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 13 

Abstract 14 

Animals engage in routine behavior in order to efficiently navigate their environments. This 15 

routine behavior may be influenced by the state of the environment, such as the location and size 16 

of rewards. The neural circuits tracking environmental information and how that information 17 

impacts decisions to diverge from routines remains unexplored. To investigate the representation 18 

of environmental information during routine foraging, we recorded the activity of single neurons 19 

in posterior cingulate cortex (PCC) in monkeys searching through an array of targets in which the 20 
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location of rewards was unknown. Outside the laboratory, people and animals solve such traveling 1 

salesman problems by following routine traplines that connect nearest-neighbor locations. In our 2 

task, monkeys also deployed traplining routines, but as the environment became better known, 3 

they diverged from them despite the reduction in foraging efficiency. While foraging, PCC neurons 4 

tracked environmental information but not reward and predicted variability in the pattern of 5 

choices. Together, these findings suggest that PCC mediates the influence of information on 6 

variability in choice behavior. 7 

 8 

Introduction  9 

Imagine you are at a horse race, and there are six horses, with Local Field Potential the 10 

underdog, facing 100:1 odds against. When LFP wins, a one dollar bet will pay out $100. But in 11 

addition to the reward received from this bet, learning that out of the six horses, LFP is the winner 12 

reduces your uncertainty about the outcome. Hence, LFP crossing the finish line first yields both 13 

reward and information. 14 

Similar problems are often faced by organisms in their environment. Animals must learn 15 

not only the sizes of rewards but also their locations, times, or other properties. For example, 16 

hummingbirds will adapt their nectar foraging in response to unexpected changes in reward timing 17 

(Garrison and Gass 1999). Similarly, monkeys will adapt their foraging routines upon receiving 18 

information that a highly valued resource has become available (Menzel 1991). In general, animals 19 

can make better decisions by tracking such reward information. Perhaps once a reward has been 20 

received, it no longer pays to wait for more because the resource is exhausted or the inter-reward 21 

time is too great (McNamara 1982), such as occurs for some foraging animals. Or, perhaps 22 
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receiving a reward also resolves any remaining uncertainty about an environment (Stephens and 1 

Krebs 1986). Keeping track of reward information independent of reward size thus serves as an 2 

important input into animals’ decision processes.  3 

We designed an experiment to probe this oft-neglected informational aspect of reward-4 

based decision making. Our experiment is based on the behavior of animals that exploit renewable 5 

resources by following a routine foraging path, a strategy known as traplining(Berger-Tal and Bar-6 

David 2015). Trapline foraging has a number of benefits, including reducing the variance of a 7 

harvest and thereby attenuating risk(Possingham 1989), efficiently capitalizing on periodically 8 

renewing resources(Possingham 1989; Bell 1990; Ohashi, Leslie, and Thomson 2008), and helping 9 

adapt to changes in competition(Ohashi, Leslie, and Thomson 2013). Many animals trapline, 10 

including bats(Racey and Swift 1985), bees(Manning 1956; Janzen 1971), butterflies(Boggs, 11 

Smiley, and Gilbert 1981), hummingbirds(Gill 1988), and an array of primates including rhesus 12 

macaques(Menzel 1973), baboons(Noser and Byrne 2010), vervet monkeys(Cramer and Gallistel 13 

1997), and humans(Hui, Fader, and Bradlow 2009). Wild primates foraging for fruit(Menzel 1973; 14 

Noser and Byrne 2010), captive primates searching for hidden foods(Gallistel and Cramer 1996; 15 

Desrochers et al. 2010), and humans moving through simulated(MacGregor and Chu 2011) and 16 

real(Hui, Fader, and Bradlow 2009) environments all use traplining to minimize total distance 17 

traveled and thereby maximize resource intake rates.  18 

 Though many primates trapline, information about the state of the environment, such as 19 

weather(Janmaat, Byrne, and Zuberbühler 2006), the availability of new foods(Menzel 1991), or 20 

possible feeding locations(Hemmi and Menzel 1995; Menzel 1996), can influence choices made 21 

while foraging. Such detours result in longer search distances and more variable choices(Noser 22 
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and Byrne 2010; Hui, Fader, and Bradlow 2009) but allow animals to identify new 1 

resources(Menzel 1991) and engage in novel behaviors(Noser and Byrne 2010). These benefits 2 

are consistent with computer simulations that show stochastic traplining yields better long-term 3 

returns than pure traplining by uncovering new resources or more efficient routes(Ohashi and 4 

Thomson 2005). Thus environmental information may improve foraging efficiency during routine 5 

foraging. 6 

 The neural mechanisms that track, update, and regulate the impact of environmental 7 

information on decision making remain unknown. Neuroimaging studies have revealed that the 8 

posterior cingulate cortex (PCC) is activated by a wide range of cognitive phenomena that involve 9 

rewards, including prospection(Benoit, Gilbert, and Burgess 2011), value representation(Kable 10 

and Glimcher 2007; Clithero and Rangel 2014), strategy setting(Wan, Cheng, and Tanaka 2015), 11 

and cognitive control(Leech et al. 2011). Intracranial recordings in monkeys have found that PCC 12 

neurons signal reinforcement learning strategies(Pearson et al. 2009), respond to novel stimuli 13 

during conditional visuomotor learning(Heilbronner and Platt 2013), represent value(McCoy et al. 14 

2003), risk(McCoy and Platt 2005), and task switches(Hayden and Platt 2010), and stimulation 15 

can induce shifts between options(Hayden et al. 2008). Together, these observations suggest that 16 

the PCC mediates the effect of environmental information on variability in routine behavior. 17 

However, no studies to date have attempted to separate out the hedonic value from the 18 

informational value of rewards in PCC. 19 

Here we tested the hypothesis that PCC preferentially tracks reward information by 20 

recording the activity of PCC neurons in monkeys foraging through an array of targets in which 21 

environmental information, operationalized as the pattern of rewards, was partially decorrelated 22 
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from reward size. Monkeys developed traplines in which they moved directly between nearest 1 

neighbor targets. As they acquired more information about the state of the environment, their 2 

trapline foraging behavior was faster and less variable. While foraging, PCC neurons tracked 3 

environmental information but not reward and forecast response speed and variability in traplines. 4 

