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ABSTRACT 

 

Flowers are composed of different organs, whose identity is defined at the molecular by the 

combinatorial activity of transcription factors (TFs). MADS-box TFs interact forming 

complexes that have been schematized in the quartet model. The gynoecium is the female 

reproductive part in the flower, crucial for plant reproduction, and fruit and seed production. 

Once carpel identity is established, a gynoecium containing many tissues arises. Several 

TFs have been identified as regulators of gynoecium development, and some of these TFs 

form complexes. However, broad knowledge about the interactions among these TFs is still 

scarce. In this work, we used a systems biology approach to understand the formation of a 

complex reproductive unit as the gynoecium by mapping binary interactions between well-

characterized TFs. We analyzed over 3500 combinations and detected more than 200 

protein-protein interactions (PPIs), resulting in a process specific interaction map. 

Topological analyses suggest hidden functions and novel roles for many TFs. Furthermore, 

a relationship between TFs involved in auxin and cytokinin signaling pathways and other 

TFs was observed. We analyzed the network by combining PPI data, expression and 

genetic data, allowing us to dissect it into several dynamic spatio-temporal sub-networks 

related to gynoecium development subprocesses.   

 

INTRODUCTION 

 

Fruits and seeds are the basis of the food supply. Fruit and flower development in 

Arabidopsis has been studied for more than 20 years (Roeder and Yanofsky, 2006; Alvarez-

Buylla et al., 2010). The accepted model for floral organ formation relies on the 

combinatorial action of mostly MADS-box proteins, resulting in the specification of the 

four whorls of the flower: sepals, petals, stamens and carpels (Coen and Meyerowitz, 1991). 

At the molecular level, MADS-box transcription factors (TFs) form complexes in order to 

regulate gene expression. For the female reproductive organs, the C-class and E-class 

proteins physically interact to give the identity to the gynoecium (Honma and Goto, 2001; 

Theissen and Saedler, 2001). 
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Gynoecium formation starts at stage 6 of flower development, when its identity is 

established (Smyth et al., 1990). After that, several TFs participate in the subsequent 

formation of the tissues. These TFs belong to a significant number of TF families such as 

MADS-box, HOMEOBOX, bHLH, Zinc Finger, bZIP, factors mediating hormone 

transcriptional responses (ARF, ARR, TCP), and others (Roeder and Yanofsky, 2006; 

Reyes-Olalde et al., 2013). 

 

Current regulatory networks underlying gynoecium patterning include many protein-

encoding genes, mostly TFs, acting in a coordinated fashion for the formation of all the 

tissues (Chavez-Montes et al., 2015; Marsch-Martinez and de Folter, 2016; Zúñiga-Mayo et 

al., 2019). The involvement of several TFs in the same process generates robustness. At the 

very early stages, the establishment of two domains, the lateral and the medial, is essential 

for further gynoecium development. Besides TFs, the hormones auxin and cytokinin are 

involved (Bowman et al., 1999; Sehra and Franks., 2015; Marsch-Martinez and de Folter, 

2016; Muller et al., 2017; Victor-Zuñiga et al., 2019). 

 

Subsequently, the establishment of the carpel margin meristem or CMM is critical (Wynn 

et al., 2011; Reyes-Olalde et al., 2013). All the medial tissues will be formed from the 

CMM, including the placenta and ovules, septum, transmitting tract, replum, style and 

stigma. During these early developmental processes, important TFs are SHOOT 

MERISTEMLESS (STM), CUP-SHAPED COTYLEDON (CUCs), SPATULA (SPT), 

ETTIN (ETT), and some B-type ARABIDOPSIS RESPONSE REGULATORS (ARRs) 

(Sessions et al., 1997; Heisler et al., 2001; Nahar et al., 2012; Kamiuchi et al., 2014; 

Scofield et al., 2007; Reyes-Olalde et al., 2017). 

 

After that, in the formation of the transmitting tract another set of TFs are involved such as 

NO TRANSMITTING TRACT (NTT) (Crawford et al., 2007), the HECATE proteins 

(HEC1, HEC2 and HEC3), with SPT (Gremski et al., 2007), HALF FILLED (HAF), 

BRASSINOSTEROID ENHANCED EXPRESSION 1 and 3 (BEE1, BEE3), and the 

AUXIN RESPONSE FACTORS 6 and 8 (ARF6, ARF8) (Crawford and Yanofsky, 2011).  
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In the medial-lateral patterning of the gynoecium, this is, the formation of valves, valve 

margins, and replum, a repression-action between lateral and medial factors is necessary, 

ASYMMETRIC LEAVES 1 and 2 (AS1, AS2), JAGGED (JAG), FILAMENTOUS 

FLOWER (FIL), YABBY 3 (YAB3), and FRUITFULL (FUL) in the lateral domain; on the 

other hand, NTT (Marsch-Martinez et al., 2014), BREVIPEDICELLUS (BP), SHOOT 

MERISTEMLESS (STM) and REPLUMLESS (RPL) (Roeder et al., 2003), promote 

replum formation in the medial domain (Alonso-Cantabrana et al., 2007; Gonzalez-Reig et 

al., 2012); while, in between those tissues, SHATTERPROOF 1 and 2 (SHP1, SHP2), 

ALCATRAZ (ALC), INDEHISCENT (IND), and SPT are involved in the formation of the 

valve margins at later stages of gynoecium formation (Roeder and Yanofsky, 2006; Girin et 

al., 2011). 

 

Although there is information about how the above-mentioned TFs perform their activities, 

most of that information has come from studies done at the individual level. However, 

virtually all TFs form protein complexes (Vidal et al., 2011; Herrera-Ubaldo et al., 2014; 

Bemer et al., 2017). For all the TF families listed above, some essential feature of the 

protein functioning is achieved via PPIs, although, probably we know only the tip of the 

iceberg. Therefore, generating more PPI data, i.e. direct binary interaction mapping in a 

high-throughput, standardized manner, would boost our understanding on TF functioning 

during plant development. 

 

As expected, also for gynoecium and fruit development, information on PPIs is rather 

scarce (Herrera-Ubaldo et al., 2014). Studies have been reported on the generation of PPI 

data for some TF families such as MADS-box (de Folter et al., 2005; Immink et al., 2009), 

Homeobox (Hackbusch et al., 2005), TCP (Danisman et al., 2013), and proteins involved in 

hormone response like ARF-Aux/IAA (Vernoux et al., 2011) or ARRs (Dortay et al., 2006). 

In other cases, information comes from the study of a specific tissue or a specific 

developmental process, e.g. transmitting tract (Gremski et al., 2007) or fruit elongation 

(Ripoll et al., 2015). Some putative TF complexes have been predicted, such as SEU-LUG-

FIL-ANT for the control of the adaxial fate in the gynoecium (Azhakanandam et al., 2008), 

and ETT-IND-BP-RPL (Simonini et al., 2018) for style development. In summary, current 
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information about physical interactions important for gynoecium and fruit development is 

the result of very focused studies. 

