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Abstract

The spatial signals in neuroimaging mass univariate analyses can be character-
ized in a number of ways, but one widely used approach to describe areas of acti-
vation is peak inference, the identification of the 3D coordinates of local maxima
and the activation magnitude at these locations. These locations and magnitudes
provide a useful summary of activation and are routinely reported, however, se-
lection bias is incurred in their magnitudes as these points have both survived a
threshold and are local maxima. In this paper we propose the use of bootstrap
methods to estimate and correct this bias in order to estimate both the raw units
change as well as standardized effect size measured with Cohen’s d and partial
R2. We evaluate our method with a massive open dataset, and discuss how the
corrected estimates can be used to perform power analyses.
Keywords: fMRI, selective inference, winner’s curse, regression to the mean, bias,
bootstrap, local maxima, UK biobank, power analyses, massive linear modelling.

1 Introduction

Any time a set of noisy data is scanned for the largest value, this value will be an over-
estimate of the true, noise-free maximum. This effect is known as regression to the mean
or the winner’s curse and occurs because, at random, some of the variables get lucky
and take on high values. In neuroimaging data, at each voxel we observe a test statistic:
giving us a multi-dimensional map the peaks of which can be used to identify areas of
the brain where there is activation. We are interested in the underlying true signal at
these locations as the observed magnitudes incur a selection bias. This bias is caused
by two factors, firstly the observed peaks have been chosen to lie above a threshold and
secondly the value at each peak is the largest value in a local region around the peak.
In order to determine the true effect sizes we have to account for this bias.

This issue is already well-known in fMRI and is known as a circular inference or double
dipping; see Kriegeskorte et al. (2010b). The problem is widespread and a number of
articles in the fMRI literature have failed to account for it, as Vul et al. (2011) pointed
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out to much controversy. In their meta-analysis of 55 articles, where the test-statistic
at each voxel was the correlation between BOLD signal and a personality measure, they
found that correlations observed were spuriously high in papers that reported values at
peaks, reflecting a bias due to the winner’s curse.

The current available solution to this problem in fMRI is data-splitting, where the
first half of the data is used to find significant regions and the other half is used to
calculate effect sizes; Kriegeskorte et al. (2010a), Kriegeskorte et al. (2010b). This results
in unbiased estimates, however as the estimates are calculated using only half of the data
they have larger variance. This is especially problematic when the sample sizes are small.
For the same reason, the locations of local maxima will be less accurate than if they had
been calculated using the whole dataset. Ideally we would like to be able to use all of the
data for both purposes, obtaining accurate estimates of the peak locations and unbiased
point estimates of the signal magnitude. This type of approach, where you use all of the
data, is known as post-model selection or selective inference and has recently generated
a lot of interest, see Berk et al. (2013), Lee and Taylor (2014) and in particular Taylor
and Tibshirani (2015) for a good overview.

A similar problem arises in genetics, Göring et al. (2001), and there has been much
recent work on correcting for selection in this setting: Zhong and Prentice (2008), Zöllner
and Pritchard (2007), Ghosh et al. (2008), Siegmund (2002), Xiao and Boehnke (2012).
In particular resampling approaches have been applied in a number of papers: Sun and
Bull (2005), Wu et al. (2006), Yu et al. (2007), Jeffries (2007). In the imaging litera-
ture, Rosenblatt and Benjamini (2014) propose a selective inference approach to obtain
obtain unbiased confidence intervals but not point estimates. Under the assumption of
constant variance Benjamini and Meir (2014) propose a method to correct all voxels
above a threshold, however this doesn’t take account of the effect of selecting peaks or
the dependence between voxels. Esterman et al. (2010) use a leave one out cross val-
idation approach to provide corrected estimates. This approach has the disadvantage
that each resample has a different estimate of the significant locations. We employ a
bootstrap resampling method that provides point estimates of local maxima, accounting
for both the peak height and the location within the image. Additionally we use all of
the data to determine significant locations meaning that these locations are consistent
across resamples.

The idea of using an estimate other than the sample mean to provide an estimate
for the mean is first due to Stein (1956) and James et al. (1961) who introduced the
famous James-Stein esetimator. Recently there has been work to correct for the bias of
the largest value observed values of a given distribution. Efron (2011) use an empirical
Bayes technique to correct for this bias, an approach that has been applied in the genetics
literature: Ferguson et al. (2013). In the case of independent random variables that each
come from distributions belonging to a known parametric family, Simon and Simon
(2013) introduced a frequentist method to correct bias and Reid et al. (2014) details a
post-model selection approach.

Brain imaging data is more complicated than these other settings as it has complex
spatial and temporal dependencies. However, we can take advantage of the fact that data
from different subjects is independent. This allows us to employ a bootstrap approach
to resample the data while preserving the spatial dependence structure. Tan et al.
(2014) outline an extension of the Simon and Simon (2013) work to allow for dependence
using the non-parametric bootstrap to estimate the bias, and then apply this method to
calculate effect sizes in genetics data. We provide a detailed framework for this method
and show how it can be applied to neuroimaging data. The novel contribution of our
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work is to develop point estimates which account for selective inference bias due to
thresholding and the use of local maxima. We develop these methods to obtain accurate
estimates of Cohen’s d and R2, two quantities that are essential for power analyses; see
Mumford (2012) for an overview and Appendix E for the mathematical details.

We use functional and structural magnetic resonance images (MRI) from 8940 sub-
jects in the UK biobank. The size of this dataset allows us to validate our methods in
a way that has never been possible before the availability of data of such scale, allowing
us to set aside 4000 subjects to provide an accurate estimate of the truth and divide the
remaining subjects into small groups in order to test our methods. The importance of
these sorts of real data empirical validations is highlighted by recent work on the validity
of cluster size inference Eklund et al. (2016).

The structure of this paper is as follows. Section 2 explains the details behind the
bootstrapping method and how it can be applied to one-sample and the more general
linear model scenario. In the one-sample case our method provides corrected estimates of
the %BOLD mean and Cohen’s d at the locations of peaks of the one-sample t-statistic
found to be significant after correction for multiple comparisons. In the case of the
general linear model it provides corrected estimates of partial R2 values. Section 2.3
discusses the methods used for big data evaluation. Section 3 illustrates the methods on
simulated data and Section 4 applies the techniques to one-sample analysis of functional
imaging data and GLM analysis of structural gray matter data. In Section 4.4 we apply
out method to a dataset from the Human Connectome Project that involves a contrast
for working memory and obtain corrected Cohen’s d and % BOLD values at significant
peaks.

2 Methods

In order to set up some notation and definitions, let D = {1, . . . , d1}× · · · × {1, . . . , dK}
be a d1 by . . . by dK lattice where K ∈ N is the number of dimensions and d =
(d1, . . . , dK) ∈ NK is the size of the lattice in each of its K directions. Let V ⊂ D be our
set of voxels; for our purposes V will be the brain or a subset under study. Define an
image to be a map Z on the set of voxels V which takes real or vector values.1 Given
an image Z and a connectivity criterion that determines the neighbours of each voxel,
define the local maxima or peaks of Z to be the set of voxels in V such that the value
that Z takes at them is larger than the value Z takes at their neighbours; see Appendix
D for a rigorous definition.

2.1 One-Sample

Suppose that we have N subjects and for each n = 1, . . . , N a corresponding random
image Yn on V such that

Yn(v) = µ(v) + εn(v) (1)

for every voxel v ∈ V , where for each n = 1, . . . , N , εn
iid∼ F , where F is an unknown zero-

mean multivariate distribution on V . Let µ̂ = 1
N

∑N
n=1 Yn be the sample mean image and

let v̂k be the location of the kth largest local maximum of µ̂ above a screening threshold
u. We are interested in inferring values of µ at the locations v̂k since the circular estimate
µ̂(v̂k) will be a biased estimate of µ(v̂k).

1Z : V −→ Rm for some m ∈ N.
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2.1.1 Peak Estimation

F is unknown so in order to estimate the bias of µ(v̂k) we bootstrap the data to generate
bootstrap samples. The use of the non-parametric bootstrap here means we do not have
to make any assumptions on the spatial auto-covariance of the errors. This allows us
to obtain an estimate of the bias for each bootstrap iteration as in Tan et al. (2014).
For each maxima v̂k we estimate the intensity as µ̃(v̂k) = µ̂(vk) − δk, where δk are bias
correction terms found as described in Algorithm 1 below.