These findings support our hypothesis that PCC mediates the use of information about the state of 5 

the environment to regulate adherence to routines in behavior and cognition. 6 

 7 

Materials and Methods 8 

Task Analysis 9 

Our task manipulates both reward and information. Reward was manipulated by varying 10 

the size of received rewards: on every trial, one of six targets had a large reward, one had a small 11 

reward that was half of the size of the large, and the remaining four had zero rewards. Information 12 

was manipulated by varying the spatiotemporal pattern of rewarding targets. Given a set of four 13 

null rewards, one small, and one large, there are 6! distinct permutations. We made the simplifying 14 

assumption that monkeys perceived the pattern of received rewards without distinguishing the 15 

different null rewards received. This assumption reduces the number of distinct patterns from 720 16 

to 30. 17 

 Different patterns correspond to different series of received reward. The environmental 18 

entropy HE contained in receiving some reward (zero, small, or large) depends on the choice 19 

number i in the sequence and the total number of possible sequences: 20 

!" = −log(
(|{,-}|)
(|,|)

 21 
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where |·| denotes cardinality, P is the set of possible permutations, and {Pi} is the set of remaining 1 

permutations after the ith choice. The amount of information contained in some reward outcome is 2 

computed as the difference in the entropy, what has been learned about the current trial’s pattern 3 

of received reward by receiving the most recent outcome: 4 

∆!" = !- − !-12 5 

for the amount of environmental entropy HE on the ith outcome. Expected information can then be 6 

computed as the mean amount of information to be gained by making the next choice, the weighted 7 

average over all possible next information outcomes given the pattern of received rewards thus 8 

far: 9 

3[∆!"]- =
∑ [∆!"]-789:;<=<=>

?@,ABCD-E-EF@G
 10 

for expected information E[ΔHE] for the ith choice, possible outcomes [ΔHE]i for the remaining 11 

permutations Premaining, and where |·| again denotes cardinality. Thus, as the animal proceeds 12 

through the trial, the amount of expected information varies as a function of how many possible 13 

patterns of returns have been eliminated thus far. Expected reward ER is computed simply as the 14 

amount of remaining reward to be harvested on trial i divided by the number of remaining targets 15 

n: 16 

3H- =
2
E
∑ H-E
- . 17 

If the animal harvests all of the reward near the beginning of a trial, the expected reward will be 18 

zero. However, if the animal does not harvest the rewards until the end of a trial, the expected 19 

reward will increase across the duration of the trial. 20 
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 Given the design of the task, some patterns of returns can have the same amount of 1 

expected information for the same choice number but distinct expected rewards (see 2 

supplementary information). This partial decorrelation of reward and information occurs as a result 3 

of the way expected reward and expected information are computed. Expected information is a 4 

function of the number of possible patterns to be excluded by the next outcome, whereas expected 5 

reward is a function of the identity of the pattern, and in particular, the amount of reward remaining 6 

to be harvested. The same amount of information can be expected from obtaining distinct outcomes 7 

because the number of patterns excluded by the different outcomes is identical. But the expected 8 

rewards can differ because there are distinct outcomes possible. Hence, our task partially de-9 

confounds information and reward.  10 

Behavioral Methods 11 

For our behavioral entropy measures, we again used the standard definition of entropy. For 12 

behavioral entropy, the probability of a particular step size was computed for each step size by 13 

counting the number of trials with that step size and dividing by the total number of trials. Action 14 

step sizes (from -2 to 3) and action step size probabilities (probability of taking an action of a given 15 

size) were calculated for choices 1 to 2, 2 to 3, 3 to 4, and 4 to 5 (5 to 6 had a constant update of 16 

1). Step sizes were calculated on each choice by determining how many targets around clockwise 17 

(positive) or counterclockwise (negative) the next choice was from the previous choice; already 18 

selected targets were not included in this calculation. Step size probabilities were calculated by 19 

holding fixed all of the covariates for a particular choice (information outcome from previous 20 

choice, information expectation for next choice, reward outcome from previous choice, reward 21 

expectation for next choice, and choice number) and counting the frequencies for each step size 22 
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and dividing by the total number of trials with that set of covariates. For each unique combination 1 

of covariates (choice number, information outcome, information expectation, reward outcome, and 2 

reward expectation), we computed the choicewise behavioral entropy (HB) for that combination as 3 

!I = −JKL
L

log( KL 4 

for probability of each step size ps. Finally, a multilinear regression correlated these behavioral 5 

entropy scores with the covariates. 6 

 Diverge choices were defined as choices that diverged from the daily dominant pattern 7 

(DDP). Determining the DDP relied on assessing the similarity between pairs of trials, for every 8 

possible pair on a given day, by computing the pair’s Hamming score(Hamming 1950). To 9 

compute the similarity between two trials, each trial’s pattern of choices by target number is first 10 

coded as a digit string (e.g., 1, 2, 4, 5, 6, 3). The Hamming distance Di,i′  between two strings i, i′ 11 

of equal length is equal to the sum of the number of differences d between each entry in the string, 12 

M-,-O =JP(QE, RE)
E

 13 

for strings x, y of length n. We computed Di,i’ for every pair of trials, and then, for each unique 14 

pattern of choices, computed the average Hamming distance MS-,-O . The daily dominant pattern 15 

corresponded to the pattern with the minimum MS-,-O. 16 

 Response times, defined as the time from end of saccade for the last decision to end of 17 

saccade for the current decision, and behavioral entropy were both regressed against a number of 18 

variables and their interactions as covariates with multilinear regression. Covariates included 19 

choice number in trial, expected information, expected reward, reward outcome from the previous 20 

choice, information outcome from the previous choice, and all 2-way interactions. See Table S2 21 
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for full results of the response time regression and Table S6 for full results of the behavioral 1 

entropy regressions. 2 

Neural Methods 3 

 Two male rhesus macaque monkeys were trained to orient to visual targets for liquid 4 

rewards before undergoing surgical procedures to implant a head-restraint post (Crist Instruments) 5 

and receive a craniotomy and recording chamber (Crist Instruments) permitting access to PCC. 6 