 

In this work, we made a systematic effort to boost the information on PPI data that can give 

us insights into gynoecium and fruit development from the perspective of PPI networks of 

TFs. The formation of the gynoecium is a complex process, where many actors participate, 

so the study of this complex process as a system is necessary. We generated a PPI map of 

TFs that are expressed in the gynoecium and/or fruit and tissues with meristematic activity, 

and combined this with functional information and the sequence of developmental events 

that occur to obtain a proper gynoecium and fruit. This is an important step towards a 

comprehensive gynoecium gene regulatory network, and, furthermore, will be a useful 

resource for understanding how TFs can function. A deep understanding of molecular 

mechanisms and the regulatory networks controlling fruit development could be a tool for 

facing the future problems in crops and food production related to climate change (Zhao et 

al., 2017). 

 

 

RESULTS 

 

Here we present a protein-protein interaction network (PPI network) with many of the well-

characterized transcription factors (TFs) involved in gynoecium development in 

Arabidopsis thaliana (hereafter Arabidopsis). The combination of functional information 

and the physical interaction data allowed us to extract networks most likely reflecting 

protein complexes directing the formation of tissues, and with the addition of manually 

curated expression data we studied the dynamics of interactions related to temporal cues. 

With these, we dissected the interaction map into 13 sub-networks, each network 

representing a region and a progressive time during gynoecium development. These sub-

networks are likely biologically relevant. 
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Transcription factors involved in gynoecium development physically interact 

 

The first question we wanted to address was, how the TFs involved in gynoecium 

development physically interact between them. We selected well-studied TFs (and some 

co-factors and other TFs) related to this process (most of them are listed in Reyes-Olalde et 

al., 2013), in total, our study included 72 proteins (gyn set; listed in Supplemental Table 1). 

We performed a matrix-based yeast two-hybrid (Y2H) assay with Arabidopsis protein-

encoding ORF clones. To date, this is still the technique that has generated most PPI data 

for many model organisms, in a high-throughput, standardized and reproducible manner 

(Walhout and Vidal, 2001; Vidal et al., 2011; Braun et al., 2013). Most of the possible 

combinations were tested, but some of the BD clones were not used due to high 

autoactivation (results of the autoactivation tests are shown in Supplemental Table 2). In 

total, 3648 combinations were tested (Supplemental Table 2). For the Y2H assay, three 

interaction reporters were used; two of them allowing yeast growth (-HIS and -ADE), and 

colonies were confirmed with a third colorimetric reporter (LacZ). The interaction 

dependent growth was monitored with four yeast crosses (biological replicates), with one 

technical replicate, giving a total of 8 colonies per marker; one replicate from each marker 

was used for the LacZ assay, adding four more score points. 

 

In summary, each combination was tested 24 times. Plates were incubated during six days 

at 22ºC. Colony growth was scored on the 6th day after inoculation. In total, yeast growth 

was detected in 294 combinations. For the construction of the network and further analysis 

we used the top scored interactions, these are, interactions detected with at least 2 out of the 

3 reporters, with at least half of the colonies; this list includes 239 of high confident 

interactions (all the interactions are listed in Supplemental Table 3), which were used to 

generate the network. Almost one-third of the interactions had the highest score (24 points). 

In some cases, due to autoactivation of the BD clone, just two reporters could be used; in 

these cases, the highest score was 12 points (70 interactions). After removing duplicated 

edges, the network has 239 interactions (edges) between 58 proteins (nodes) (Figure 1 and 

Supplemental Figure 1). 
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We detected one major network containing 56 nodes, in addition to the interaction PAN-

ARR15 that is not connected to the main network. A basic topological analysis was 

performed with the major network. Nodes with the highest number of connections (degree) 

and the value of other topological indexes are listed in Supplemental Tables 4 and 5. 

Interestingly, PPIs are not restricted to members of the same family of TFs (Figure 1A), 

and members of the HOMEOBOX and Zinc-finger family could interact with members of 

all the TF families we tested. 

 

Proteins involved in the same developmental processes are related at the physical 

interaction level 

 

The PPI map we generated shows a single major component with practically all the 

interactions, so we wondered if TFs grouped according to their functions (i.e., the 

formation of a tissue). Since most of the TFs selected for this study have been previously 

characterized, we could add a tag related to their function or based on the phenotypes 

observed in the mutants, i.e., determinacy, style formation, etc. (Supplemental Table 1). 

With these, we generated networks highlighting proteins participating in 10 different 

developmental processes (Figure 2, Supplemental Figure 2). In general, at the level of 

physical interactions, proteins involved in the same processes do not cluster together in the 

network (Figure 2A-C, Supplemental Figure 2), but when those nodes are extracted from 

the network, we can see sub-networks or so-called modules, probably representing protein 

complexes (Figure 2D-F, Supplemental Figure 2). 

 

With the tested interactions, we observe that sub-networks related to carpel number 

establishment or determinacy are not as complex (number of nodes and interactions) as 

those related to ovule or abaxial-adaxial patterning. On the other hand, the networks 

corresponding to valve margins and replum are very similar.  
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Dynamic interactions during gynoecium development 

 

The sub-networks generated with the separation of interactions according to a functional 

process is an indicator of the complexity of the processes. It is likely that all the interactions 

do not occur at the same time. To address the temporal issue, and for a better visualization 

of gynoecium development through time, we generated a graphic outline of this process 

(Figure 3). Its construction is based on the progressive formation of tissues over time 

(Larsson et al., 2014; Reyes-Olalde et al., 2013), each region delimits a tissue or group of 

cells that can be defined as different (Figure 3A). This scheme uses lines as a representation 

of the different zones within the gynoecium; at the very beginning, the gynoecium 

primordium is represented as a single line, shortly after is divided in 2 (lateral and medial 

domains, visible at floral stage 7), and after that many other lines arise (floral stages 8 to 

11), as a representation of all the tissues composing a mature gynoecium observed at floral 

stage 12. With this, we defined more than 10 spatio-temporal contexts (or zones) in which 

different protein interactions could be taking place during gynoecium development (Figure 

3B). 

 

This scheme helped us to address questions such as where and when the identified 

interactions are likely to occur during gynoecium development. We took advantage of all 

the previous studies performed for each gene; most of them at the individual level, a large 

proportion of this data was previously collected (Reyes-Olalde et al., 2013). In this study 

we updated the information, added data for other genes, manually curated gene expression 

data and represented it according to our division of tissues (listed in Supplemental Table 1). 

 

This graphical representation is useful for displaying individual gene expression patterns 

during gynoecium development (Figure 3C). The overlapping of expression patterns with 

proteins that physically interact is an approach to study interaction profiles of two proteins, 

revealing where and when that dimer may be performing its functions (Figure 3D). In some 

cases, near perfect matches in expression pattern coincidence are observed, such as AG-

SEP3 and SEU-LUG; in other cases, as WUS-ETT or CRC-NGA3 partial matches in 
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expression patterns suggest that those interactions could occur in specific regions and 

stages of the gynoecium, and interactions change if different contexts. 

 

The use of expression data allowed to dissect the PPI network in a spatio-temporal manner; 

nodes representing TFs were placed in each of the contexts we defined, so we can have a 

PPI network for each context (Figure 4, Supplemental Figure 3), these networks represent 

the subset of interactions that could be occurring in those tissues at specific times. The 

networks are different in node and edge number; the differences in complexity between 

them can be easily observed (Table 1). A large fraction of the complete network is observed 

at the beginning of gynoecium formation. After that, the lateral domain recruits a small part 

and most of the nodes and interactions are restricted to the medial domain. This network 

remains very similar for the carpel margin meristem (CMM), ovules and septum; and near 

floral stage 10 is separated into 4 networks, representing style, stigma, transmitting tract 

and septum. The networks for valves and replum are similar, they start as small networks, 

and some nodes and interactions appear over time. 