Algorithm 1 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstraps to do: B and a threshold u.
2: Let µ̂ = 1

N

∑N
n=1 Yn and let K be the number of peaks of µ̂ above the threshold u

and for k = 1, . . . , K, let v̂k be the location of the kth largest maxima of µ̂.
3: for b = 1, . . . , B do
4: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from Y1, . . . , YN .

5: Let µ̂b = 1
N

∑m
n=1 Y

∗
N,b and for k = 1, . . . , K, let v̂k,b be the location of the kth

largest local maxima of µ̂b.
6: For k = 1, . . . , K, let δ̂k,b = µ̂b(v̂k,b) − µ̂(v̂k,b) be an estimate of the bias at the
kth largest local maxima.

7: end for
8: For k = 1, . . . , K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

9: return (µ̂(v̂1)− δ̂1, . . . , µ̂(v̂K)− δ̂K).

Figure 1 provides a small 1D simulation on a grid of 160 voxels. Here we have just
considered k = 1: the global maximum. The bias above the noise-free signal (δ1) is
evident, and is estimated by comparing a bootstrap sample to the original, yielding an
estimate of δ̂1,b. Here, N = 20 and for each n = 1, . . . , N the error images are created by
simulating i.i.d Gaussians at each voxel with variance 4 and then smoothing this with 6
voxel FWHM. δ1 is the bias of the empirical mean relative to the true mean.
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Figure 1: Illustration of our method on a simple annotated example. Here our set of
voxels is V = {1, . . . , 160}, the true mean µ is shown in blue, the empirical mean µ̂ is
shown in red and one sample bootstrap realization (iteration b) is shown in yellow. The
data is generated as described by model (1) with N = 20. The noise was generated by
simulating i.i.d Gaussians at each voxel with variance 4 and then smoothing this with 6
voxel FWHM.
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2.1.2 Peak Estimation for Effect Size

Brain mapping has traditionally focused on test statistics and not measures of effect size,
like %BOLD directly. In this setting we can focus on estimating two different quantities,
the effect size (using Cohen’s d), or the %BOLD. However before measuring the effect
we need to test

H0(v) : µ(v) = 0 versus H1(v) : µ(v) 6= 0

at each v ∈ V in order to determine whether there is an activation at that voxel. We will
now assume that the error, ε comes from a multivariate Gaussian distribution. Define
σ2 : V −→ R+ to be the population variance image such that σ2(v) = var(ε(v)) for each
v ∈ V . The unbiased estimate of the variance at each v is

σ̂2(v) =
1

N − 1

N∑
n=1

(Yn(v)− µ̂(v))2.

Under H0(v),

t(v) =
µ̂(v)
√
N

σ̂(v)
∼ tN−1,

a t-distribution with N − 1 degrees of freedom.
As before, we require a screening threshold u. While a threshold u on a mean image

is ultimately arbitrary, on a statistic image we can choose a value of u to control false
positives at a desired level while controlling for multiple testing. For example, we can
use results from the theory of random fields to find a u such the familywise error rate,
the chance of one or more false positives over the image, is controlled; Worsley et al.
(1996), Friston et al. (1994).

However a statistic value T is not interpretable across studies – it depends on sample
size and, in particular, grows to infinity with N . Instead, the goal is estimating a
standardised effect size such as Cohen’s d (typically a scalar multiple of a T image):

d̂(v) =
µ̂(v)

σ̂(v)

which can be used in power analyses see Appendix E. Fortunately this is just a scalar
multiple of the t statistic.

See Section 3.1 for the application of Algorithm 2 to simulated data and Section
4.1 for validation of its use on task fMRI data for the estimation of Cohen’s d at local
maxima.
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Algorithm 2 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstraps to do: B and a threshold u.
2: Let µ̂ = 1

N

∑N
n=1 Yn and define an image σ̂ such that σ̂2(v) = 1

n−1

∑N
n=1(Yn(v)−µ̂(v))2

for each v ∈ V .
3: Let K be the number of peaks of µ̂

√
N/σ̂ above the threshold u and for k = 1, . . . , K,

let v̂k be the location of the kth largest maxima of µ̂/σ̂.
4: for b = 1, . . . , B do
5: Sample Y ∗1,b, . . . , Y

∗
N,b independently with replacement from Y1, . . . , YN .

6: Let µ̂b = 1
N

∑N
n=1 Y

∗
n,b and let σ̂2

b (v) = 1
N−1

∑N
n=1(Y ∗n,b(v)− µ̂b(v))2 for each v ∈ V .

7: For k = 1, . . . , K, let v̂k,b be the location of the kth largest local maxima of µ̂b/σ̂b.

8: Let δ̂k,b = µ̂b(v̂k,b)/σ̂b(v̂k,b)− µ̂(v̂k,b)/σ̂(v̂k,b) be an estimate of the bias.
9: end for

10: For k = 1, . . . , K, let δ̂k = 1
B

∑B
b=1 δ̂k,b.

11: return (d(v̂1)− δ̂1, . . . , d(v̂K)− δ̂K).

2.1.3 Estimation of the Mean at the Location of Effect Size Peaks

Some authors, Chen et al. (2017) most recently, have argued that the attention given
to statistic images is misguided, and more focus should be given to results in the inter-
pretable units, i.e. %BOLD for fMRI. In order to estimate the mean while still controlling
for false positives one needs to use the statistic image to identify locations of interest and
then measure the mean at those locations. In our framework this is easily accomplished
with a small modification to Algorithm 2, computing in Step 8 instead a bias of the form:

δ̂k,b = µ̂b(v̂k,b)− µ̂(v̂k,b)

and returning (µ̂(v̂1)− δ̂1, . . . , µ̂(v̂K)− δ̂K) instead. See Section 4.2 for validation of this
approach on the estimation of % BOLD mean at local maxima of the t-statistics of task
fMRI data.

2.1.4 Existing One-Sample Methods

We will be comparing the bootstrap approach to circular inference and data-splitting
which are the main two approaches used in the literature. After performing thresholding
to find the number of peaks above a threshold as in Algorithm 2, the circular inference
uncorrected estimates are simply d(v̂1), . . . , d(v̂K).

In contrast data-splitting is as follows. First we divide the images into two groups:
Y1, . . . , YN/2 and YN/2+1, . . . , YN . Let d1 and d2 be the image estimates of Cohen’s d from
the first and second half of the subjects respectively. Using a threshold u (adjusted for
the fact that we are now working with N/2 rather than N subjects) we find the peaks
of d1

√
N/2 that lie above u, at locations ŵ1, . . . , ŵJ for some number of peaks J. The

data-splitting estimates of the peak values are d2(ŵ1), . . . , d2(ŵJ). See Section 2.3.2,
Figure 3 for an illustration of the different methods applied to a sample consisting of 50
subjects. Note that in general the number of significant peaks found by data-splitting
will be lower than the number found using all of the data as with half the number of
subjects there is less power to detect activation.

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500512doi: bioRxiv preprint 

https://doi.org/10.1101/500512
http://creativecommons.org/licenses/by-nd/4.0/


2.2 General Linear Model

Having introduced the method in the simplified setting of a one-sample model, we now
turn to the regression setting. Here, we will often have no practical meaningful units;
for example, for a covariate of age, the units of the coefficient are clear (expected change
in response per year) but awkward, and more typically users will want to reference the
partial coefficient of determination, partial R2, the proportion of variance explained by
one (or more) predictors. Hence we now explain how our method extends to peak esti-
mation of peak partial R2.

Let Y be an N -dimensional random image such that for each v ∈ V , we assume the
following linear model structure,

Y (v) = Xβ(v) + ε(v),

for an N × p design matrix X and a parameter vector β ∈ Rp where ε is the random
N -dimensional image of the noise such that ε(v) = (ε1(v), . . . , εN(v))T for each v ∈ V .
Then we are interested in testing

H0(v) : Cβ(v) = 0 versus H1(v) : Cβ(v) 6= 0

for some contrast matrix C ∈ Rm×p for some positive integer m. We can test this at each
voxel with the usual F -test, the value of which we denote by F (v) for each v ∈ V . This
image is defined as

F =
(Cβ̂)T (C(XTX)−1CT )−1(Cβ̂)/m

σ̂2

where β̂ is the least squares estimate of β and σ̂2 is the population estimate of the
variance at each voxel. Then under the null hypothesis H0(v), F (v) has an Fm,N−p
distribution and can therefore be used for testing H0(v). We will incorporate this into
our bootstrap algorithm in order to establish which peaks are significant.