All surgeries were done in accordance with Duke University IACUC approved protocols. The 7 

animals were on isoflourane during surgery, received analgesics and prophylactic antibiotics after 8 

the surgery, and were permitted a month to heal before any recordings were performed. After 9 

recovery, both animals were trained on the traplining task, followed by recordings from BA 23/31 10 

in PCC. MR images were used to locate the relevant anatomical areas and place electrodes. Acute 11 

recordings were performed over many months. Approximately one fifth of the recordings were 12 

done using FHC (FHC, Inc., Bangor, ME) single contact electrodes and four fifths performed using 13 

Plexon (Plexon, Inc., Dallas, TX) 8-contact axial array U-probes in monkey L. No statistically 14 

significant differences in the proportion of task relevant cells were detected between the 15 

populations recorded with the two types of electrodes (χ2, p > 0.5). All recordings in monkey R 16 

were done using the U-probes. Recordings were performed using Plexon neural recording systems. 17 

All single contact units were sorted online and then re-sorted offline with Plexon offline sorter. 18 

All axial units were sorted offline with Plexon offline sorter. 19 

 Neural responses often show non-linearities(Dayan and Abbott 2001), which can be 20 

captured using a generalized linear model(Aljadeff et al. 2016). We used a generalized linear 21 

model (GLM) with a log-linear link function and Poisson distributed noise estimated from the data 22 
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to analyze our neuronal recordings, effectively modeling neuronal responses as an exponential 1 

function of a linear combination of the input variables. We analyzed the neural data in two epochs: 2 

a 500 ms anticipation epoch, encompassing a 250 ms pre-saccade period and the 250 ms hold 3 

fixation period to register a choice, and more focally the 250 ms pre-saccade epoch itself. 4 

Covariates included choice number in the trial, expected information, expected reward, 5 

information outcome from the last choice, reward outcome from the last choice, and all 2-way 6 

interactions. 7 

 In addition to this GLM, we confirmed our model fits in two ways for each neuron: first, 8 

we plotted the residuals against the covariates, to check for higher-order structure, and second, we 9 

used elastic net regression, to check that our significant covariates were selected by the best-fit 10 

elastic net model(Zou and Hastie 2005). Plotting residuals revealed no significant higher-order 11 

structure. Furthermore, elastic net regression confirmed our original GLM results (see 12 

supplemental methods). None of the significant covariates identified by the original GLM received 13 

a coefficient of 0 from the elastic net regression, and the sizes of the significant coefficients 14 

identified by the original GLM were very close to the sizes of the coefficients computed by the 15 

elastic net regression (see supplemental results). 16 

 Perievent time histograms (PETHs) were created by binning spikes in 10 ms bins, time-17 

locked to the event of interest. For the anticipation epoch, PETHs were centered on the end of the 18 

choice saccade. For the last informative outcome analysis, PETHs were time-locked to the time of 19 

last informative feedback, from two seconds before to two seconds after in 50 ms time bins. PETHs 20 

were smoothed with a Gaussian and a 20 ms kernel. To analyze encoding of the last informative 21 

feedback, a log-linear GLM regression was then run on vectors of binned spike counts time-locked 22 
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to the start of the trial, with time in window, time of last informative feedback (a binary covariate 1 

encoding whether or not the current time bin was before or after the last informative feedback), 2 

and their interaction as covariates. 3 

 Step sizes, step size probabilities, and choicewise entropies were linearly regressed against 4 

the firing rates during the anticipation epoch, when actions were executed, as reflected in the step 5 

size. To assess choicewise entropy encoding before and after receipt of the last bit of information, 6 

we calculated the number of neurons that significantly encoded choicewise entropy by choice 7 

before the receipt of this information to the number after. For the population response, we first 8 

separated trials by mean choicewise entropy across all choices. Next, we compared the normalized 9 

average population response for high average choicewise entropy trials to low average entropy 10 

during the two seconds before the receipt of the last information. Then we ran the same analysis 11 

on the normalized average response during the two seconds following receipt of this information, 12 

and reported the results of these two analyses below. 13 

 14 

Results 15 

Trapline Foraging in a Simulated Environment 16 

 To explore the effects of information on divergence from routines, two monkeys (M. 17 

mulatta) solved a simple traveling salesman problem. In this task, monkeys visually foraged 18 

through a set of six targets arranged in a circular array, only moving on to the next trial after 19 

sampling every target (Fig. 1B). On each trial, two of the targets were baited, one with a large 20 

reward and one with a small reward, with the identity of the baited targets varying from trial to 21 

trial. While foraging, monkeys gathered both rewards, herein defined by the amount of juice 22 
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obtained, and information, herein defined as the reduction in uncertainty about the location of 1 

remaining rewards. 2 

 By varying the identity of the rewarding targets from trial-to-trial, reward and information 3 

were partially decorrelated. Reward was manipulated by varying the size of received rewards, with 4 

a small, large, and four zero rewards available on every trial. Information was manipulated by 5 

varying the spatiotemporal pattern of rewarding targets. Different patterns correspond to different 6 

series of received rewards. Based on the series of rewards received up to a particular choice in the 7 

trial, some subset of the set of possible sequences remained, determining the remaining uncertainty 8 

for the current trial (see methods). Monkeys gathered rewards and thereby reduced uncertainty 9 

about the current trial’s patterns, thereby gathering information about the environment. The 10 

amount of information provided by a specific outcome during a trial was calculated as the 11 

difference in the entropy before receiving the outcome compared to after. The expected 12 

information is a function of the number of possible patterns excluded by the next outcome, whereas 13 

expected reward is a function of the remaining reward to be harvested. The expected reward for 14 

each target is the total remaining reward to harvest divided by the number of remaining targets. In 15 

contrast, the expected information is the mean amount of information to be gained by making the 16 

next choice. As the animal proceeds through the trial, the amount of expected information varies 17 

as a function of how many possible patterns of returns have been eliminated so far. Distinct 18 

possible reward outcomes may offer the same information, and so our task partially de-confounds 19 

information and reward. Given the structure of the task, expected reward and expected information 20 

are partially decorrelated (linear regression, R2 = 0.13).  21 
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As monkeys progressed through the array, forecasts of information still available about the 1 

foraging environment influenced the speed of responses (all behavioral analyses: n = 145,080 2 

choices, 24,180 trials). Though monkeys’ choice response times, the time between target 3 

acquisitions, were more sluggish over the course of a trial (Fig. 1C, top panel; linear regression; 4 