 

TF interactions and hormonal pathways 

 

Transcriptional responses to hormones (i.e., auxin and cytokinin) are mediated by a set of 

response regulators: Auxin Response Factors (ARFs) and Arabidopsis Response Regulators 

(ARR, A and B-types) (Schaller et al., 2015). Some of these proteins were included in our 

interaction test. We detected interactions between the hormone response regulators and TFs 

from various families (Figure 5A). Interestingly, five TFs, WUS, HEC2, CRC, AS1, and 

BP can physically interact with regulators of both hormonal signaling pathways, suggesting 

that these nodes may serve as links to connect hormonal pathways. 

 

Another interesting phenomenon in the context of protein interactions and hormones is a 

recent report showing that the interaction-dependent yeast growth could be modified due to 

auxin addition to the culture medium (Simonini et al., 2016). In order to test if this 

phenomenon is occurring also with our set of interactions, we used the colonies recovered 

(representing a dimer or an interaction) from the -ADE experiments (171 interactions, listed 
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in Supplemental Table 3). We used the -ADE set because the entire set of interactions could 

be tested using the same medium (test with –HIS would involve the addition of different 

concentrations of 3-AT). First, we tested the effect of two hormones on the wild type PJ69 

yeast strain. The addition of cytokinin (BAP: 6-Benzylaminopurine) did not affect the 

growth of the yeast, even at the maximum tested concentration (250 M) (Figure 5B). On 

the other hand, the effect of the addition of auxin (IAA: Indole-3-Acetic Acid) on the yeast 

growth is observed in the dilution series; the highest concentration of inoculum seems not 

to change yeast growth at 20, 50 or 100 uM IAA, but is affected when 250 uM IAA was 

tested (Supplemental Figure 5). For the Y2H test, we inoculated the colonies in hormone-

containing media at different concentrations, and incubated them at 22ºC during 6 days. In 

our conditions, no significant changes in yeast growth were detected due to cytokinin 

addition (Figure 5C), or auxin addition (Supplemental Figure 5). 

 

The extended PPI network and novel actors of gynoecium development  

 

The PPI network we generated includes well-characterized TFs controlling gynoecium 

development (72 protein-encoding genes we selected for this study, gyn set, Figure 6A), so 

it can be considered as a process specific interaction map. Our map contains 239 

interactions between 58 proteins (Figure 6B, listed in Supplemental Table 6). For some 

proteins we did not detect interactions in our system, which can be due to various reasons 

(e.g., missing TFs in our gyn set, weak interaction strength, formation of higher-order 

complex needed, etc.) 

 

So, to partially overcome this and identify novel TF interactors, we generated an extended 

PPI network (Figure 6C). The extended PPI network includes reported interactions (IntAct 

database; Orchard et al., 2014) between the gyn set of proteins (this study) and other TFs, 

most of the times uncharacterized proteins and obtained in studies not focused on 

gynoecium development. In this extended network, we included only interactions detected 

by Y2H assays and furthermore, this list was filtered to include just TF-encoding genes 

expressed (at least) in carpels (Supplemental Table 6; purple colored selection, 

Supplemental Figure 6). This extended network can be considered as a comprehensive 
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interaction network of TFs involved in gynoecium development (724 interactions, Figure 

6C). All the interactions in the extended network are listed in the Supplemental Table 6. 

Because our gyn set consists out of well-studied TFs, in the extended network, for every 

dimer in the list at least one partner has been characterized, meaning we can predict a role 

for the other TF. In conclusion, this paves the way for focused functional studies of over 

200 TFs present in the extended network as candidates for having a role in the regulation of 

gynoecium development. We present a list of 26 TFs (of the extended PPI network) that 

have the highest number of interactions (> 4) with the TFs of the gyn set (see Supplemental 

Table 6). In general, these TFs share various interactors, and, notably, in the top 10 of TFs 

with most interactions, there are 9 TFs of the TCP family.  

 

An Aux/IAA TF affects reproductive development 

 

One of the proteins found to interact with known gynoecium TFs in the extended PPI 

network is IAA27, an Aux/IAA protein not reported as regulator of Arabidopsis gynoecium 

development, but with potential roles in this process based on the interactions found 

(Figure 6C, Supplemental Table 5). We obtained the AD and BD clones and included it in 

the Y2H assay, where reported interactions were confirmed, and novel interactions were 

detected (Figure 1 and Supplemental Figure 5). Subsequently, to study the potential 

function of IAA27, wild type Arabidopsis plants were transformed with an antisense 

construct to knock-down the expression of this gene (anti-IAA27). As presumed, different 

phenotypes were observed during the reproductive phase of anti-IAA27 plants 

(Supplemental Figure 5). Expression analysis showed that the level of IAA27 silencing was 

correlated with the severity of the observed phenotypes. Independent lines with a severe 

phenotype were characterized in more detail. The inflorescences of anti-IAA27 plants 

produced fewer floral buds compared with wild type inflorescences. Furthermore, the floral 

organs showed a yellowish aspect, the anthers were shorter with a reduced number of 

mature pollen grains, and the short fruits produced on average only two seeds.  

 

Different analyses were made to determine why anti-IAA27 plants developed short fruits. 

Most of the ovules analyzed showed defects in their morphology, mainly an arrest in 
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embryo sac development. Transverse sections showed that anthers of anti-IAA27 plants 

produced fewer pollen grains compared with wild type anthers. Finally, the LAT52::GUS 

reporter line was used to visualize pollen tube growth. Gynoecia from wild type and anti-

IAA27 plants were hand-pollinated with LAT52::GUS pollen. Pollen tubes grew efficiency 

through wild type gynoecia; however, pollen tubes grew only in the style but not in the 

ovary of anti-IAA27 gynoecia (Supplemental Figure 5). These results indicate that both 

male and female reproductive development is affected in anti-IAA27 plants. Consistent with 

this, reproductive development is also affected when the function of its interactor ARF8 is 

abolished (Nagpal et al., 2005; Wu et al., 2006). Furthermore, it was recently shown that 

silencing of the homologue of IAA27 (SlIAA27) in tomato also affects male and female 

reproduction (Bassa et al., 2012).    

 

 

DISCUSSION  

 

In the past years, gynoecium development has been studied in a gene-by-gene fashion. 

Current knowledge for gynoecium development includes dozens of genes and their genetic 

interactions, though information on protein-protein interactions (PPI) is available but still 

rather scarce. With the PPI map generated in this study, we want to add a solid basis for the 

molecular understanding and the generation of a more complete gynoecium GRN. Recently, 

we reported some steps towards a comprehensive and dynamic GRN for gynoecium 

formation (Chavez Montes et al., 2015). Furthermore, all the data presented here will be a 

useful resource for people studying reproductive development.  