We are interested in the R2 values, so we define R2 be the image with the estimated
partial R2 values for comparing the null model against the alternative at each voxel: we
then seek a bias-corrected R̃2(v̂k) = R2(v̂k) − δk. (See Appendix C for details on how
these quantities are defined.) Bootstrapping in the general linear model scenario is based
on the residuals; see Davison et al. (2003) Chapter 6. This leads to the algorithm below.
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Algorithm 3 Non-Parametric Bootstrap Bias Calculation

1: Input: Images Y1, . . . , YN , the number of bootstraps to do: B and a threshold u.
2: Let K be the number of peaks of F above the threshold u and for k = 1, . . . , K, let
v̂k be the location of the kth largest maxima of F.

3: Let β̂ = β̂(X, Y ) and let ε̂ = Y −Xβ̂ be the residuals on the original data.
4: For each n = 1, . . . , N , let rn = ε̂n/

√
1− pn be the standardized residuals (where

pn = (X(XTX)−1XT )nn ). Let r = 1
N

∑N
n=1 ri be their mean.

5: for b = 1, . . . , B do
6: Sample ε∗1,b, . . . , ε

∗
N,b independently with replacement from r1 − r, . . . , rN − r and

let ε∗b = (ε∗1,b, . . . , ε
∗
N,b)

T and set Y ∗b = Xβ̂ + ε∗.
7: For k = 1, . . . , K, let v̂k,b be the location of the kth largest local maxima of F ∗b :

the bootstraped F -statistic image computed using X, Y ∗b and β̂(X, Y ∗b ). Let R2
b be

the bootstrapped partial R2 image and set δ̂b = R2
b(v̂k,b)−R2(v̂k,b) to be the estimate

of the bias.
8: end for
9: For k = 1, . . . , K, let δ̂k = 1

B

∑B
b=1 δ̂k,b.

10: return (R2(v̂1)− δ̂1, . . . , R
2(v̂K)− δ̂K).

In fMRI we are often interested in the case where CT = c ∈ Rp is a contrast vector
in which case we can also test using the t−statistic

t =
cT β̂√

σ̂2cT (XTX)−1c
∼ tN−p.

which allows us to perform either one or two sided tests in order to determine significance
before bootstrapping.

As in the Section 2.1.4 we can define circular inference and data-splitting estimates.
See Section 4.3 for validation of the use of the bootstrap and comparisons between the
methods in a GLM scenario where VBM images are regressed against the age of the
participants and an intercept.

2.3 Methods - Big Data Validation

In order to test our methods we have been able to take advantage of the huge amount of
data from the UK Biobank. This has enabled us to set aside 4000 (randomly selected)
subjects in order to compute a very accurate estimate of the mean, Cohen’s d or partial
R2 value. In order to avoid losing lots of the brain due to drop out we estimate the
true value at each voxel using the available data at that voxel. We will refer to this
4000-subject estimate of the effect as the truth. Implementing linear models on such
large datasets requires mathematical tricks in order to avoid excessive computational
costs especially when the data is missing. In Appendix A we outline efficient methods
for dealing with this and describe how the truth is computed in the different settings.
We have divided the remaining 4980 subjects into groups of sizes similar to those used
in typical fMRI/VBM studies. For each such group we applied all three methods and
compared the values obtained to the truth calculated using the 4000 subjects allowing
the performance of the methods across groups to be evaluated.
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2.3.1 Image Aquisition

We use data drawn from the UK Biobank, a prospective epidemiological resource combin-
ing questionnaires, physical and cognitive measures, and biological samples in a sample
of 500,000 subjects in the United Kingdom, aged 40–69 years of age at baseline re-
cruitment. The UK Biobank Imaging Extension provides extensive MRI data of the
brain, ultimately on 100,000 subjects. We used the prepared data available from the
UK Biobank; full details on imaging acquisition and processing can be found in Miller
et al. (2016), Alfaro-Almagro et al. (2018) and from UK Biobank Showcase2; a brief de-
scription is provided here. The task fMRI data uses the block-design Hariri faces/shapes
task Hariri et al. (2002), where the participants are shown triplets of fearful expressions
and, in the control condition, triplets of shapes, and for each event perform a matching
task. A total of 332 T2*-weighted blood-oxygen level-dependent (BOLD) echo planar
images were acquired in each run [TR=0.735s, TE=39ms, FA=52◦, 2.4mm3 isotropic
voxels in 88x88x64 matrix, x8 multislice acceleration]. Standard preprocessing and task
fMRI modelling was conducted in FEAT (FMRI Expert Analysis Tool; part of the FSL
software http://www.fmrib.ox.ac.uk/fsl). After head-motion correction and Gaus-
sian kernel of FWHM 5mm, a linear model was fit at each voxel resulting in contrast
images for each subject.

Structural T1-weighted images were acquired on each subject [3D MPRAGE, 1mm3

isotopic voxels in 208x256x256 matrix]. Images were defaced and nonlinearly warped
to MNI152 space using FNIRT (FMRIB’s Nonlinear Image Registration Tool. Tissue
segmentation was performed FSL’s FAST (FMRIB’s Automated Segmentation Tool),
producing images of gray matter that were subsequently warped to MNI152 space, and
modulated by the Jacobian of the warp field. In order to save space, images were written
with voxel sizes of 2mm.

Additional processing consisted of transforming intrasubject contrast maps to MNI
space with 2mm using nonlinear warping determined by the T1 image and an affine
registration of the T2* to the T1 image. We also applied a smoothing of 3mm FWHM
to the modulated gray matter images.

2.3.2 task fMRI data

We have faces-shapes contrast images from 8940 subjects and will consider the mean and
one sample Cohen’s d. The truth is not subject to the circular inference problem due to
the sheer number of subjects. Slices through the one-sample Cohen’s d truth are shown
in Figure 2 below. Each subject has a different subject specific mask. The intersection
over all masks give a region whose volume is only around 50% of the entire brain so in
order to compute the truth at each voxel we computed the value using the available data
at that voxel. See Appendix A.2 for more details.

After calculating the truth there are 4940 subjects left over. For a given sample size
N , let GN = b4940/Nc groups3 be the number of groups of size N that we can divide
this remaining data into. This division will enable us to compare the performance of
the three available methods, namely circular inference, data-splitting and the bootstrap.
See Sections 4.1 and 4.2 for details. Figure 3 illustrates these methods applied to an
example sample consisting of 50 subjects.

To illustrate the magnitude of the circularity problem we compare maximum peak

2https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
3For x ∈ R, bxc is the largest integer that is less than or equal to x.
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!1.59 1.590

(a) Top 2 peaks

(b) 3rd and 4th Highest Peaks

Figure 2: Slices through a radiological view of the maxima of the one-sample Cohen’s d
truth. The top two local maxima are located at voxels [24, 40, 25] and [64, 39, 26] which
correspond to the left and right cerebral cortex and have Cohen’s d values of 1.5756 and
1.4326 respectively. The 3rd and 4th local maxima are located at voxels [35, 60, 29] and
[54, 60, 29] which are within the left and right amygdalae and have Cohen’s d values of
1.3450 and 1.3041 respectively. The locations of these peaks are indicated using white
circles.

heights as a function of sample size. We computed the max peak height (of Cohen’s d)
for different N ranging from 10 to 100, (averaged over the GN groups), and compare to
the true max peak height of Cohen’s d, see Figure 4. The bias is substantial for small
N but is non-negligible even for moderate N . As N increases the bias decreases to zero
as expected and the average peak maximum converges to the true maximum value.