Both monkeys: β = 0.0134 ± 0.0004, p < 1x10-197; Monkey L: β = 0.0148 ± 0.0005, p < 1x10-159; 5 

Monkey R: β = 0.0100 ± 0.0007, p < 1x10-39), the presence of remaining environmental 6 

information defined an information boundary generally separating speedy from sluggish choice 7 

behavior (Student’s t-test on responses when environmental information remained vs. after; Both 8 

monkeys: t(145,078) = -37.88, p < 1x10-311; Monkey L: t(103,912) = -38.49, p < 1x10-321; Monkey 9 

R: t(41,164) = -8.42, p < 1x10-16; see supplement and Fig. S1 for full response time regression 10 

results). Response times were significantly longer when all information about the array was 11 

exhausted than when information remained even after controlling for the number of remaining eye 12 

movements (Fig. 1C, bottom panel, response times as function of expected information). 13 

 The influence of information on response times suggested a similar influence may hold for 14 

the pattern of choices that monkeys made, resulting in trial-to-trial changes in this pattern. Though 15 

monkeys usually chose the targets in the same order (the daily dominant pattern, DDP; Monkey 16 

R: same DDP across all 14 sessions; Monkey L: same DDP across 24 of 30 sessions; Fig. 1C; see 17 

methods), they occasionally diverged from this routine. We found that the informativeness of 18 

outcomes influenced this variability in the monkeys’ patterns of choices as measured by behavioral 19 

entropy, the expected degree of divergence. First, monkeys’ choices during a trial were 20 

egocentrically coded by its step size, the number of targets to the left or right from the current 21 

trial’s previously chosen target (Fig. 1B). The probability of a particular step size was computed 22 
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by counting the number of trials with that step size and dividing by the total number of trials. 1 

Anticipation of more informative choice outcomes significantly reduced the entropy of the 2 

monkeys’ choices (Student’s t-test; Both monkeys: t(96,718) = -19.25, p < 1x10-81; Monkey L: 3 

t(69,274) = -3.24, p < 0.005; Monkey R: t(27,442) = -23.99, p < 1x10-125; Fig. 1E, left panel; see 4 

supplement for full behavioral entropy regression results). While still harvesting information about 5 

the current trial, monkeys diverged less from routine traplines, but afterward they diverged more, 6 

becoming more variable in their choices (Student’s t-test on choice numbers (CN) 4 or 5; Both 7 

monkeys: t(48,358) = -125.98, p ~ 0; Monkey L: t(34,636) = -96.32, p ~ 0; Monkey R: t(13,720) 8 

= -71.79, p ~ 0; results also significant for each CN separately; Fig. 1E, right panel). Hence, 9 

monkeys diverged less while choices were still informative and more thereafter.   10 

 11 

Environmental Information Signaling by Posterior Cingulate Neurons 12 

 We next probed PCC activity during the trapliner task to examine information and reward 13 

signaling from 124 cells in two monkeys (Fig. 1A; monkey L = 84 neurons; monkey R = 40 14 

neurons). In order to control for behavioral confounds, all choices where monkeys diverged from 15 

traplines were excluded  from the analyses in this section (those neural findings are reported in 16 

Barack, Chang, and Platt 2017).  17 

 Overall, we found that during the anticipation epoch (500 ms encompassing a 250 ms pre-18 

choice period and a 250 ms hold fixation period), neurons in PCC preferentially signaled 19 

information expectations over reward expectations. An example cell (Fig. 2A) showed a phasic 20 

increase in firing rate during the anticipation epoch when expected information was higher for the 21 

same choice number in the trial (for example, choice number two (CN2): Student’s t-test, p < 22 
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0.0001; firing rate for 0.72 bits = 23.57 ± 1.33 spikes/sec, firing rate for 1.37 bits = 29.79 ± 0.85 1 

spikes/sec). However, after controlling for choice number in the trial and expected information, 2 

the same neuron did not differentiate between different amounts of expected reward (Student’s t-3 

test, p > 0.9; firing rate for 0.2 expected reward = 23.73 ± 2.17 spikes/sec, firing rate for 0.4 4 

expected reward = 23.43 ± 1.64 spikes/sec; Fig. 2A, second row from bottom, left panel). The 5 

tuning curves for this same cell collapsed across all choice numbers for both expected information 6 

and expected reward illustrate the strong sensitivity to large amounts of information (Fig. 2B).  7 

 In our population of 124 neurons, significantly more cells were tuned to information than 8 

reward when controlling for choice number in trial. A generalized linear model (GLM) regression 9 

revealed that during the anticipation epoch, 36 (29%) of 124 neurons (Monkey L: 26 (31%) of 84 10 

neurons; Monkey R: 10 (25%) of 40 neurons) signaled the interaction of choice number and 11 

expected information, but only 1 (1%) of 124 neurons (Monkey L: 1 (1%) of 84 neurons; Monkey 12 

R: 0 (0%) of 40 neurons) signaled the interaction of choice number and expected reward (all 13 

results, p < 0.05, Bonferroni corrected; Both monkeys: χ2 = 38.9138, p < 1x10-9; Monkey L: χ2 = 14 