 

A network for gynoecium development 

 

With the interactions among TFs reported here, we have generated the most complete PPI 

map for gynoecium development in Arabidopsis to date. Sub-networks or modules were 

considered as basic units, or fundamental units guiding morphogenesis, as seen in 

biological networks (Alon, 2003; Zhu et al., 2007). We identified 239 interactions using the 

gyn set (Figure 1), placing our PPI network at the position of various other PPI networks in 
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plants (Braun et al., 2013). In addition, as discussed below, we generated an extended PPI 

network for gynoecium development containing 724 interactions (Figure 6).  

 

The yeast 2-hybrid (Y2H) system is one of the most used techniques for the identification 

of binary protein interactions, with the advantage of being high-throughput, highly 

standardized, and reproducible, especially when using ORF collections (Walhout and Vidal, 

2001; Vidal et al., 2011; Braun et al., 2013). The most complete interaction network in 

Arabidopsis to date, has been built using the Y2H system (AI-2, Arabidopsis Interactome 

Map Consortium, 2012), with 5664 interactions between 2661 proteins. Several other 

networks for Arabidopsis have been constructed with this type of data e.g., ARF-Aux/IAA 

(Vernoux et al., 2011), TCS (Dortay et al., 2006 & 2008), TOPLESS proteins (Causier et 

al., 2012), protein-G complex (Klopffleisch et al., 2011), ESCRT proteins (Richardson et 

al., 2011), cell cycle protein (Boruc et al., 2010), TCP family (Danisman et al., 2013), and 

MADS-box proteins (de Folter et al., 2005), among others. 

 

The construction of a PPI map guiding gynoecium and fruit development and the GRNs 

underlying the process is a starting point for the study of the formation of the tissues, 

comparison of fruit development between species, the study of network rewiring allowing 

the formation of novel structures or processes in a global way. It can be used for the study 

of the evolutionary history of this important reproductive unit. 

 

Emerging properties for well-studied transcription factors 

 

The network we generated, has two components, with the exception of the dimer PAN-

ARR15, all the nodes form a major network component (Figure 1). This is an indicator of 

the close relationship between all the proteins and the processes involved in gynoecium 

development. Topological analysis is useful to get insights in network architecture and 

performance (Zhu et al, 2007). Analysis of the main component indicates that it is a 

compact network (network diameter =5; radius =1; characteristic path length =2.26) 

(Supplemental Table 5). We compared our network to other plant PPI networks, and its 

density is similar to these other networks (density =0.13) (Supplemental Table 5). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/500736doi: bioRxiv preprint 

https://doi.org/10.1101/500736


14 

 

Furthermore, most of the other analyzed topological characteristics are also in the range of 

the reported biological plant PPI networks, supporting our findings. One interesting aspect 

is that the nodes are very different in connections (network heterogeneity =0.91), in the 

case of TFs involved in gynoecium development this heterogeneity is observed in the effect 

of mutations on the genes, since not all cause the same defect. 

 

Some topological indexes (see Supplemental Table 4), revealed hidden features for well-

known TFs exposing interesting properties/activities for them, which will be an exciting 

topic for in planta and functional analysis. For instance, the high value in node degree (i.e. 

many interactions) for WUS, BP, STM, YAB1, HEC2 and HEC3, many involved in 

meristematic activity and all of them involved in early events of gynoecium development 

(Reyes-Olalde et al., 2013), and the network generated for this early stage (Figure 4, Table 

1), is a sign of how complex this early event of gynoecium formation is. 

 

Furthermore, the node TCP15 has also a high degree; this property is maybe the cause of 

the severe defects that occur in gynoecium development when TCP15 it ectopically 

expressed (Lucero et al., 2015; Kieffer et al., 2011). Another similar example is ARR14 (B-

type ARR) (Kieber and Schaller, 2014), a node with many interactions, suggesting essential 

roles in female reproductive development, though functional and expression data are still 

scarce, but the PPI data suggests a central role in gynoecium development. 

 

The nodes WUS, TCP15, BP, and ARR14 have high values for stress and betweenness 

centrality (Supplemental Table 4), indicating a possible role as a mediator of interactions 

and maybe for the formation of high-order complexes, interestingly, SEPALLATA3 

(SEP3) has similar values. This crucial protein for flower development has been described 

as a bridge for MADS-box protein interactions (Immink et al., 2009).  

 

The values for clustering coefficient highlight proteins such as SPT, BEE1, and HEC1, as 

members of a highly connected module, probably reflecting their involvement in 

transmitting tract formation as a protein complex (Heisler et al., 2001; Gremski et al., 2007; 
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Crawford et al., 2011). Other proteins with high values of clustering coefficient are AS2 

and NGA3, suggesting that probably they can form higher-order complexes.  

 

Neighborhood connectivity is an attractive property of nodes, meaning having few 

interactors but those interactors function as a hub (having many interactors); some of these 

proteins are ETT, AINTEGUMENTA (ANT), STYLISH 2 (STY2), and ARR4. In the case 

of gynoecium development, this differential interaction (heterogeneity) is maybe the cause 

for the formation of one tissue. The critical interaction could be the difference in the case of 

very similar networks, for instance, those from the medial region and the tissues it produces. 

 

Biologically relevant protein interactions 

 

The occurrence of PPIs among TFs was tested in a heterologous expression system, namely 

yeast. As mentioned before, the Y2H system has many advantages and is an attractive 

technique for binary interaction mapping, which will continue (Vidal and Fields, 2014). As 

with these studies, next steps will be necessary to explore the functional relevance of 

detected interactions. The identification of physical interactions between proteins is just a 

starting point for functional studies and for understanding important developmental and 

cellular processes. Of course, starting with more focused functional analysis, various 

complementary techniques are available for PPI confirmation and to obtain further insight 

in e.g. protein complex formation, which are future perspectives of this work (Xing et al., 

2016; Bontinck et al., 2018; Lampugnani et al., 2018). 

 

Nevertheless, based on coexpression of the protein-encoding genes, we consider that most 

of the interactions could be biologically relevant because for 87% of the dimers, the genes 

are coexpressed (190 out of 219; based on the sum of the sub-networks in Supplemental 

Figure 3). This number is still an underestimation when we would consider e.g. more 

specific cell-type expression data, protein stability, and protein movement. Furthermore, 

another kind of evidence supporting the physical interactions detected here, is the 

interaction of proteins participating in the same biological process. 
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Extended Network, a directed search of novel players in gynoecium development  

 

The PPI network we generated in this work includes most of the well-characterized TFs 

involved in gynoecium development, though, it is highly likely that more TFs are involved. 

A rough estimation sets the expression of more than 500 TFs during carpel formation (de 

Folter at al., 2004; Chavez Montes et al., 2015). So, it is a challenge to characterize all of 

them. We made a first step to identify more TFs by exploring PPIs reported for our gyn set 

of TFs (IntAct database; Orchard et al., 2014). Many non-characterized proteins interact 

with the TFs of our network, however, we included only those TFs expressed in flower and 

fruit, which resulted in the extended PPI network with 724 interactions between 284 nodes 

(Figure 6). This approach proved to be valid since we validated at least one of them, the 

Aux/IAA IAA27 protein (Supplemental Figure 5). We found similar functions as one of its 

interactors ARF8, which is involved in reproductive development (Nagpal et al., 2005; Wu 

et al., 2006). Furthermore, an example of another biologically relevant PPI present in the 

extended network is between NO TRANSMITTING TRACT (NTT) and SEEDSTICK 

(STK), which we recently reported as important for medial domain development and plant 

reproductive competence (Herrera-Ubaldo et al., 2018). 