2.3.3 VBM data

We have structural gray matter (VBM) data from the 8940 subjects. As discussed in
the methods section, bootstrap methods can be extended to the general linear model
scenario. To illustrate this, we regress gray matter images against age, sex and an
intercept. In particular let An be the age of the nth subject and let Sn be their sex, then
consider the model:

Yn(v) = µ+ βAn + γSn + εn(v) (2)

for each v ∈ V , where the εn are i.i.d random images on V for n = 1, . . . , N . Using
the 4000 subjects, we can calculate an accurate estimate of the partial R2 for age. The
largest maximum is located at voxel [45, 62, 34] and has a partial R2 of 0.2466. As
above we divide the remaining subjects into small subgroups to compare the methods
by calculating the partial R2 for age on each subgroup. See Section 4.3 for the results of
this validation.
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Voodoo$Correlation-Solution-1:-Data$Splitting

Voodoo$Correlation-Solution-2:-Bootstrap

(26,33,28) (26,33,28)

(25,42,26)

Cohen’s d: Split 1, N = 25 Cohen’s d: Split 2, N = 25

Location of top peak in split 1, find d = 2.33. Same location, in split 2, dSplit = 1.80.

dCircular = 1.99, the bootstrap
correction: dBoot = 1.50.

Truth at Data-Split max: 1.23
Truth at Circular Max: 1.39.

Cohen’s d, N = 50 Truth

2.4

$2.4

0

Figure 3: Comparing the different methods. We have taken a sample of size 50 and
implemented all the methods in order to yield an estimate of the truth at the location
of the maximum. Data-splitting requires us to split the data in half, using the first half
of the data to determine the locations. Circular inference and the bootstrap both use
all of the data to calculate the locations.

2.4 Computing the Thresholds

Researchers in the field typically either use random field theory (RFT) (Worsley et al.
(1996)) or permutation testing (Nichols and Holmes (2001)). Voxelwise RFT controls
the false positive rates but is slightly conservative, see Eklund et al. (2016), primarily
because the lattice assumption is not valid for small sample sizes. On the other hand
voxelwise permutation can also have inflated false positive rates, see Eklund et al. (2018),
and has a high computational cost. In our case this cost is prohibitive as we need to
perform a big data validation which requires many analyses as described in Section 2.3.
We have thus elected to use voxelwise random field theory for our big data analyses. In
practise when running a typical fmri/vbm analysis our methods work independently of
the method used to choose the threshold.
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Figure 4: The average selection bias in the one-sample Cohen’s d: an illustration of the
winner’s curse. We have plotted the average peak height of the maximum against N .
For each N we computed Cohen’s d for each of the GN groups of size N found the value
of the maximum and took the average over the GN groups. The 95% error bars are based
on the 2.5% and 97.5% quantiles for each sample size. The bias is substantial for small
N but is non-negligible even for moderate N .

3 Results - Simulated Examples

In this section we illustrate the performance of Algorithm 2. In order to test our methods
we have generated 3D simulations on a 91 by 109 by 91 size grid which makes up our set
of voxels V . This grid size is that which results from using MNI space and 2mm voxels.4

3.1 One Sample Cohen’s d

In order to validate Algorithm 2 we generated data according to model (1) with underly-
ing mean consisting of 9 different peaks each with magnitude 1/2, with one located near
corner and one at the centre of the image. See Figure 5 for a slice through this signal
and an example realization. For the εn we used centred gaussian noise smoothed with
given FWHM, scaled to have variance 1.

We applied Algorithm 2 in order to provide estimates of Cohen’s d. To do so we took
FWHMs ranging from 0 to 12mm and for each FWHM generated 1000 realizations. For
each realization we generated data consisting of 20 (and then 50) random images centred
at the underlying mean and with the described error variance. In order to determine
the correct thresholds, for each FWHM we generated 5000 null gaussian random fields
with the same covariance structure and took the 95% quantile of the distribution of
the maximum. This yields a voxelwise threshold that when applied rejects the null
hypothesis 0.05 of the time on null data.

The one-sample Cohen’s d is a biased estimator for the population Cohen’s d and
as such requires a correction factor in order to obtain unbiased estimates for both data-

4See the supplementary material for simulations that test Algorithm 1 and show that it works well
and decreases the MSE. Algorithm 1 is less relevant in the neuroimaging context as in neuroimaging we
first have to threshold our data in order to determine the location of significant effect sizes.
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(a) True Signal (b) Sample Cohen’s d

Figure 5: The true signal and a sample simulation. Panel (a) illustrates a slice through
the true signal corresponding to the plane x = 70, z = 20, panel (b) illustrates a slice
through the one sample Cohen’s d for 50 subjects where each the data for each subject
is computed by adding Gaussian noise with an FWHM of 6mm (scaled to have variance
1) to the signal.

splitting and the bootstrap. This is explained in more detail in Appendix E. Estimates
of the bias, variance and MSE resulting from applying each of the three methods have
been plotted in Figure 6. In our simulations the circular and bootstrap methods found
considerably more peaks than data-splitting. This is to be expected as they use double
the data (relative to data-splitting) to locate the peaks and are thus more powerful.
Indeed in our simulations forN = 20, data-splitting often found no peaks to be significant
at all. The bootstrap estimates consistently have the lowest MSE across a range of
FWHM and sample sizes.

3.2 Estimating the Mean

As discussed in Section 2.1.3, Algorithm 2 can be applied to estimate the mean and we
do this in the same simulation setting as for the Cohen’s d estimates. Estimates of the
bias, variance and MSE of each of the three methods have been plotted in Figure 7 where
as with Cohen’s d the bootstrap estimates perform very well.

4 Results - Brain Imaging Data

In order to validate our approach and compare it to existing methods using real data we
have considered sample sizes of N = 20, 50 and 100, typical of the sample sizes used in
fMRI studies. As described in the methods section for each N we divided 4940 subjects
into GN groups of size N which corresponds to 247 groups of size 20, 98 groups of size
50 and 47 groups of size 100. For each N and each group g = 1, . . . , GN we applied
the circular, bootstrapping and data-splitting methods to produce estimates. Note that
because the empirical mean is only an estimate of the true mean the bootstrap estimates
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Figure 6: Implementing Algorithm 2 on simulated data to estimate Cohen’s d. We have
generated data from model (1) on a 91 × 109 × 91 size lattice with signal which has 9
peaks and smooth gaussian noise. For the noise we took FWHMs of: 0, 0.5, 1, . . . , 5.5, 6
per voxel, which for voxels of size 2mm correspond to FWHMs of 0, 1, . . . , 12. For each
FWHM we generated 1000 realizations (for each realization generating either N = 20 or
N = 50 images), and calculated the estimates of the local maxima of Cohen’s d for each
realization using the three methods. We then calculated the MSE, bias and variance
(see Appendix B for precise definitions of these quantities). The bootstrap estimates
have significantly lower bias than the circular estimates and have a lower variance than
the data-splitting estimates. This leads to a decrease in the MSE of the estimates. This
comparison illustrates the improvement of the bootstrap as the sample size increases.
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Figure 7: Implementing Algorithm 2 on simulated data to estimate the mean. We have
generated data from model (1) on a 91 × 109 × 91 size lattice with signal which has 9
peaks and smooth gaussian noise. For the noise we took FWHMs of: 0, 0.5, 1, . . . , 5.5, 6
per voxel, which for voxels of size 2mm correspond to FWHMs of 0, 1, . . . , 12. For each
FWHM we generated 100 realizations (for each realization generating either N = 20 or
N = 50 images), and calculated the estimates of the mean at the local maxima of Cohen’s
d for each realization using the three methods. We then calculated the MSE, bias and
variance (see Appendix B for precise definitions of these quantities). For N = 50, the
bootstrap estimates have significantly lower bias than the circular estimates and have a
lower variance than the data-splitting estimates. This leads to a decrease in the MSE
of the estimates. This comparison illustrates the improvement of the bootstrap as the
sample size increases. However even in the N = 20 scenario the MSEs are comparable.
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are still slightly biased. There is a trade-off to be made between bias and variance.
Relative to data-splitting the bootstrap methods have lower variance and this leads to a
lower MSE. They improve with increasing sample size relative to independent splitting
due to the convergence of the empirical mean to the true mean. In neuroimaging it is
very important to have an accurate estimate of the location of the effect. Our bootstrap
estimates use all of the data to estimate the locations and provide good estimates of the
effect sizes.

For each small group of N subjects n = 1, . . . , N , we take Yn to be the contrast image
from the n-th subject in that group where the contrast is between faces and shapes. Here,
V is the subset of the 3-dimensional 91 by 109 by 91 lattice of voxels corresponding to
the brain; we take it to be the intersection of the subject masks within each group in
order to perform our analysis.

