physiology of that 21 

organelle.  While there is limited overlap of genes within the corresponding EV gene sets of different 22 

tissues, the Hyper-Variable gene sets of the different tissues have similar functional enrichments and 23 

cellular protein localizations. Specifically, proteins encoded by Hyper-Variable genes tend to localize at 24 
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the cell periphery and are enriched for cell surface signalling pathways and tissue development, including 1 

tissue remodeling and ion transport. We therefore propose that high expression variability in genes 2 

associated with tissue development pathways is an important component of tissue identity.  3 

We did not observe any substantial sex dependent effects in expression variability. However, an 4 

important conclusion of our study is that many Hyper-Variable genes have age-dependent expression 5 

variability: that is, their expression increases or decreases during aging. One main cause of accelerated 6 

brain aging and a causal factor of neurodegeneration is a reduction in immunological functions [42, 43]. 7 

We see evidence of downregulated immune responses in the cerebellum, specifically leukocyte mediated 8 

immunity, defense responses to other organisms, and interferon-gamma response pathways. Many 9 

studies also suggest that aging is associated with the upregulation of inflammatory responses [44], which 10 

is a pathogenic mechanism implicated in many age-related diseases, including cardiovascular disease, 11 

Alzheimer’s disease, and Parkinson’s disease [45]. Consistent with this idea, we see an enrichment of 12 

acute inflammatory response in the cerebellum gold cluster. Another mechanism that has been implicated 13 

with age-related diseases, such as Alzheimer’s disease and Parkinson’s disease, is synaptic dysfunction 14 

that can affect neuroendocrine signaling [46–48]. We see a downregulation of ion transport and trans-15 

synaptic signaling in the frontal cortex, which are key components of neurotransmission and membrane 16 

excitability, and whose downregulation likely causes deficiencies in these complex processes. 17 

Furthermore, we see an upregulation of genes associated with glial cell differentiation in the frontal cortex 18 

across multiple gene clusters. Initially thought of as cells that merely support neurons, emerging research 19 

shows that neuron-astrocyte-microglia interactions are crucial for the functional organization of the brain 20 

[49]. In addition, genes specific to astrocytes and oligodendrocytes, two different types of glial cells, have 21 

been shown to shift regional expression patterns upon aging, and are better predictors of biological age 22 

than neuronal-specific genes [50]. This suggests that the Hyper-Variability and age-dependent 23 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/500785doi: bioRxiv preprint 

https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

upregulation of genes associated with glial cell differentiation is caused by differences in normal brain 1 

aging between the samples.  2 

Without examining the mechanistic control of individuals genes, it is difficult to determine if 3 

changes in gene expression result in repression or activation of their associated pathways. For example, 4 

we see an upregulation in neurogenesis associated genes during aging in both the cerebellum and the 5 

frontal cortex, despite the common theory that neurodegeneration is a ubiquitous effect of normal brain 6 

aging. An emerging concept in neuroscience is that homeostatic plasticity of neurons is maintained 7 

through local adjustments of neural activities [51]. This overexpression of genes in pathways whose 8 

function is known to decline over time may be a compensatory mechanism for an inefficient, aging system. 9 

Within the cerebellum, a decline in neuronal function that occurs with aging may cause an upregulation 10 

of genes associated with neurogenesis pathways. In addition to mitigating neuronal dysfunction, localized 11 

increases in neurogenesis may be induced in response to cerebral diseases or acute injuries for self-repair 12 

[52]. Lastly, chronic antidepressant usage has also been shown to result in an increase in neurogenesis 13 

[53], suggesting that psychopharmaceuticals can alter neurochemistry and mimic compensatory anti-14 

aging responses. Overall, EV plays an important role in aging, specifically in immune responses and 15 

inflammation, neurotransmission, and neurogenesis. Age-dependent gene expression could reflect a loss 16 

of regulatory control or be a part of a regulated pathway of development. 17 

In summary, our work shows that gene expression variability in the human population is likely to 18 

be important in development, methylation, and in aging. As such, the EV of a gene is an important 19 

functional characteristic of the gene itself. Therefore, the classification of a gene as one with 20 

Hypervariability or Hypovariability in a human population or in a specific tissue should be useful in the 21 

identification of important genes that functionally regulate development or disease. 22 

 23 
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Methods 1 

Illumina gene expression and methylation microarray data. The analysis was conducted on two separate 2 

datasets, both utilizing the Illumina HumanHT-12 V3.0 expression BeadChip. The first dataset provides 3 

high quality RNA-derived transcriptional profiling of breast-adjacent tissue from 144 samples***. The 4 

associated genotype and expression data have been deposited at the European Genome-Phenome 5 

Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted by the European Bioinformatics Institute, 6 

under accession number EGAS00000000083. The microarray readings were preprocessed using the 7 

author’s own custom script based on existing functionality within the beadarray package in R and were 8 

reported as a log2 intensity. This dataset is referred to as breast tissue. 9 

The second gene expression and the methylation datasets were catalogued by the North 10 

American Brain Expression Consortium and UK Human Brain Expression Database (UKBEC) [34, 54]. The 11 

expression data was obtained from the Gene Expression Omnibus (GEO) database [55] under accession 12 

number GSE36192. A total of 911 tissue samples were analyzed from frozen brain tissue from the 13 

cerebellum and frontal cortex from 396 subjects. The microarray readings were processed using a cubic 14 

spline normalization method in Illumina Genome Studio Gene Expression Module v3.2.7. The expression 15 

levels were log2 transformed before any analysis. The methylation data was also obtained from GEO 16 

under accession number GSE36194. A total of 724 tissue samples were analyzed from frozen brain tissue 17 

from the cerebellum and frontal cortex from 318 subjects. The methylation microarray readings were 18 

processed using BeadStudio Methylation Module v3.2.0 with no normalization.  19 

 20 

Preprocessing the datasets. Since the brain expression and methylation datasets were individually 21 

processed by different tissue banks and in several batches, we corrected for the batch effect using the 22 

limma package in R. The breast tissue dataset was previously batch corrected by the authors. Next, we 23 
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subset the data into 16 groups based on the clinical annotations provided by the UKBEC database. These 1 

annotations included tissue type (Cerebellum and Frontal Cortex), sex (Male and Female), and age group 2 

(0-25 years, 25-50 years, 50-75 years, or 75+ years). For each of the 16 groups, we calculated the median 3 

expression for each probe and performed a hierarchical clustering via multiscale bootstrap resampling 4 

using the pvclust package in R. Using a p-value threshold of 0.01, we see that the ideal clustering method 5 

is to subset the data by tissue type, dividing the expression and methylation brain datasets into 6 

cerebellum and frontal cortex tissue datasets.  7 

Estimating expression variability. To calculate a magnitude-independent measure of variability for 8 

expression and methylation, we used a modified method described in Alemu et al [1]. Briefly, we first 9 

calculated a bootstrapped estimate of the median absolute deviation of each gene using 1000 bootstrap 10 

replicates. Next, a local polynomial regression curve (loess function with default parameters on R version 11 

3.4.2) was used to determine the expected gene expression MAD as a function of the median value. No 12 

additional smoothing was used for the regression curve. We calculated gene EV as the difference between 13 

the bootstrapped MAD and the expected MAD at each gene’s median expression level.  14 

 15 

Identification and removal of bimodal expression probes. Probes expressions that exhibited a bimodal 16 

distribution were thought of as having two exclusive phenotypic states. However, our focus in this analysis 17 

was to examine the factors affecting the tightly regulated expression of Hypo-Variable probes or the highly 18 

variable gene expression of Hyper-Variable probes. In order to identify if a gene’s expression was 19 

unimodal or bimodal, we modeled each gene expression as a mixture of two gaussian distributions using 20 

the mixtools package in R. Next, we identified the peaks of the probability density functions for each 21 

gaussian distribution and compared the distance between the peaks as well as the ratio of peak heights. 22 

Probes with peaks that were greater than one MAD apart and displayed a peak ratio greater than 0.1 were 23 
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treated as having a bimodal expression and subsequently removed from the analysis. Probes that did not 1 

satisfy these criteria were considered to have a unimodal distribution and were kept for further analysis. 2 

 3 

EV gene set classification. We classified the probes into three distinct probes sets based on their 4 

expression variability: 5 

 𝑥̃𝐸𝑉 ± 3 ∗ 𝑀𝐴𝐷𝐵𝑜𝑜𝑡 (1)  6 

where 𝑥̃𝐸𝑉 is the EV median for each dataset, and 𝑀𝐴𝐷𝐵𝑜𝑜𝑡 is the bootstrapped estimate of the median 7 

absolute deviation using 1000 replicates. Probes whose EV fell within the range were considered Non-8 

Variable, those above this range termed Hyper-Variable, and the remaining were considered Hypo-9 