 

A combinatorial model for gynoecium development? 

 

The quartet model is an elegant representation of the molecular mechanism underlying 

floral organ specification (Theissen and Saedler, 2001). One of our goals here was the 

proposal of a combinatorial model for gynoecium formation, an extension of the ABC 

model. In this sense, testing binary interactions between TF guiding gynoecium 

development is the first step towards a model explaining gynoecium patterning. 

 

However, there are some crucial differences between the specification of the different floral 

organs in a flower versus the specification and formation of the different tissues in the 

gynoecium (i.e. after carpel specification), which, in general, is more complex: 1) The 

implication of several TF families (flower: MADS and AP2; and more than 16 TF families 

for gynoecium); 2) The number of TFs involved in the process (Flower <10; gynoecium 
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>70), this is related to the redundancy observed between many of them; 3) The effect of 

mutations of the genes, for the flower, mutations in the homeotic genes produce dramatic 

changes in the architecture of the flower, while in gynoecium formation (i.e. after carpel 

specification), the mutations (often) generate less dramatic changes. 4) The time of the 

developmental processes, floral organ specification takes around four days; on the other 

hand, most of the tissues of the gynoecium (floral stages 6 to 12) are formed during more 

than ten days.   

 

Considering those four main differences, a possible `model` would involve a succession of 

networks, controlled in time. For flower formation, spatial organization is a key feature, 

observed with the spatially restricted interactions, while for gynoecium formation, both 

time and spatial organization are important during development.  

 

Inserting hormones into the networks 

 

Hormones play a significant role during gynoecium development, particularly auxin and 

cytokinin (Marsch-Martinez and de Folter, 2016; Zuñiga-Mayo et al., 2019). Given the 

importance of these two hormones, we included various proteins involved in the 

transcriptional response into the network (ARFs and ARRs). There are other TFs that do 

not participate directly in the primary response to hormones, but their relationship with 

hormones has been demonstrated, e.g. SPT (Schuster et al., 2015; Reyes-Olalde et al., 

2017), TCP15 (Lucero et al., 2015), HECs (Gaillochet et al., 2018), FUL (Ripoll et al., 

2015), STM (Jasinski et al., 2005; Yanai et al., 2005), CRC (Yamaguchi et al., 2017), and 

AG (Ó’Maoiléidigh et al., 2018), among others.  

 

Here, we found interactions between ARFs, ARRs, and TFs of different families. 

Especially, we detected five TFs (WUS, HEC2, CRC, AS1, and BP) that can interact with 

both auxin and cytokinin related TFs. These TFs are expressed in meristems and boundaries, 

so they may have a role as decision-makers, in the control of proliferation and 

differentiation. Other studies have observed similar cases (e.g. Oh et al., 2014; Yazaki et al., 

2016; Gaillochet et al., 2018). Our detected PPIs give an opportunity to explain molecularly 
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how these TFs can do so. It would be interesting to detect the dynamics of protein complex 

formation during different stages of gynoecium development, to know whether the 

identified interactions occur simultaneously or change in time.  

 

Another interesting phenomenon involving PPIs and hormones is the ability of a hormone 

to modify the physical interaction of proteins, which has been observed recently for auxin 

with ETT (an ARF member) (Simonini et al., 2016), as well as affecting the transcriptional 

output (Simonini et al., 2017). Since we recovered all the colonies that grew in our Y2H 

experiments, we had the entire dimer collection in yeast colonies. So, we tested whether the 

gynoecium development PPI network could be modulated by the addition of auxin or 

cytokinin (IAA or BAP, respectively), however, in our conditions we did not detect 

alterations in PPI formation based on changes in yeast growth. Still this is an interesting 

topic to further explore, as well as directly in plants. 

 

The fruit is in the net 

 

In this work, we started the study of gynoecium development from the systems biology 

perspective, the generation of a PPI map with many of the major players involved in this 

process, which gave us a vision of how complex the interplay could be between the TFs 

involved in the formation of tissues. 

 

The next step, besides continuing with functional studies in planta, is to study the 

dynamical aspects (i.e. in spatio-temporal manner) of the interactions during gynoecium 

development. Moreover, TFs that could function as hubs in the network also deserve 

attention and should be further studied in this regard. Intriguing are the observed PPIs of 

TFs that interact with auxin and cytokinin related signaling proteins, and it will be very 

interesting to unravel the molecular meaning of this. Furthermore, we started studying the 

effects on PPIs by temporal cues and hormones. On the other hand, the protein complexes 

we proposed here, illustrated as sub-networks or modules need to be studied with 

complementary techniques such as bimolecular fluorescence complementation (BiFC) in 

different tissues in planta (Smaczniak et al., 2012; Long et al., 2017), co-
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immunoprecipitation (co-IP), protein arrays (Yazaki et al., 2016), and/or immuno or 

affinity purification followed by mass spectrometry analysis (IP-MS/AF-MS) (Smaczniak 

et al., 2012; Gadeyne et al., 2014; Huang et al., 2016).  

 

We hope the information we presented here will serve as a resource and will be useful for 

other people studying plant reproductive development. Furthermore, since many TFs also 

participate in other developmental programs, some of these interactions may be conserved 

in other contexts, where they can be further explored. 

 

 

MATERIALS AND METHODS 

 

Clones 

Information about the collection and generation of the Arabidopsis 72 ORF clones (the gyn 

set) is provided in Supplemental Table 2; many come from the REGIA collection (Paz-Ares 

and The REGIA Consortium, 2002). The gyn set is collection of mainly TFs that are 

expressed in the gynoecium and/or fruit and tissues with meristematic activity. Many of the 

well-characterized TFs involved in gynoecium development in Arabidopsis thaliana are 

present. Furthermore, a few cofactors are present as well. 

 

Yeast 2-hybrid assay 

A matrix-based interaction assay was conducted as previously reported (de Folter and 

Immink, 2011). The GAL4 system (Invitrogen) was used; the coding sequences of the 

selected genes in entry clones were recombined with pDEST22 for GAL4-AD fusions or 

with pDEST32 for BD-fusions. Yeast transformation was performed with the PEG/LiAc 

method using the PJ69 yeast strain (James et al., 1996). All the tested combinations were 

generated by mating (see Supplemental Table 2), four AD colonies per construct were 

arranged in a single-well omnitray plate in a 384-colonies array. BD clones were grown 

individually in single-well plates. Mating was performed using a floating pin replicator 

(V&P scientific) in plates with YPAD medium. For diploid selection, colonies were 

transferred to plates with SD-TRP-LEU medium, the latter step was done twice. For the 
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protein interaction test, diploid colonies were transferred to SD-LEU-TRP-ADE and to SD-

LEU-TRP-HIS with different concentrations of 3-Amino triazole (see Supplemental Table 

2), each selection marker was tested in duplicate. Plates were incubated at 22ºC. Yeast 

growth was scored 6 days after inoculation. For the LacZ assay the RO-BLUE medium was 

used (de Folter and Immink, 2011) for these tests, one plate per protein was tested. Yeast 

colonies from both markers were recovered and cryo-conserved for future analysis (i.e., 

hormone dependent interactions). 