Due to the need to correct for false positives and the variance of the % BOLD and
gray matter signals, we do not recommend using Algorithm 1 on imaging data and
recommend that the data is first thresholded and then used to estimated the effect size.
Instead we first threshold using the t or F -statistic as in Algorithms 2 and 3. Algorithm
1 can be applied and gives accurate estimates of the underlying signal see Figures 2 and
3 of the supplementary material for its application to the fMRI data.

We look at two different data-sets and applications. In the first we look at task fMRI
data from the UK Biobank with the faces-shapes contrast as described in Section 2.3.1
and 2.3.2. We implement our methods to obtain corrected estimates of Cohen’s d and
the % BOLD change at significant maxima and we compare them to the circular and
data-splitting estimates. In the second data-set we consider the gray matter images as
described in Section 2.3.3 and implement our methods to obtain corrected estimates at
significant local maxima of the partial R2 for age that arises from fitting a linear model
with 2 covariates: age and an intercept. We compare these estimates to the ones that
result from circular inference and data-splitting.

4.1 Estimating Cohen’s d for the task fMRI images

In this section we apply Algorithm 2 to estimate Cohen’s d at the locations of significant
maxima, using a significance threshold determined by voxelwise RFT. In order to validate
our approach for each N = 20, 50, 100 we applied all of the methods to each of the GN

groups. We then compared the resulting estimates to the true Cohen’s d map calculated
using 4000 subjects.

The bootstrap and circular estimates use all of the data to find the peaks and so
are much more powerful. For N = 20, data-splitting is only able to use 10 subjects to
calculate the locations and finds 7 significant peaks over all 247 groups meaning that
it only finds 7/247 ≈ 0.0283 peaks per group of subjects. Smaller sample sizes have
less power to identify significant peaks. Additionally voxelwise RFT inference is slightly
conservative (see Eklund et al. (2016)) because of the break down of the good lattice
assumption. We would thus discourage the use of data-splitting for such small sample
sizes as identification of some significant locations is more important. The bootstrap
and circular methods on the other hand use all 20 subjects to locate the peaks and find
1565 significant peaks which corresponds to around 6.3 peaks per group.

In order to illustrate how the methods compare for N = 20, 50, 100 we have plotted
box plots of the bias of the estimators over all the significant peaks over all of the groups,
see Figure 8. From these we see that the circular estimates are highly biased whereas the
bootstrap estimates are asymptotically unbiased with the bias decreasing as the sample
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size increases. The high bias of the circular estimates is particularly bad for the small
N = 20 case. As expected the data-splitting estimates are unbiased. In Figure 8 we
have plotted barplots of the MSE and variance. From these we see that due to the large
bias the circular estimates have very high MSE. The bootstrap has the lowest MSE for
N = 50 and 100 and data-splitting has the largest variance in all cases. For N = 20,
we only have 7 data points for data-splitting corresponding to the 7 peaks that were
above the threshold over all the 247 groups and so it is difficult to compare to the other
methods. See Appendix B for precise definitions of the MSE, variance and bias in this
context.

To further understand how the estimates compare we have plotted their values against
the truth in Figure 9. For each N = 20, 50, 100 and each of the methods we have
plotted a graph of the estimates that arise under that method against the truth at their
locations. Each data point in the graph represents the estimate under that method of
a significant peak in one of the GN groups. (As data-splitting uses half of the subjects
to find significant peaks it finds fewer peaks.) For reference we have also plotted the
identity line on the plots. If our estimates were perfect then we would expect them
all to lie on this line. Given that the sample size is so small, the N = 20 case is the
most challenging for estimation. The circular estimates are very biased while bootstrap
estimates are numerous and give reasonable estimates and the data-splitting estimates
are particularly variable. As N increases, the estimates all perform better. The circular
estimates are biased, and the data-splitting estimates are variable whereas the bootstrap
estimates have low bias and variance.

Note that the shape of the plot of the bootstrap estimates is very dependent on
the shape of the plot of the circular estimates. This is because the bootstrap struggles
to distinguish between points that have the same observed values but different true
values. This is a predictable difficulty of this approach. However the decrease in the
variance of the bootstrap approach relative to data-splitting causes data-splitting to have
a higher MSE than the bootstrap approach. In all cases data-splitting has less power
and therefore finds less significant peaks because it uses half of the data. In practise we
observe a random selection of peaks with varying true values meaning that we do not
condition on the true values when we observe a peak. As such the bias of the bootstrap
estimates is very low (as illustrated in Figure 8) and decreases to 0 asymptotically.

4.2 Estimating the mean for the task fMRI images

Reporting Cohen’s d or simply the t-statistic is common practise in fMRI. However it
may also be of interest to be able to estimate the underlying mean µ itself; Chen et al.
(2017). The bootstrap method can easily be used for this, all that is required is the small
modification of Algorithm 2 detailed in Section 2.1.3. The thresholds (and so the number
of significant peaks) will be the same as in the previous section as we first threshold the
t-statistic to find voxels that are significant and then estimate the effect.

We have produced similar graphs to those of the previous section. For the truth we
used the 4000 estimate of the mean rather than Cohen’s d: this will be very accurate as an
estimate for the true mean by the strong law of large numbers. The box plot in Figure
10 illustrates that the circular estimates are biased whereas the bootstrap and data-
splitting estimates have very low bias. The barplots show that the bootstrap estimates
have lower MSE than the data-splitting estimates. (Note that for N = 20 there are still
only 7 data points and so there is not enough data to get a reliable understanding of how
it performs.) What is striking however is that for N = 50 and 100 the circular estimates
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have a lower MSE than the data-splitting estimates indicating that the selection bias is
much less severe when estimating the mean such that the variance of the data-splitting
estimates dominates. The severity of the selection bias is much less in this scenario. The
reason for this is that circularity occurs when you use the same statistic to determine
the peak locations and the values observed there. Here the statistics are correlated, but
are not the same, meaning that the selection bias is considerably less. The bootstrap
estimates are asymptotically unbiased and have the lowest MSE.

We have plotted the graphs comparing the estimates and the truth in Figure 11.
As before in the N = 20 case, data-splitting finds very few effects whereas the other
methods find many significant data-points. The bootstrap is able to correct for the bias
very well resulting in estimates that lie along the identity line.

4.3 Results - The GLM on Structural Gray Matter Data

It is of particular interest to be able to obtain unbiased estimates of partial R2 values.
These are widely used though the literature, usually without correction for selection bias;
Vul et al. (2009) specifically looked at the bias in correlation values. In this section, we
fit model (2) to our gray matter data as discussed in Section 2.3.3. For each group, we
generated F -statistic maps in order to test for the presence of age in the model. We
took sample sizes N = 50, 100 and 200 and as above divided our subjects into GN groups
of size N and applied the three methods using voxelwise RFT to determine significant
voxels.5

We have produced similar graphs to those of the previous sections. For the truth
we used the 4000 subjects to estimate the partial R2 for age after fitting the linear
model. The box plot in Figure 12 illustrates that the circular estimates are highly biased
whereas the data-splitting estimates are unbiased and the bootstrap estimates have low
bias which tends asymptotically to zero as N increases. The barplots show that the
bootstrap estimates have lower MSE than the data-splitting estimates. MSE for the
circular estimates in the N = 50 case is 0.1161 and so is cut off by the graph. The
bootstrap estimates have low bias and have the lowest MSE.

We have plotted the graphs comparing the estimates and the truth in Figure 13.
These plots illustrate the convergence of the bootstrap as the sample size increases. In
this scenario the estimates for all 3 methods are more variable about the identity line
than in the previous examples. The bootstrap overcorrects points with large true values
and undercorrects those with smaller true values. This is to be expected given the spread
of the circular estimates, with points with a large variety of true partial R2 values having
similar partial R2 circular estimates. This effect decreases as the sample size increases (as
the circular estimates become more parallel to the identity line), however the bootstrap
estimates hug the identity more closely than the data-splitting estimates which leads to
the drop in variance and MSE shown in Figure 12.

4.4 Application to a Working Memory dataset

In order to illustrate the bootstrap method in action we have applied it to a sample of
80 subjects from the human connectome project and look at one of the working memory
contrast. Subjects performed a continuous performance working memory task, an N-
back task using alternating blocks of 0-back and 2-back conditions with faces, non-living

5We have considered larger sample sizes as estimation (for all the methods) in this setting is more
challenging than in the one sample setting.
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man-made objects, animals, body parts, house and words. We examined only the average
(2-back − 0-back) contrast, identifying brain regions supporting working memory.