27.5808, p < 5x10-7; Monkey R: χ2 = 11.4286, p < 0.001; see methods; see supplement for results 15 

of full regression and individual monkey results). A direct test for signaling of expected reward, 16 

by comparing the average firing rates for different amounts of expected reward for the same choice 17 

number and expected information, revealed that only about 10% of neurons signaled expected 18 

reward, except on the last choice when all information had been received (Fig. 2C). In contrast, 19 

about 20% of neurons signaled expected information (Fig. 2C).  20 

  21 

PCC Neurons Index Response Speed and Variability   22 
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 We have previously established that PCC neurons signal decisions to diverge from 1 

traplines during our task (Barack, Chang, and Platt 2017). However, the extent to which these cells 2 

track speed and variability of responses during the task remains to be explored. We next examined 3 

the extent to which firing rates in PCC neurons predicted response times across all trials. A high 4 

proportion of neurons predicted response times in our task during the pre-saccade epoch, the 250 5 

ms before the end of the choice saccade (both monkeys, 54 (44%) of 124 neurons significantly 6 

predicted response times, linear regression, p < 0.05; Monkey L, 46 (55%) of 84 neurons; Monkey 7 

R, 14 (35%) of 40 neurons). In order to initially assess the possibility that expected information 8 

influenced response times through the PCC, a mediation analysis was run on the group of 9 cells 9 

(Monkey L: 9; Monkey R: 2; all variables were z-scored including the firing rates and a variable 10 

for cell identity was included in the analysis) that significantly encoded the interaction of expected 11 

information and choice number and that significantly predicted response times during that epoch. 12 

This analysis compared the direct effect of the interaction of expected information and choice 13 

number on saccade response time to the indirect, mediated effect of this variable on response time 14 

through PCC neurons (Hayes 2013). Mediation analysis revealed that both paths were small but 15 

significant: the direct pathway CN x EI → response times (p < 1 x 10-6; estimated effect = -0.0121 16 

± 0.0024) as well as the indirect pathway CN x EI → firing rates → response times (p < 5 x 10-10; 17 

estimated effect = -0.0014 ± 0.00022) both significantly sped up responses. Hence, initial 18 

indications suggest that PCC partially mediates the influence of expected information on response 19 

times.  20 

 While PCC neurons predict response speed, we next asked whether these neurons index 21 

the degree to which behavior is variable, operationalized as behavioral entropy (see methods). 22 
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During the anticipation epoch, behavioral entropy varied significantly with firing rate for 70 (56%) 1 

neurons (log-linear regression of behavioral entropy against firing rate, p < 0.05; results by choice 2 

number: 46 neurons (37%) for CN1, 27 neurons (22%) for CN2, 31 neurons (25%) for CN3, and 3 

41 neurons (33%) for CN4). An example cell was more active for high entropy choices compared 4 

to low (Student’s t-test, p < 1 x 10-32; Fig. 3A). Across the population, higher firing rates predicted 5 

greater behavioral entropy (Student’s t-test on mean normalized firing rates during anticipation 6 

epoch, p < 1x10-5; Fig. 3B). Higher firing rates predicted greater behavioral entropy (BE) in the 7 

majority of both the significant subpopulation of 70 cells (GLM, p < 0.05, βBE > 0 in 51 cells, βBE 8 

≤ 0 in 19 cells; mean βBE = 0.0023 ± 0.0011 bitsBE/spike, Student’s t-test against βBE = 0, t(69) = 9 

2.08, p < 0.05) and the whole population (124 neurons; βBE > 0 in 83 cells, βBE ≤ 0 in 41 cells; 10 

mean βBE = 0.0058 ± 0.0020 bitsBE/spike, Student’s t-test, t(123) = 2.85, p < 0.01). The percent 11 

modulation of behavioral entropy per 1 Hz increase in firing rate can be calculated by dividing the 12 

mean regression coefficient for the population by the mean behavioral entropy. In the 13 

subpopulation of significant neurons, these mean regression coefficients represent an increase of 14 

2.02% in the average behavioral entropy for every additional spike, and across the whole 15 

population, of 1.49% for every additional spike.  16 

 Monkeys’ behavior could be characterized as occupying two states along a continuum from 17 

routine to divergent. In the more routine state they made faster, less variable choices, while in the 18 

more divergent state they made slower, more variable choices. Recall that a boundary defined by 19 

the receipt of the last bit of information, when the pattern of rewards on a given trial becomes fully 20 

resolved, generally separated periods of routine from divergent behavior. We next investigated 21 

whether PCC neurons signaled this information boundary. After a follow-up regression of each 22 
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trial’s binned spike counts against the time in the trial and the time of last informative outcome, 1 

we found that 98 (79%) of 124 neurons differentiated these two states (GLM, effect of interaction, 2 

p < 0.05). During a four second epoch centered on the time of the last informative choice outcome, 3 

an example cell fired less before that outcome than after (Student’s test, p < 1x10-56; Fig. 3C). The 4 

population of cells also signaled the transition from routine to divergent behavior, firing more after 5 

the last bit of information was received (Student’s t-test, p < 0.005; Fig. 3D). 6 

 Finally, behavioral entropy signals and information boundary signals were multiplexed in 7 

the PCC population. Significantly fewer cells (χ2, p < 1x10-10) predicted behavioral entropy after 8 

receiving all information (24 (19%) of 124 neurons) than before (74 (60%) neurons). A comparison 9 

of PCC population responses on choices with high to low behavioral entropy revealed significantly 10 

differences before receipt of the last informative outcome (Student’s t-test, p < 1x10-4) but not after 11 

(Student’s t-test, p > 0.5; Fig. S2), with greater modulation for high entropy compared to low.  12 

 13 

Discussion 14 

 In this study, we show that environmental information influences responses during routine 15 

behavior and that the posterior cingulate cortex (PCC) signals this information and predicts 16 

response times and behavioral variability. Despite the fact that in our task monkeys could not 17 

utilize environmental information to increase their chance of reward, the receipt of environmental 18 

information and the exhaustion of uncertainty impacted behavioral routines. Monkeys’ responses 19 

were faster and less variable when there was more information to be gathered, but surprisingly 20 

slowed and became more variable once the environment became fully known. This pattern of slow 21 

responses after resolving all environmental uncertainty departs from the reward rate maximizing 22 
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strategy of moving in a circle. While monkeys traplined, neurons in PCC robustly signaled 1 

information expectations but not reward expectations. These neurons also predicted the speed of 2 

responses as monkeys traplined, with neural activity in the subset of the population that signaled 3 

information expectations and predicted response times helping to mediate the influence of 4 

informativeness on response. PCC also neurons differentiate the degree of behavioral variability 5 

before compared to after all information was received about the pattern of rewards, with increasing 6 

activity following receipt of the last informative outcome and decreased representations of 7 

behavioral variability. In sum, our experimental findings suggest that PCC tracks the state of the 8 

environment in order to influence routine behavior. 9 

 Monkeys generally chose targets in the same pattern regardless of which targets had been 10 

most recently rewarded or informative, consistent with previous findings of repetitive stereotyped 11 

foraging in wild primate groups(Noser and Byrne 2007). They also generally moved in a circle, 12 

visiting the next nearest neighbor after the current target, likewise consistent with previous 13 

findings of in groups of wild foraging primates(Menzel 1973; Garber 1988; Janson 1998). These 14 

foraging choices almost always result in straight line routes(Janson 1998; Pochron 2001; 15 