 

Hormone-dependent interaction assays 

PJ69 yeast strain (James et al., 1996) and the colonies identified and conserved from the 

Y2H assay (-ADE set, Supplemental Table 3) were recovered and inoculated in medium 

SD-GLUC-TRP-LEU-ADE with increasing concentrations of cytokinin (6-

Benzylaminopurine, BAP) or auxin (Indole-3-Acetic Acid, IAA). NaOH was used to help 

to dissolve the hormones to prepare stock solutions; 100 M NaOH was tested as negative 

control for both, auxin and cytokinin experiments. 

 

Expression data  

Data about gene expression for the selected protein-encoding genes were collected from 

literature; most of this information is an updated version of a previous report (Reyes-Olalde 

et al., 2013). For floral stage 6, RNA-seq data was collected from a previous report (Jiao 

and Meyerowitz, 2010), an expression value of >1.0 RPKM was considered. Separation in 

different regions during development was done according to previous works (Reyes-Olalde 

et al., 2013; Larsson et al., 2014). Functional processes were assigned according to the 

literature. All the information about expression and phenotypes is available in 

Supplemental Table 1. 

 

Interaction data collection and extended network construction 

Protein interaction data was downloaded from IntAct (last accessed on 31.10.2018) 

(Orchard et al., 2014), the locus ID list of the 72 genes in the gyn set was used as query 

(Supplemental Table 1). Three filters were applied to the interaction list, 1) Interactions 

detected in Y2H assays (MI:2277, Cr-two hybrid; MI: 0726, Reverse two hybrid; MI:0018, 
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two hybrid; MI:0397, two hybrid array; MI: 1112, two hybrid pooling approach; MI: 1356, 

validated two hybrid) were considered. 2) Interactions between transcription factors; a list 

was downloaded from the Plant Transcription Factors Database V4.0 (Jin et al., 2017) (last 

accessed 08.11.2018). 3) Expression in carpel; RNA-seq expression data was collected 

from ARAPORT11 (Krishnakumar et al., 2015) (last accessed 08.11.2018), genes with 

values of >0.5 TPM in carpel or stage 12 inflorescence samples were considered. 

Information about expression, GO classification and protein domains in the 221 TFs in the 

extended network (Supplemental Table 6 and Supplemental Figure 6) was collected from 

ARAPORT11 (Krishnakumar et al., 2015). The networks shown in Figure 6 are available 

in a Cytoscape network file (see Supplemental Figure 7). 

 

Network construction and topological analysis 

Networks were generated using Cytoscape V3.6 (Shannon et al., 2003). Network analyses 

were performed with the Cytoscape built-in application NetworkAnalyzer (release 2.7; 

Assenov et al., 2008). 

 

Generation of IAA27 knock-down lines and phenotypical characterization 

A 293 bp fragment upstream of the stop codon of the IAA27 gene (At4g29080) was PCR-

amplified from cDNA using the primers 1KDL-IAA27 and 2KDL-IAA27 (see 

Supplemental Table 7), and subcloned into pENTR/D-TOPO (Invitrogen, Carlsbad, CA, 

USA). The pENTR/D-TOPO clone was sequence verified and recombined with the binary 

vector pHELLSGATE8 (Helliwell et al., 2002), resulting in the antisense construct anti-

IAA27. The anti-IAA27 lines were classified according to severity of fruit size phenotypes: 

strong if the fruit reached up to 50% of its normal size, medium if the fruit reached between 

50 and 75% of its normal size, and weak if the fruit growth between 76-90% of its normal 

size.  

For RT-PCR, plant tissue was collected for total RNA isolation according to the method 

described by Verwoerd et al. (1989). Total RNA was treated with DNaseI (Invitrogen) and 

reverse-transcribed using M-MLV (Invitrogen). Semiquantitative expression analysis for 

IAA27 was performed using the primers 1RT-IAA27 and 2RT-IAA27 (see Supplemental 

Table 7). For pollination analysis, LAT52::GUS was used as pollen tube marker (Johnson et 
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al., 2004). Gynoecia from anti-IAA27 plants were emasculated 24 h before anthesis. The 

next day, anti-IAA27 gynoecia were hand-pollinated with pollen from LAT52::GUS marker 

line. 24 h after pollination, the gynoecia were collected and incubated 7 h at 37°C with a 5-

bromo-4-chloro-3-indolyl-b-glucuronic acid solution (Gold Biotechnology, St Louis, MO, 

USA; Jefferson et al., 1987), placed in 90% ethanol for 1 h, followed by 70% ethanol for 1 

h, and overnight in Hoyer solution (Anderson, 1954). Cross-section and GUS images were 

taken using a LEICA CTR6000 (Wetzlar, Germany) microscope in Differential 

Interference Contrast (DIC) mode. 
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FIGURE LEGENDS 

 

Figure 1. Transcription factors (TFs) involved in gynoecium development interact 

physically. (A) Matrix representing the interactions detected in the Y2H assay, proteins are 

grouped in families. (B) Protein-protein (PPI) network constructed with the information in 

(A). 

 

Figure 2. Proteins involved in the same process interact physically. (A-C) 

Representation of processes comprising gynoecium development within the interaction 

network, the proteins involved are colored in yellow (D-F). 

 

Figure 3. Gynoecium development over time. (A) Stages of gynoecium development, 

false colors represent different tissues within the gynoecium. (B) Schematic representation 

of gynoecium development, lines represent regions depicted in (A); scale bar represents 1 

day. (C) Expression patterns of FRUITFULL and SPATULA, lines represent those regions 

indicated in (B). (D) Interaction patterns of the dimers AG-SEP3, SEU-LUG, CRC-NGA3 

and WUS-ETT, colored lines represent the expression pattern of the protein-encoding gene 

in the same color. 

 

Figure 4. Succession of protein interaction networks during gynoecium development. 

The combination of gene expression data and physical protein-protein interaction (PPI) 

information allowed the dissection of the network into 13 sub-networks underlying the 

formation of tissues or developmental sub-processes. 

 

Figure 5. The effect of cytokinin on protein interactions. (A) Sub-network including 

transcription factors involved in auxin and cytokinin signaling pathways and their 

interactions with other proteins. (B) The addition of BAP to the culture medium does not 

affect the growth of the PJ69 yeast strain, neither when diluted yeast concentrations are 

inoculated (indicated with the triangle; dilution series 1x, 10x, 100x, 1000x, and 10000x). 

(C) The addition of BAP to the culture medium does not affect the interaction-dependent 
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growth of yeast; some of the combinations shown in (A) are presented on medium 

containing 0 M, 50 M, or 100 M BAP. 

 

Figure 6. The extended network of transcription factors controlling gynoecium 

development in Arabidopsis. (A) Number of proteins used in this study, the gyn set.                   

(B) PPI data identified for the gyn set (this work). (C) The extended network, the PPI data 

of this work combined with PPI data from the IntAct database (based on Y2H for our gyn 

set nodes and only of protein-encoding genes with expression in carpels). 

 

Table 01. Topological comparison of the 13 sub-networks 

 

 

SUPPLEMENTAL INFORMATION 

 

Supplemental Table 1. List of genes selected for this study. Gene expression 

information and phenotype information. Related to Figures 1-4. 