We use a group level model comprised of a one-sample t-statistic at each voxel in order
to test for activation. Using voxelwise random field theory at the 0.05 level resulting
results in a threshold of 5.73 for the t-statistic. The largest peak above the threshold
has a t-statistic of 10.38 and lies within the Medial Frontal Gyrus an area commonly
associated with working memory. With 80 subjects, 10.38 corresponds to a circular
Cohen’s d of 1.52 which when corrected using the bootstrap becomes 1.16. In total
192 peaks lay above the threshold with 25 within the Medial Frontal Gyrus. We have
displayed the circular and bootstraped Cohen’s d as well as the bootstrap estimate of
the mean of the top 10 of these 25 peaks in Table 1. Slices through the one-sample
t-statistic at the voxel corresponding to the largest peak are shown in Figure 4.4.

To see the effect that these corrections have on power we have plotted a graph of
sample size against power for a whole brain analysis using a p-value threshold of 2×10−7

in Figure 15. The power is calculated as described in Appendix E.2.

Circular Corrected Circular Corrected Peak
Cohen’s d Cohen’s d Mean Mean Location

1.519 1.161 45.039 43.315 (31, 67, 64)
1.137 0.922 34.660 32.106 (69, 66, 57)
1.096 0.889 56.135 53.313 (62, 63, 68)
1.091 0.888 27.870 25.720 (31, 70, 60)
1.079 0.883 46.134 43.431 (23, 80, 52)
1.078 0.883 35.137 32.768 (61, 64, 67)
1.078 0.882 37.759 35.628 (25, 80, 54)
1.067 0.876 37.807 35.586 (69, 67, 55)
0.994 0.817 33.937 31.836 (67, 76, 54)
0.979 0.807 28.038 26.042 (65, 66, 64)

Table 1: The circular and corrected estimates of Cohen’s d and the mean at the top ten
significant peaks in the Medial Frontal Gyrus.

5 Discussion

When conducting a neuroimaging study the first priority is being able to identify sig-
nificant effects. Given the small size of many studies it is highly undesirable to have to
divide the data in half in order to perform accurate inference as this leads to a large
decrease in power. In this paper, we have introduced a bootstrapping based method
which avoids this problem. We have compared it to data-splitting and circular inference
with simulations and real data and have shown that it is asymptotically unbiased and
leads to a decrease in the MSE. Relative to data-splitting it results in a large decrease in
the variance of the estimates and is thus able to yield a balance in the trade off between
bias and variance. We have provided an in-depth analysis of the effect of sample size on
selection bias which has enabled us to determine the impact that sample size has on the
accuracy of the estimates of peak values. The bootstrap method has the advantage that
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it is able to use all of the data to compute the peak locations meaning that it finds more
peaks and that its estimates of their locations are more accurate.

Large data repositories of neuroimaging data enabled us to validate our methods in
a way that has never been possible before. In this paper we have outlined an easy way
of doing so using the UK Biobank, by using a large number of subjects to compute
an accurate version of the truth and dividing the remaining subjects into small groups
on which to test the methods. We recommend that all emerging statistical methods
be tested in this manner. In the interests of reproducibility is it just as important to
validate existing methods where such validation has not yet taken place. Additionally it
is important that, whenever possible, researchers make their data available so that their
results are reproducible and can be improved upon as methods improve. We suggest
that researchers store their data on Open fMRI or other such databases.

The circular inference problem is one that is ever present in neuroimaging. In order to
provide unbiased estimates of the effect size we recommend using the bootstrap method
with 5000 bootstraps, though of course it comes to the number of bootstraps the more
that can be performed the better. There is much ongoing research in the field of selective
inference and there is lots of potential for other methods to be modified for use in the
fMRI setting. There are a number of potential options for further work on the bootstrap.
Currently our method corrects locally at the location of the empirical sample maximum.
This is appropriate because when someone comes to replicate your results you want
them to test the effect at a given location. However using the bootstrap it would also be
possible to compare the maximum observed peak value to that of the maximum of the
empirical mean, thereby allow an estimate of the true maximum of the process across
the whole brain. This problem is something that cannot be solved using data-splitting
approaches. One of the difficulties here is that it is hard to precisely match bootstrap
peaks to the peaks in the original mean. One approach would be to estimate the bias
using only data from some small radius around the peak location. This wouldn’t account
for the effect of the maxima over the whole image but could still allow for an improved
estimate of the bias. It would particularly desirable to derive estimates corrected using
random field theory. However it is theoretically very difficult to estimate the peak height
distribution of a non mean zero random process, Cheng and Schwartzman (2015).

In the fMRI setting the bootstrap works best in the one-sample scenario due to the
high signal to noise ratio. In order to apply it in more general settings where the noise
has a larger variance a larger number of subjects is required. In the general multiple
regression setting a reasonable number of subjects is needed in order for the estimates
to perform well. The bootstrap estimates lower the MSE while allowing for a more
accurate estimate of the location. However as the VBM data shows there is still room
for improvement and there is lots of scope for future research.
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Appendices

A Masking and Calculating the Truth

With access to the UK Biobank we have an unprecedented amount of neuroimaging data.
This enables us to set aside a large number of subjects in order to get a very accurate
estimate of the true effect size, be it the mean, Cohen’s d or a coefficient or partial R2

in a linear model. However dealing with so many subjects requires us to deal with a
number of problems. In particular on a normal computer it is not possible to load all of
the subjects into memory so we need to take a different approach. In this Appendix we
describe how we have dealt with masking and detail how we computed the truth given
that we have a very large (in our case 4000) number of subjects.

A.1 Masking

Given a subject: j and a corresponding image Yj, define its mask to be the image:
Mj : D −→ R such that

Mj(v) =

{
1 if Zj(v) 6= na ie if subject j has data at voxel v

0 otherwise.

where D is the underlying lattice that we are working on. Given this definition, define
the subject mask of a subset S of subjects to be the image M such that

M(v) =

{
1 Mj(v) = 1 for all j ∈ S
0 otherwise.

A.2 Full Mean and Full Cohen’s d

We chose a random subset S of 1, . . . , 8940 of size 4000 and estimated the true mean
and Cohen’s d using the the available data at each voxel. Define the full mean image
by

µF (v) =

∑
j Zj(v)Mj(v)∑

jMj(v)
× 1(Mj(v) = 1 for some j)

and full population variance estimate to be:

σ2
F (v) =

∑
j(Zj − µF (v))2Mj(v)∑

jMj(v)− 1
× 1(Mj(v) = 1 for at least 2 j)

and the full Cohen’s d estimate as

dF (v) =
µF (v)

σF (v)
.

Since we are interested in the brain itself these images are each multiplied by a mask
of the 2mm MNI brain. We follow brain imaging conventions and given a small sample
S use the subject mask corresponding to S (multiplied by the MNI mask) in order to
perform inference on the S, and use the full mean or Cohen’s d as our estimates of the
ground truth.
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A.3 Full Linear Model

Our images have 902,629 = 91*109*91 voxels and for 4000 subjects this data occupies
27GB RAM at double precision, presenting serious computational challenges. Here we
outline a method for computing linear models when the data cannot be loaded into
RAM all at once. Fitting a separate linear model at each voxel is very computationally
intensive as it requires one to load all of the images again at each of the 902,629 voxels
in order to extract the data at that voxel. Loading all of the images is time consuming
and so this is not a practical approach. One method to speed up the procedure is to
divide the brain image into blocks that can fit in memory and be dealt with in reasonable
amounts of time. This works but still takes a substantial amount of time. Instead it is
possible to take advantage of the form of the linear model in order to quickly calculate
the estimates in a linear model for arbitrarily large datasets. Let J be the number
of subjects and let Y1, . . . , YJ and M1, . . . ,MJ be the corresponding images and masks

respectively. Suppose that we have a design matrix X =


1

...
1

XJ

...
X1

 corresponding to an

intercept and a single regressor, and that there is no missing data.
Then in order to estimate the true coefficients for the linear model we need to com-

pute:
(XTX)−1XTY (v)

at each voxel v in the MNI brain, where Y = [Y1, . . . , YJ ]T . To do so we can use the fact
that

XTY (v) =

(∑
j XjYj(v)

∑
j Yj(v)

)
loading one image at a time and summing this allows us to vectorize and quickly calculate
XTY. All that is then required is a quick run through the images, calculating the sums
as you go along, and pre-multiplying XTY (v) by the inverse of

XTX =

(∑
j Xj

J ∑
j X

2
j

∑
j Xj

)
which only has to be calculated once. Running though the images sequentially σ2, t
and partial R2 values can easily be calculated. This method can easily be extended to
multiple regressors.