Cunningham and Janson 2007; Valero and Byrne 2007) or a series of straight lines(Di Fiore and 16 

Suarez 2007; Noser and Byrne 2007). Experiments on captive primates have also observed nearest 17 

neighbor or near optimal path finding(Menzel 1973; Gallistel and Cramer 1996; Cramer and 18 

Gallistel 1997; MacDonald and Wilkie 1990). Our monkeys’ choices are also consistent with 19 

human behavior on traveling salesman problems, wherein next nearest neighbor paths are usually 20 

chosen for low numbers of points(Hirtle and Gärling 1992; MacGregor and Ormerod 1996; 21 

MacGregor and Chu 2011).  22 
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 The PCC, a posterior midline cortical region with extensive cortico-cortical 1 

connectivity(Heilbronner and Haber 2014) and elevated resting state and off-task metabolic 2 

activity(Buckner, Andrews-Hanna, and Schacter 2008), is at the heart of the default mode network 3 

(DMN)(Buckner, Andrews-Hanna, and Schacter 2008). The DMN is a cortex-spanning network 4 

implicated in divergent cognition including imagination(Schacter et al. 2012), creativity(Kühn et 5 

al. 2014), and narration(Wise and Braga 2014). Though implicated in a range of cognitive 6 

functions, activity in PCC may be unified by a set of computations related to harvesting 7 

information from the environment to regulate routine behavior. Signals in PCC that carry 8 

information about environmental decision variables such as value(McCoy et al. 2003), risk(McCoy 9 

and Platt 2005), and decision salience(Heilbronner, Hayden, and Platt 2011) may in fact reflect the 10 

tracking of information returns from the immediate environment. For example, in a two alternative 11 

forced choice task, neurons in PCC preferentially signaled the resolution of a risky choice with a 12 

variable reward over the value of choosing a safe choice with a guaranteed reward(McCoy and 13 

Platt 2005). Such signals may in fact reflect the information associated with the resolution of 14 

uncertainty regarding the risky option. PCC neurons also signal reward-based exploration(Pearson 15 

et al. 2009) and microstimulation in PCC can shift monkeys from a preferred option to one they 16 

rarely choose(Hayden et al. 2008). Both of these functions may reflect signaling of environmental 17 

information as well; for example, the signaling of exploratory choices may reflect the information 18 

from an increase in the number of recent sources of reward(Pearson et al. 2009). Evidence from 19 

neuroimaging studies in humans similarly reveals PCC activation in a wide range of cognitive 20 

processes related to adaptive cognition, including imagination(Benoit, Gilbert, and Burgess 2011), 21 

decision making(Kable and Glimcher 2007), and creativity(Beaty et al. 2015). Interestingly, our 22 
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monkeys adopted a behavioral strategy of slower responses once the state of the environment was 1 

fully known. These slower responses may be adaptive insofar as they permit re-evaluation of 2 

strategies and potential divergences from routines(Barack, Chang, and Platt 2017).  3 

 Uncovering the neural circuits that underlie variability in foraging behavior may provide 4 

insight into more complex cognitive functions. A fundamental feature of what we call prospective 5 

cognition, thoughts about times, places, and objects beyond the here and now, involves 6 

consideration of different ways the world might turn out. Various types of prospective cognition, 7 

including imagination, exploration and creativity, impose a tradeoff between engaging well-8 

rehearsed routines and deviating in search of new, potentially better solutions(Gottlieb et al. 2013; 9 

Andrews-Hanna, Smallwood, and Spreng 2014; Beaty et al. 2015). For example, creativity 10 

involves diverging from typical patterns of thought, such as occurs in generating ideas(Benedek et 11 

al. 2014) or crafting novel concepts(Guilford 1959; Barron 1955). During creative episodes the 12 

PCC shows increased activity during idea generation(Benedek et al. 2014) and higher connectivity 13 

with control networks during idea evaluation(Beaty et al. 2015), perhaps reflecting imagined, 14 

anticipated, or predicted variation in the environment. Exploration similarly involves diverging 15 

from the familiar, such as in locating novel resources(Ohashi and Thomson 2005) or discovering 16 

shorter paths(Sutton and Barto 1998) between known locations. Such prospective cognition 17 

requires diverging from routine thought, and the identification of the neural circuits that mediate 18 

deviations from motor routines provides initial insight into the computations and mechanisms of 19 

prospective cognition. The discovery that the PCC preferentially signals the state of the 20 

environment and predicts behavioral variability relative to that state is a first step towards 21 

understanding these circuits. 22 
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The reinforcement learning literature is replete with models where exploration is driven by 1 

the search for information(Schmidhuber 1991; Johnson et al. 2012). These models hypothesize 2 

that agents should take actions that maximize the information gleaned from the environment, either 3 

by reducing uncertainty about the size of offered rewards(Schmidhuber 1991), the location of 4 

rewards in the environment(Johnson et al. 2012), or otherwise maximizing evidence for making 5 

subsequent decisions. Furthermore, evidence from initial studies studying information-based 6 

exploration shows that humans are avid information-seekers(Miller 1983; Fu and Pirolli 2007) and 7 

regulate attentional and valuational computations on the basis of information(Manohar and Husain 8 