 

Supplemental Table 2. Yeast 2-hybrid experiment. List of clones, results of the 

autoactivation test, and tested combinations. Related to Figure 1. 

 

Supplemental Table 3. Results of the Yeast 2-hybrid experiment. List of all the 

interactions detected, list of top-scored interactions used for the network construction, 

and list of interactions tested in the hormone assay. Related to Figure 1 and 5. 

 

Supplemental Table 4. Topological analysis of the interaction map. Related to Figure 

1. 

 

Supplemental Table 5. Topological comparison of plant interactomes. Related to 

Figure 1 and Table 1. 
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Supplemental Table 6. Extended network. List of interactions in the extended network, 

list of proteins with >4 interactions, list of the 221 TF candidates for gynoecium 

development, and its classification in GO and protein domains. Related to Figure 6. 

 

Supplemental Table 7. Primer list. 

 

Supplemental Figure 1. High-resolution protein interaction network of transcription 

factors controlling gynoecium development in Arabidopsis. Related to Figure 1. 

 

Supplemental Figure 2. Networks related to phenotypes. Related to Figure 2. A) Nodes 

representing genes associated with a phenotype are selected in each network. B) Extraction 

of the selected nodes.  

 

Supplemental Figure 3. Networks for the 13 contexts (or zones) during gynoecium 

development. Related to Figures 3-4. 

 

Supplemental Figure 4. The effect of auxin on protein interactions. Related to Figure 

5. A) The addition of IAA to the culture medium does not affect the growth of the PJ69 

yeast strain when in high concentrations inoculated. However, a growth effect is observed 

when dilutions of yeast are inoculated (indicated with the triangle; dilution series 1x, 10x, 

100x, 1000x, and 10000x). B) The addition of IAA to the culture medium does not affect 

the interaction-dependent growth of yeast (high yeast concentration used); some of the 

tested combinations are presented on medium containing 50 M and 100 M IAA. 

 

Supplemental Figure 5. The gene IAA27 is involved in reproductive development. 

Related to Figure 6. (A) Overview of the Y2H assay, the plate for BD-IAA27 is shown. 

(B) Interactions detected for the BD-IAA27 clone based on the 3 interaction markers. (C) 

Expression of IAA27 during reproductive development in Arabidopsis. (D) Expression of 

IAA27 is reduced at different levels in independent anti-IAA27 lines. The lines were 

classified according to the severity of affected fruit size (strong phenotype if the fruit 

reached up to 35% of its normal size; medium if the fruit reached between 35 and 75% of 
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its normal size, and weak if the fruit reached between 76-90% of its normal size). Flower (E, 

F) and fruit (G-H) phenotypes of wildtype (WT) plants (E,G,I) and anti-IAA27 lines (F,H,J). 

Pollen tube growth visualization in WT (K) and anti-IAA27 plants (L) after pollination with 

LAT52::GUS pollen. Transverse section of WT (M) and anti-IAA27 (N) anthers showing 

that anti-IAA27 anthers produced fewer pollen grains (pollen degeneration observed) 

compared with WT anthers. WT ovules (O) compared with anti-IAA27 (P) ovules showing 

morphology defects in anti-IAA27 ovules (affected embryo sac development).  

 

Supplemental Figure 6. Expression data for the 221 TF candidates of the extended 

PPI network. Related to Figure 6. 

 

Supplemental Figure 7. Cytoscape data file for the extended network. Related to 

Figure 6. 

 

Supplemental References. 
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Table 01. Topological comparison of the 13 sub-networks 
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1 Gynoecium primordium 46 162 0.34 5 1 0.40 1894 2.226 6.61 0.147 0.867 0 10 

2 Lateral domain 10 4 0.00 2 1 0.19 8 1.25 0.60 0.067 1.106 5 1 

3 Medial domain 30 43 0.21 7 4 0.24 552 2.953 2.47 0.085 0.986 6 6 

4 Valves 14 17 0.09 3 2 0.35 90 1.844 2.14 0.165 0.786 4 2 

5 Young replum 6 6 0.44 3 2 0.30 20 1.5 2.00 0.4 0.577 1 0 

6 Carpel margin meristem 33 58 0.19 7 4 0.23 756 2.86 3.09 0.097 0.947 5 7 

7 Replum 11 22 0.50 3 2 0.39 72 1.444 3.82 0.382 0.589 2 1 

8 Medial region 25 48 0.35 5 3 0.48 462 2.247 3.36 0.14 0.959 3 6 

9 Ovules 32 72 0.18 5 3 0.38 812 2.296 4.06 0.131 0.911 3 7 

10 Stigma 8 10 0.44 2 1 0.43 20 1.3 1.75 0.25 0.892 3 3 

11 Style 12 12 0.18 3 2 0.36 72 2.028 1.67 0.152 0.894 3 2 

12 Septum 13 20 0.39 3 2 0.36 56 1.571 2.31 0.192 0.952 5 5 

13 Transmitting tract 6 10 0.67 1 1 0.30 12 1 2.00 0.4 0.707 2 4 
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Figure 1. Transcription factors (TFs) involved in gynoecium development interact physically. (A) 

Matrix representing the interactions detected in the Y2H assay, proteins are grouped in families. (B) 

Protein-protein (PPI) network constructed with the information in (A). 
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Figure 2. Proteins involved in the same process interact physically. (A-C) Representation of 

processes comprising gynoecium development within the interaction network, the proteins involved 

are colored in yellow (D-F). 
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Figure 3. Gynoecium development over time. (A) Stages of gynoecium development, false colors 

represent different tissues within the gynoecium. (B) Schematic representation of gynoecium 

development, lines represent regions depicted in (A); scale bar represents 1 day. (C) Expression 

patterns of FRUITFULL and SPATULA, lines represent those regions indicated in (B). (D) 

Interaction patterns of the dimers AG-SEP3, SEU-LUG, CRC-NGA3 and WUS-ETT, colored lines 

represent the expression pattern of the protein-encoding gene in the same color. 
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Figure 4. Succession of protein interaction networks during gynoecium development. The 

combination of gene expression data and physical protein-protein interaction (PPI) information 

allowed the dissection of the network into 13 sub-networks underlying the formation of tissues or 

developmental sub-processes. 
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Figure 5. The effect of cytokinin on protein interactions. (A) Sub-network including 

transcription factors involved in auxin and cytokinin signaling pathways and their interactions 

with other proteins. (B) The addition of BAP to the culture medium does not affect the growth of 

the PJ69 yeast strain, neither when diluted yeast concentrations are inoculated (indicated with the 

triangle; dilution series 1x, 10x, 100x, 1000x, and 10000x). (C) The addition of BAP to the 

culture medium does not affect the interaction-dependent growth of yeast; some of the 

combinations shown in (A) are presented on medium containing 0 µM, 50 µM, or 100 µM BAP. 
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Figure 6. The extended network of transcription factors controlling gynoecium development 

in Arabidopsis. (A) Number of proteins used in this study, the gyn set. (B) PPI data identified for 

the gyn set (this work). (C) The extended network, the PPI data of this work combined with PPI 

data from the IntAct database (based on Y2H for our gyn set nodes and only of protein-encoding 

genes with expression in carpels). 