A.4 Full Linear Model with Masking

So far we have been assuming that all of our images have data in the same locations,
however in reality due to subject specific factors such as distortion this is not the case.
Thus we need to be able to take account of the individual subject masks. There are
missing data approaches to this, however here we take the complete data approach
which is unbiased under the assumption that the data is missing at random. At each
voxel we estimate the relevant statistics using the data that is available at that voxel.
For each voxel v, let C(v) := {j : Mj(v) = 1} then we need to compute

(XT
C(v)XC(v))

−1XT
C(v)YC(v).

Now,

XT
C(v)YC(v) =

(∑
jMj(v)Xj(v)Yj(v)

∑
jMj(v)Yj(v)

)
and
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(XT
C(v)XC(v))

−1 =

(∑
jMj(v)Xj(v)

∑
jMj(v) ∑

jMj(v)Xj(v)2

∑
jMj(v)Xj(v)

)−1

so we can perform the same trick as in the full linear model without masking: running
through the images and summing as you go along. Similar tricks can be used to compute
the standard deviation, t-statistic and partial R2 values. This works efficiently when we
have p regressors and p is small, however the matrix (XT

C(v)XC(v))
−1 is different for each

voxel and so has to be stored at each voxel and updated 4000 times. Storing a matrix
of size p2 at each voxel becomes highly memory intensive as p gets much larger than 15.
In our examples the linear models only have a few regressors so this is not a problem.

B Bias, MSE and Variance Computations

We compute bias, variance and MSE in a non-standard context, in that the true pa-
rameter values vary in each instance. Traditionally, one estimates a single θ based with
estimators θ̂1, ..., θ̂n, giving us the usual MSE decomposition for a sample of size n:

MSE =
1

n

n∑
i=1

(θ̂i − θ)2 =
1

n

n∑
i=1

(θ̂i −
1

n

n∑
i=1

θ̂i)
2 +

(
1

n

n∑
i=1

θ̂i − θ

)2

into variance and squared bias. However in our context we have estimators θ̂1, . . . , θ̂n of
parameters θ1, . . . , θn. In our setting, for a sample size N , n is the number of significant
peaks that are found over all realizations. For i = 1, . . . , n, θ̂i is the value of one of these
significant peaks. Suppose that it occurs at voxel v̂i, then θi is the value of the truth at
that voxel. The θi are different because the location of the empirical peak is different
for each group and for each significant peak in that group. To determine how far off the
estimators are on average we can consider the mean squared error (MSE):

MSE =
1

n

n∑
i=1

(θ̂i − θi)2.

Let eVar = 1
n

∑n
i=1(θ̂i − θi − µ̂)2 and let µ̂ := eBias := 1

n

∑n
i=1(θ̂i − θi). Then

MSE =
1

n

n∑
i=1

(
θ̂i − θi

)2

=
1

n

n∑
i=1

(
θ̂i − θi − µ̂+ µ̂

)2

=
1

n

n∑
i=1

(θ̂i − θi − µ̂)2 +
2

n
µ̂

n∑
i=1

(θ̂i − θi − µ̂) +
1

n

n∑
i=1

µ̂2

=
1

n

n∑
i=1

(θ̂i − θi − µ̂)2 +
2

n
µ̂

n∑
i=1

(θ̂i − θi)−
2

n
nµ̂2 +

1

n

n∑
i=1

µ̂2

=
1

n

n∑
i=1

(θ̂i − θi − µ̂)2 + 2µ̂2 − 2µ̂2 + µ̂2

=
1

n

n∑
i=1

(θ̂i − θi − µ̂)2 + µ̂2 = eVar + eBias2.

Under the assumption of a linear offset such that θ̂i = µ + θi + εi for some mean µ and
some error terms εi which have variance σ2, we have that µ̂ is an unbiased estimator for
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µ and eVar is an (asymptotically) unbiased estimator for σ2. Which means that eBias is
the empirical average bias of the estimators and the eVar is interpretable as the empirical
variance of each bias θ̂i − θi about this average.

In the context of our estimates in Section 4, for a given sample size N , n is the
number of significant peaks over all the GN subsets. This allows us to define the MSE,
variance and bias in this context. In the box plots in Figures 8, 10, 12 for each set of
estimates we have made a box plot for the bias θ̂i − θi over all n significant peaks. For
the bar plots in these figures we have plotted the MSE and variance as defined above.

C partial R2 in terms of F

Let RSSΩ and RSSω respectively be the residual sum of squares for the overall model
Ω and some sub-model ω ⊂ Ω with p0 degrees of freedom. Then we can write the F
statistic for comparing ω and Ω as

F =
(RSSω − RSSΩ)/m

RSSΩ/N − p

where m = p− p0 and the partial coefficient of determination is:

R2 = 1− RSSΩ

RSSω
.

So,

F =
n− p
m

(
RSSω
RSSΩ

− 1

)
=
n− p
m

(
1

1−R2
− 1

)
=
n− p
m

(
R2

1−R2

)
and rearranging this we have that

1

1−R2
=

m

n− p
F + 1 =⇒

R2 = 1−
(

m

n− p
F + 1

)−1

= 1− n− p
mF + n− p

=
mF

mF + n− p
.

The F -statistic above has a different form to the F -statistic defined in Section 2.2.
For every contrast matrix C taking the sub-model ωC = {β : Cβ = 0} and applying the
General Linear Hypothesis establishes their equivalence.

D Neighbourhoods and Local Maxima

Suppose that the vertices in V are connected by a set of edges. Let the collection of these
edges be denoted by E. Then we define two vertices u and v to be neighbours in the
graph G = (V , E) if the edge connecting u and v which we denote by uv is contained in
the set of edges E. Given v ∈ V , define the neighbourhood of v to be the set of voxels
that are neighbours to v and denote this by ne(v).

Now given an image Z : V −→ R, we define a voxel v to be a local maxima if
Z(v) ≥ Z(v′) for all v′ ∈ ne(v). Strictly speaking v is a local maximum with respect
to the image Z but this is almost always clear from context. Given a vector valued
image we can use a similar definition to define local maxima but need to ensure that ≥
is defined differently so that it can be used to compared two vectors.
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Typically in 3D brain images we take the edge set to be defined by a connectivity
criterion of either 6, 18 or 26, which if our voxels are represented by cubes correspond
to those surrounding voxels which share surfaces, edges and corners respectively. As a
result the neighbourhood of each voxel and so the definition of the local maxima are
dependent on the connectivity criterion.

E Non-Central Distributions and Power Analyses

E.1 Non-Central Distributions

E.1.1 One-Sample t-statistic

Following the model from Section 2.1.2 we have that

µ̂ =
1

N

N∑
n=1

Yn ∼ N(µ, σ2/N) independently of σ̂2 ∼ σ2

N − 1
χ2
N−1

at each voxel. As such µ̂
√
N =d µ

√
N +N(0, σ2) independent of σ̂ and so the t-statistic

µ̂
√
N/σ̃ has a non-central t-distribution with non-centrality parameter µ

√
N/σ and N−1

degrees of freedom. As such

E

[
µ̂
√
N

σ̃

]
=
µ

σ

√
N − 1

2

Γ((N − 2)/2)

Γ((N − 1)/2)
=
CNµ

σ

for N > 2, where Γ is the gamma function, where CN is the correction factor. This uses
the formula for the mean of the non-central t distribution. In particular it follows that

µ̂
√
N

σ̃CN

is an unbiased of the population Cohen’s d : µ
σ
.