2013). In our task, the PCC represented environmental information and tracked when learning 9 

about the environment was complete, two variables central to information-based exploration. In 10 

particular, the dramatic change in firing rates associated with the end of information gathering 11 

suggests that PCC represents the information state of the environment and possibly also the rate of 12 

information intake, a central variable in information foraging models(Pirolli and Card 1999; Fu 13 

and Pirolli 2007; Pirolli 2007). PCC appears poised to regulate exploration for information. 14 

 In sum, harvesting information and behavioral speed and variability were both signaled by 15 

PCC neurons, suggesting a central role for PCC in determining how information drives exploration 16 

and possibly prospective cognition. Monkeys were sensitive to the amount of uncertainty 17 

remaining in the environment, with faster and more reliable patterns of choices while information 18 

remained and slower and more variable patterns after environmental uncertainty had been 19 

resolved. PCC neurons preferentially tracked this information, and predicted the variability in 20 

monkeys’ behavior. Our findings implicate the PCC in the regulation of foraging behavior, and 21 

specifically the information-driven divergence from routines. 22 
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 1 

Fig. 1. Monkeys spontaneously trapline when foraging in a circular array but diverge from these 2 

efficient routines as the environment becomes better known. A. Recording location in the posterior 3 

cingulate cortex (PCC). Left: Monkey L. Right: Monkey R. B. Traplining task, sample trial 4 

sequence. Trials began with monkeys fixating a central cross for a variable amount of time. After 5 

fixation offset, six targets appeared in the same locations across trials. Monkeys then chose targets 6 

in any order. To register a choice, monkeys fixated targets for 250 ms. Only two rewards, one 7 

small and one large, were available on every trial, and the identity of the rewarded targets changed 8 

in a pseudorandom fashion from trial to trial. In order to advance to the next trial, monkeys had to 9 
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select every target. Open circle: simulated eye position; dashed arrow: direction of impending 1 

saccade; dashed circle: impending saccade endpoint; small juice drop: small reward; large juice 2 

drop: large reward. Central circle: step size, the clockwise or counter-clockwise distance between 3 

subsequently chosen targets; ‘S’ = start; ‘-2’ = two targets counter-clockwise; ‘-1’ = one target 4 

counter-clockwise; ‘+1’ = one target clockwise. C. Top panel: response times increased throughout 5 

the trial across all six choices; bottom panel: response times were faster for greater expected 6 

information, controlling for choice number in trial. D. Left panel: behavioral entropy for high 7 

expected information choices (E[ΔHE] > mean(E[ΔHE])) compared to low expected information 8 

choices (E[ΔHE] ≤ mean(E[ΔHE])); right panel: behavioral entropy for choice numbers four and 9 

five, before receipt of last informative outcome (ΔHE > 0; black points) and after (ΔHE = 0; green 10 
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points). All plots: error bars occluded by points; * = p < 0.05, Bonferroni corrected; n = 145,080 1 

choices, 24,180 trials. 2 

 3 

Fig. 2. PCC neurons preferentially encode environmental information over reward. A. Firing rate 4 

of sample neuron encoding expected information but not expected reward across all choice 5 

numbers (CN) one through six, plotted separately by expected information (E[ΔHE]). Legends 6 

indicate expected reward(s) for each plot.  Blue line = end of saccade. B. Tuning curves for 7 
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expected information (top panel) and expected reward (bottom panel), collapsed across choice 1 

numbers for better visibility, for the cell plotted in A. This example cell showed elevated firing 2 

rates for higher amounts of information. C. Percent of cells encoding expected reward by choice 3 

(red) for constant expected information, and percent of cells encoding expected information by 4 

choice (green). 5 

 6 

Fig. 3. Neurons in PCC forecast divergent behavior. A. Same neuron encoding behavioral entropy 7 

during the anticipation epoch. This cell was more active for high entropy choices than for low 8 

entropy choices. B. Population encoding of behavioral entropy. The population was more active 9 
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for high entropy choices than low. C. Sample cell encoding the end of information gathering. This 1 

cell had higher firing rates after the last informative outcome compared to before. D. The 2 

population also encoded this information boundary, with higher firing rates after the last 3 

informative outcome compared to before. B and D plots: n = 125 cells. All plots: blue line = end 4 

of saccade; * = p < 0.05 for that 10 ms time bin. 5 

 6 

Supplement 7 

To assess the effect of information on behavior independently of reward, we designed a 8 

multi-option choice task that partially decorrelated information and reward. Monkeys performed 9 

an iterated variant of a Hamiltonian path problem, similar to the uncapacitated traveling purchaser 10 

problem, a generalization of the traveling salesman problem(Ramesh 1981; Boctor, Laporte, and 11 

Renaud 2003). Hamiltonian path problems are like traveling salesmen problems but the agent is 12 

not required to return to the starting location after their trip. In this problem, the agent must 13 

efficiently visit a series of markets that may or may not have the desired product, such that in 14 

addition to potentially purchasing the product (receiving reward), the agent also learns if the 15 

product is available (receiving information). This version of the problem is uncapacitated because 16 

the problem assumes that the markets always have sufficient capacity (or supply of a product) to 17 

meet the demand. Using this paradigm with varying reward sizes, reward and information can be 18 

partially decorrelated. 19 

 20 

Supplemental Methods 21 

Task Analysis 22 
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 Our experiment required monkeys to select once each of a set of six targets to harvest the 1 

rewards. In every trial in our experiment, two fixed rewards (large and small) were each assigned 2 

to one of six locations in the environment in a pseudorandom fashion (Fig. 1B). Trials began with 3 

monkeys fixating a central cross for a variable amount of time, ranging from (0.5 – 1 sec). After 4 

fixation offset, six targets arranged in a circle appeared. The same locations were used from trial 5 

to trial, and monkeys were free to select the targets in any order. To make a choice, monkeys had 6 

to fixate their gaze on a target for 250 ms. In order to advance to the next trial, monkeys had to 7 

choose each option, even after they’d already harvested the reward available on that trial. 8 