 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/500736doi: bioRxiv preprint 

https://doi.org/10.1101/500736


Supplemental Figure 1. High-resolution protein interaction network of transcription factors controlling 
gynoecium development in Arabidopsis. Related to Figure 1. 

ARF8

BEL1

BEE1

KAN1

ARF19
BP

IAA27

DRN

FUL

WUS

PHV

AS2
AG

SEU

SCR

NGA3
JAG

HEC3

ARR12

KAN2

CUC1

ARR14

CUC3

ETT

F IL

AS1

GOA

NGA2

G IK

PUC

SHP1
TCP15

REV

SEP3

SHP2

ARR4

LUG

STK

STY2

AP2

CUC2

ARF17

ARF4

ANT

HEC2

J A B

KNAT2

SPT

STM
PNF

HEC1

YAB3

PAN

ARR15

CRC

RPL
KNAT6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/500736doi: bioRxiv preprint 

https://doi.org/10.1101/500736


Abaxial Adaxial defects Apical-basal defects 

Carpel number defects Determinacy defects 

Ovule defects 

Replum defects 

Septum defects Style-stigma defects Transmitting tract defects 

Valve margins defects 

Supplemental Figure 2. Networks related to phenotypes. Related to Figure 5. 
A) Nodes representing genes associated with a phenotype are selected in each 
network. B) Extraction of the selected nodes.	
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Zone 01: Gynoecium primordium 

Zone 02: Lateral domain 

Supplemental Figure 3. Networks for the 13 contexts (or zones) during gynoecium 
development. Related to Figures 3-4. 
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Zone 05: Young replum 

Zone 06: Carpel Margin Meristem (CMM) 
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Zone 08: Medial region 
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Zone 13: Transmitting tract 
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Supplemental Figure 4. The effect of auxin on protein interactions. Related to 
Figure 5. A) The addition of IAA to the culture medium does not affect the growth 
of the PJ69 yeast strain when in high concentrations inoculated. However, a 
growth effect is observed when dilutions of yeast are inoculated (indicated with the 
triangle; dilution series 1x, 10x, 100x, 1000x, and 10000x). B) The addition of IAA 
to the culture medium does not affect the interaction-dependent growth of the 
yeast (high yeast concentration used); some of the tested combinations are 
presented on medium containing 50 µM and 100 µM IAA.
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Supplemental Figure 5. IAA27 is involved in reproductive development. Related to Figure 6. (A) 
Overview of the Y2H assay, the plate for BD-IAA27 is shown. (B) Interactions detected for the BD-
IAA27 clone based on the 3 interaction markers. (C) Expression of IAA27 during reproductive 
development in Arabidopsis. (D) Expression of IAA27 is reduced at different levels in independent anti-
IAA27 lines. The lines were classified according to the severity of affected fruit size (strong phenotype 
if the fruit reached up to 35% of its normal size; medium if the fruit reached between 35 and 75% of its 
normal size, and weak if the fruit reached between 76-90% of its normal size). Flower (E, F) and fruit 
(G-H) phenotypes of wildtype (WT) plants (E,G,I) and anti-IAA27 lines (F,H,J). Pollen tube growth 
visualization in WT (K) and anti-IAA27 plants (L) after pollination with LAT52::GUS pollen. Transverse 
section of WT (M) and anti-IAA27 (N) anthers showing that anti-IAA27 anthers produced fewer pollen 
grains (pollen degeneration observed) compared with WT anthers. WT ovules (O) compared with anti-
IAA27 (P) ovules showing morphology defects in anti-IAA27 ovules (affected embryo sac 
development). 
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Supplemental Figure 6. Expression data for the 221 TF candidates of the extended PPI network. 
Related to Figure 6. 
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A1 (a) AUX signalling (b) Cell cycle (c) MADS (d) Membrane (e) Pathogens (f) G-complex (g) Gynoecium dev (h)
Clustering coefficient 0.0478 0.5574 0.1161 0.2228 0.1009 0.0239 0.0590 0.3122
Connected components 124 1 2 1 2 25 1 2
Network diameter 16 4 5 6 10 11 6 5
Network radius 1 2 1 3 1 1 4 1
Network centralization 0.0820 0.3682 0.2511 0.3604 0.1140 0.1084 0.3268 0.4016
Shortest paths 5767578 2256 1266 5550 35158 752650 187056 2972
Characteristic path length 4.749 1.726 2.657 2.637 4.226 4.786 3.326 2.259
Avg. number of neighbors 4.156 17.417 3.949 7.040 3.684 2.914 2.480 7.298
Number of nodes 2661 48 39 75 190 926 433 57
Density 0.0016 0.3706 0.1039 0.0951 0.0195 0.0031 0.0057 0.1303
Heterogeneity 2.336 0.578 0.683 0.867 1.170 2.307 3.676 0.906
Isolated nodes 27 0 0 0 0 0 0 0
Self loops 135 15 0 5 9 9 5 11
Multi edge node pairs 0 0 0 3 3 0 136 20
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Supplemental Table 7. Primer list

Used for Primer name Sequence Gene
SDF 369 CACCATGCCGATCAACGATCAGTTTC
SDF 370 CTATCTTTGTCTTGAAGATCTTTCC
SDF 575 CACCATGGCGAGTGTTGAAGGTGATG
SDF 576 TCACCCCCTACTACGATTTTCGAA
SDF 642 CACCATGGCAAATTTCGAGAATCTTT
SDF 643 TTAAAGGGACCATGTTGATAAATGGA
SDF 596 CACCATGGCTGGTCTCGATCTAGGCAC
SDF 597 TTAAAACGGAGCCCTACCGGCGCC
SDF 644 CACCATGAATAATTATAATATGAACC
SDF 645 TTAGATTAATTCTCCTACTCCTCTTC
SDF 592 CACCATGGAGCTGTTTCCTGCTCAGC
SDF 593 TTAGTGAGATCGACCCAGAGTAAACTCA
SDF 850 CACCATGAACACAAGAGGAAATTACTC
SDF 851 TCATCCGCTGATAATCTTGACCTT
SDF 852 CACCATGGAAGAGAACTCAAGTAAAAA
SDF 853 TCAGGCCTTGATAATGTGGACCTT
IC75 ATGGCCAGAGACGGTGGT    
IC76 CTAATCTAATCCGGGACTCCTC
IC73 ATGAACAGTTCAGGAGGTTC
IC74 TTAGCTTCTGCAGTTCATGA
IC63 ATGGAAAAAGCCTTGAGAAA
IC64 CTATCCCCACGATCTTCG
1KDL-IAA27 CACCGCTACCTTGAGCTCTCTTCTG
2KDL-IAA27 GTTCCTGCTTCTGCACTTCTC
1RT-IAA27 GCTACCTTGAGCTCTCTTCTG
2RT-IAA27 GTTCCTGCTTCTGCACTTCTC
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AT2G01760 (ARR14)

AT3G61830 (ARF18)

AT1G18400 (BEE1)

AT2G35270 (GIK)

AT5G09750 (HEC3)

AT1G32240 (KAN2)

Knock down line

RT-PCR
AT4G29080 (IAA27)

AT3G46770 (REM13)

AT1G12980 (DRN)

AT2G40670 (ARR16)

AT1G10470 (ARR4)
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