E.1.2 General Linear Model

We have that β̂ ∼ N(β, σ2(XTX)−1) independently of σ̂2 ∼ σ2

N−pχ
2
N−p and so

(C(XTX)−1CT )−1/2Cβ̂ ∼ N
(
(C(XTX)−1CT )−1/2Cβ, σ2Im

)
and so (Cβ̂)T (C(XTX)−1CT )−1(Cβ̂) has a non-central chi-squared distribution with m
degrees of freedom and non-centrality parameter (Cβ)T (C(XTX)−1CT )−1(Cβ) and as
such

F =
(Cβ̂)T (C(XTX)−1CT )−1(Cβ̂)/m

σ̂2

has a non-central F distribution with non-centrality parameter (Cβ)T (C(XTX)−1CT )−1(Cβ)/σ2

and degrees of freedom m and N − p. In particular

E[F ] =
(N − p)(m+ (Cβ)T (C(XTX)−1CT )−1(Cβ)/σ2)

m(N − p− 2)

In the case where C = cT is just a single contrast vector and we want to perform
inference using the t-statistic instead of the F -statistic, the t-statistic
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cT β̂√
σ̂2cT (XTX)−1c

has a non-central t-distribution with N − p degrees of freedom and non-centrality
parameter cTβ/

√
σ2cT (XTX)−1c.

E.2 Power Analyses

E.2.1 One Sample

In the one sample scenario, for a sample size N ′ and an estimate of the non-centrality
parameter: λ, the power is:

P(TN ′−1,λ > t1−α,N ′−1)

where t1−α,N ′−1 is chosen such that P(TN ′−1,0 > t1−α,N ′−1) = α and TN ′−1,λ has a non-
central T distribution with N ′ − 1 degrees of freedom and non-centrality parameter λ.

E.2.2 Multiple Regression - Cohen’s f 2

Cohen’s f 2 is defined to be f 2 :=
R2

1−R2
=

m

N − p
F (as shown in Appendix C) where

R2 is the partial R2. Now,

m

N − p
F =

(Cβ̂)T (C(XTX)−1CT )−1(Cβ̂)/(N − p)
σ̂2

=
(Cβ̂)T (C( 1

N−pX
TX)−1CT )−1(Cβ̂)

σ̂2
.

Suppose that X =
[
x1 . . . xN

]T
where {xn}n∈N is a sequence of iid random vectors from

some multivariate distribution D. Then ( 1
N−pX

TX)i,j → E[x1ix1j] as N → ∞ by the

strong law of large numbers. Also, β̂ → β and σ̂2 → σ2 as N →∞. As such f 2 converges
to a population value of

f 2
p =

(Cβ)T (C(EXTX)−1CT )−1(Cβ)

σ2

and this also implies convergence of R2. Given a new sample of N ′ subjects with design
matrix X ′ an N ′×p matrix such that the rows are iid with distribution D, so long as N ′

is sufficiently large, we can obtain reasonable estimates of the power. To do so note that
the (new) F -statistic has a non-central F distribution with non-centrality parameter:

(Cβ)T (C(X ′TX ′)−1CT )−1(Cβ)

σ2
= N ′

(Cβ)T (C( 1
N ′X

′TX ′)−1CT )−1(Cβ)

σ2
≈ N ′f 2

p ≈ N ′f 2.

Let λ = N ′f 2 be the estimate of the non-centrality parameter. Then the power is:

P(Fm,N ′−p,λ > f1−α,m,N ′−p)

where f1−α,m,N ′−p is chosen such that P(Fm,N ′−p,0 > f1−α,N ′−1) = α and where Fm,N ′−p,λ
has a non-central T distribution with N ′ − 1 degrees of freedom and non-centrality
parameter λ.
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E.2.3 Multiple Regression - Cohen’s f

In the case that C = cT is a contrast vector, we often use the t-statistic as this allows
us to perform one-sided tests. In which case we can use Cohen’s f which is defined as

f =
cT β̂/(N − p)√
σ̂2cT (XTX)−1c

and use
√
N ′f as our estimate of the non-centrality parameter using this to calculate an

estimate of the power analogously to above.
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Figure 8: Comparing estimates of the one sample Cohen’s d for task fMRI. For N =
20, 50 and 100 we implemented the methods on each of the GN groups. We plotted
estimates of the average variance and MSE for each N . For the bias we plotted box
plots of the bias where the average bias is indicated by a black dot on each box plot.
The bootstrap estimates are asymptotically unbiased and have low MSE. Note that the
N = 20 data-splitting MSE and variance is computed using only 7 data points so may
not be representative. See Appendix B for definitions of the MSE, variance and bias.
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Figure 9: Plotting estimates of the one-sample Cohen’s d for task fMRI images against
the true values at the estimated locations. For each N = 20, 50, 100 we implemented our
methods on the GN samples and for each sample found a number of peaks deemed to be
significant; each dot in the above plots represents one of these peaks. For each peak we
have plotted the estimate of Cohen’s d at its location against the truth at that location.
Note that the number of peaks and their locations are the same for circular inference
and the bootstrap but is different for data-splitting because it uses the first half of the
subjects in order to determine significant peaks. From these plots we can see that the
bootstrap estimates have low bias and variance and improve as the sample size increases.
The data-splitting estimates are unbiased but are more variable and less numerous.
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Figure 10: Comparing estimates of the significant local maxima of the one sample mean
for task fMRI. For N = 20, 50 and 100 we have implemented the methods on each of the
GN groups. We have plotted estimates of the average variance, MSE and bias for each
N as in Figure 8. Note that the N = 20 data-splitting MSE and variance is computed
using only 7 data points so may not be representative. See Appendix B for definitions
of the MSE, variance and bias. Particularly of note here is that the circular estimates
already have lower MSE than data-splitting.
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Figure 11: Plotting estimates of the one-sample mean against the true values at the esti-
mated locations using task fMRI. For each N = 20, 50, 100 we implemented our methods
on the GN samples and for each sample find a number of a peaks to be significant: each
dot in the above plots represents one of these peaks. For each peak we have plotted the
estimate of the mean (in % BOLD) at its location against the truth at that location.
Note that the number of peaks and their locations are the same for circular inference and
the bootstrap but is different for data-splitting because it uses the first half of the sub-
jects in order to determine significant peaks. From these plots we see that the circularity
bias is much less than for Cohen’s d and that the bootstrap estimates perform very well.
The data-splitting estimates are unbiased but are more variable and less numerous.
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Figure 12: Comparing estimates of the significant local maxima of the partial R2 for age
on VBM data. For N = 50, 100 and 150 we have implemented the methods on each of
the GN groups. We have plotted estimates of the average variance and MSE for each N .
For the bias we have plotted boxplots of the bias over each significant peak. The average
bias is indicated by a black dot on each boxplot. From these graphs we see that the
bootstrap estimates are asymptotically unbiased and have the lowest MSE in all cases
while the variance of the data-splitting estimates is comparatively high.
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Figure 13: Plotting estimates of the estimated partial R2 for age (obtained using a
regression on VBM data) against the true values at the estimated locations. For each
N = 50, 100, 150 we implemented our methods on the GN samples and for each sample
calculated the F and partial R2-statistic maps in order to find significant peaks: each
dot in the above plots represents one of these peaks. For each peak we have plotted the
estimate of the mean at its location against the truth at that location. Note that the
number of peaks and their locations are the same for circular inference and the bootstrap
but is different for data-splitting because it uses the first half of the subjects in order to
determine significant peaks. From these plots we see that the naive estimates are biased
high while the bootstrap and data-splitting estimates are unbiased on average. Data-
splitting is the most variable, though the bootstrap overcorrects values with a large true
partial R2 and undercorrects those with a low partial R2 for N = 100, 150. The bootstrap
estimates hug the identity line more closely than the data-splitting estimates resulting
in the decrease in MSE, see Figure 12.

36

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500512doi: bioRxiv preprint 

https://doi.org/10.1101/500512
http://creativecommons.org/licenses/by-nd/4.0/


Figure 14: Slices through the one-sample t-statistic for the working memory contrast
(2-back − 0-back) for subjects from the Human Connectome Project. White circles
indicate the location of the largest peak of activation which lies at the voxel (31, 67, 69)
at the edge of the Medial Frontal Gyrus.
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Figure 15: The power corresponding to a given sample size for the one-sample t-statistic.
The blue curve is the power curve corresponding to the circular estimate of the Cohen’s
d for the HCP working memory dataset and the read curve is the power curve corre-
sponding to the corrected Cohen’s d.
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