Variable. 10 

 11 

Bootstrapping EV gene set classifications. To statistically validate our EV classifications, we split our data 12 

into two equally sized subsets and repeated the previously explained EV method. This 50-50 split-retest 13 

procedure was repeated 100 times per tissue. Next, we determined the accuracy our of original 14 

classifications by comparing original classification of each gene with the 50-50 split classifications using a 15 

binomial test with a probability of success greater than 0.5. In this hypothesis, a “success” is defined as 16 

consistent EV classification across all three subsets, and gene classifications were considered significant 17 

with a p-value < 0.05. 18 

 19 

Structural analysis of EV genes. Data regarding the structural features of the genes was obtained from 20 

the GRCh38/hg38 assembly of UCSC Table Browser [56]. Linear regression analyses were conducted to 21 

find any correlation between gene EV and their structural features. For the linear regression analysis of 22 
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transcript size, we individually examined the largest and smallest transcripts separately. The sequence 1 

lengths excluded introns, 3’ and 5’ UTR exons, and any upstream or downstream regions. 2 

 3 

Gene cluster analysis. The GO term enrichment analyses were conducted using ConsensusPathDB gene 4 

set over-representation analysis [26]. The complete list of unique Illumina HumanHT-12 V3.0 expression 5 

BeadChip genes was used as a background list of genes. The resulting GO terms were then filtered 6 

manually using a q-value cutoff of 0.05. Common and unique GO terms were summarized using REVIGO 7 

[57] and visualized through treemaps by the provided R scripts. The parameters used were a medium 8 

allowed similarity (0.7) using Homo sapiens database of GO terms. 9 

 10 

Enrichment analyses. Using the Pearson’s chi-square test, we tested for enrichment of essential genes in 11 

each gene set relative to the total number of essential genes in the Illumina HumanHT-12 V3.0 expression 12 

BeadChip. A list of 20,029 protein coding genes from the CCDS database was used to test for essentiality 13 

enrichment [26]. Only genes that are solely classified as essential are considered in the analysis, resulting 14 

in a list of 2377 essential genes present in the dataset. Once the number of annotated genes and gene 15 

sets were deemed dependent variables, we determine the enrichment of annotated genes using the 16 

Pearson residuals.  17 

The Pearson’s chi-square test was also used to test the enrichment of methylation clusters across 18 

the Hyper-Variable, Hypo-Variable, and Non-Variable probe sets. 19 

 20 

Hierarchical clustering of age-dependent Hyper-Variable genes. With the exception of a few groups, the 21 

hierarchical clustering groups with the opposite sex and the same age groups tended to cluster together. 22 
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While the p-values of the sex and age groupings during the hierarchical clustering were too high to warrant 1 

further subsetting of the brain dataset samples into distinct groups, they were significant enough to 2 

inspect on a gene-by-gene basis. 3 

We used a multiple linear regression model to measure the changes in expression of the Hyper-4 

Variable probes as a function of age, sex, and post-mortem interval (PMI): 5 

 𝑌𝑖 =  𝛽 +  𝛽1𝐴𝑔𝑒 +  𝛽2𝑆𝑒𝑥 +  𝛽3𝑃𝑀𝐼 (2) 6 

where 𝑌𝑖  is the expression level of a probe and 𝛽𝑛 is the coefficient for each term. The p-values were 7 

calculated using a type III sum of squares regression and adjusted for multiple comparisons using the 8 

Benjamini-Hochberg method. Probes that exhibit an FDR < 0.01 were considered significant for the 9 

specific coefficient, and the sign of the coefficient determines if the probe is positively or negatively 10 

correlated with the factor.  11 

The choice to use three age clusters as the optimal number of clusters to examine changes of EV 12 

across age samples was determined using an expectation-maximization (EM) algorithm initialized by 13 

hierarchical clustering for parameterized Gaussian mixture models in the mclust package of R. The 14 

Bayesian information criterion for each hierarchical clustering model was determined, and both the 15 

cerebellum and frontal cortex displayed identical optimal numbers of age clusters. Once the samples were 16 

correctly clustered by age, the gene clusters were selected by cutting the gene dendrograms manually. 17 

The gene expressions were then visualized as heatmaps using the gplots package in R. 18 

 19 

List of Abbreviations 20 

 21 

EGA European Genome-Phenome Archive 22 
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EM Expectation-Maximization 1 

EV Expression Variability 2 

GEO Gene Expression Omnibus 3 

GO Gene Ontology 4 

MAD Median Absolute Deviation 5 

PMI Post-Mortem Interval 6 

TF Transcription Factors 7 

UKBEC UK Human Brain Expression Database 8 
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