Assuming the cost of making a saccade is a monotonic, positive-definite function of distance 9 

between targets, the most efficient solution to our task is to minimize saccade times between targets 10 

by searching in a circular pattern. 11 

 Uncertainty about the current trial’s pattern of received rewards is reduced over the course 12 

of the trial as the monkey proceeds through all of the targets. This reduction in uncertainty is 13 

quantifiable by examining how many possible patterns are excluded given the rewards revealed 14 

by previous choices. For a subset of patterns, the very same information outcome can be delivered 15 

by distinct rewards, serving to partially decorrelate and hence de-confound reward and information 16 

outcomes. Furthermore, expected reward and expected information, defined as the average amount 17 

of information contained in the next outcome given the pattern of rewards received so far, are also 18 

partially decorrelated (Table S1). 19 

 The linear correlation coefficients between the different task variables (information, 20 

expected information, reward, expected reward, etc.) can be computed empirically from the total 21 

experienced reward outcomes and information outcomes, and from the total experienced reward 22 
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expectations and information expectations, derived from the trials the monkeys actually 1 

experienced. For the anticipation epoch, this includes expected information and expected reward 2 

(R2 = 0.1324), expected information and previous choice information outcome (R2 = 0.0292), 3 

expected information and previous choice reward outcome (R2 = 0.1348), expected reward and 4 

previous choice information outcome (R2 = 2.6458x10-06), expected reward and previous choice 5 

reward outcomes (R2 = 0.1082), previous choice information outcome and previous choice reward 6 

outcome (R2 = 0.5971). For the outcome epoch, this includes current choice information outcome 7 

and current choice reward outcome (R2 = 0.3935). 8 

 9 

Neural Regressions 10 

To corroborate our generalized linear model (GLM) regression, we used elastic net 11 

regression. Elastic net regression is a model fitting technique that balances two different ways of 12 

finding model fits: LASSO (least absolute shrinkage and selection operator) regression and ridge 13 

regression. These two model fitting techniques correspond to two ways of computing the distance 14 

from the model to the data: using L1 norms (Manhattan distance; LASSO) and L2 norms 15 

(Euclidean distance; ridge regression). LASSO regression tends to shift to zero the values of one 16 

of two correlated coefficients in order to increase model fit, and ridge regression includes a bias 17 

term that helps resolve multi-collinearity in the coefficients. The tradeoff between LASSO and 18 

ridge regression is accomplished by means of a parameter α. We used fmincon, a constrained 19 

search function in MATLAB, to find the maximum likelihood estimate of the best-fit tradeoff 20 

parameter on a cell-by-cell, epoch-by-epoch basis (average by epoch: both monkeys: anticipation: 21 

, outcome: ; monkey L: anticipation: α = 0.9327 ± 0.0132; monkey R: anticipation: α = 0.8963 ± 22 
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0.0239). We then compared these fits to the fits from our GLM in three [four?] ways: i. the identity 1 

of the covariates that were retained in the best-fit elastic net model; ii. the value of the coefficients 2 

computed by the best-fit elastic net model; and iii. the value of just the significant coefficients 3 

computed by the best-fit elastic net model. To confirm the identity of the significant covariates, 4 

we compared the covariates retained by the elastic net regression to the ones deemed significant 5 

by the original GLM. To compare the value of the coefficients computed by the two types of 6 

regression, we computed an elastic net score (e_score) for each covariate for each cell for each 7 

epoch, equal to the ratio of the elastic net coefficient to the GLM coefficient (i.e., e_score = 8 

βelastic_net / βGLM). Values around 1 correspond to roughly equivalent computed coefficients; values 9 

greater than 1 correspond to a greater weight placed on the covariate by the elastic net compared 10 

to the GLM; and values less than 1 correspond to a greater weight placed on the covariate by the 11 

GLM compared to the elastic net. Finally, we also computed e_scores but for the significant 12 

covariates only. 13 
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 1 

Table S1: Equations for expected reward, entropy, information, and expected information for the reward sequence. 2 
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Each column in the table (except for the leftmost) contains six columns, each corresponding to a choice number during the trial. 1 

Total number of choices on every trial = 6. Key: |·| = cardinality of · ; R = reward; n = choice number. 2 
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Additional Behavioral Results: Response Times 1 

 Response times grew longer over the course of the trial (linear regression, p < 1x10-197; 2 

Fig. 1D, top panel), consistent with past findings that saccade response grow more sluggish over 3 

the course of a sequence(Zingale and Kowler 1987). Despite this increasing sluggishness, monkeys 4 

were faster to select targets when expected information for making the next choice was higher 5 

(multilinear regression, p < 1x10-9; Fig. 1D, bottom panel) but surprisingly not when the expected 6 

reward for the next choice was greater (multilinear regression, p > 0.93; Fig. S1B). Thus, in 7 

addition to increased variability contributing to decreased reward rates, monkeys responses also 8 

reflected the state of their knowledge of the environment, growing slower as the trial progressed 9 

and further depressing reward rates. 10 

 Since different choice numbers in the sequence possess distinct reward and information 11 

expectations, response times were regressed against choice number (CN; from 1 to 6), previous 12 

information (I-1; from 0 to 2.585 bitsinfo) and reward (R-1; from 0 to 2 unitsjuice) outcomes, 13 

expected information (EI; from 0 to 1.585 bitsinfo) and reward (ER; from 0 to 2 unitsjuice), and all 14 

2-way interactions. The regression coefficients, standard errors of the mean, and significance are 15 

reported in table S2 and displayed in Figure S1B. 16 

 17 

Table S2: 18 

Covariate Beta SE p-value 

Choice number 

(CN) 

0.0325 0.0028 0.0000 
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Expected 

information (EI) 

    0.0236     0.0155     0.1295 

Expected reward 

(ER) 

   -0.0833     0.0406     0.0404 

Previous choice 

information (I-1) 

    0.0586     0.0109     0.0000 

Previous choice 

reward (R-1) 

   -0.4772     0.0496     0.0000 

CN x EI    -0.0158     0.0025     0.0000 

CN x ER     0.0005     0.0068     0.9370 

CN x I-1    -0.0241     0.0023     0.0000 

CN x R-1     0.0524     0.0062     0.0000 

EI x ER     0.0457     0.0087     0.0000 

EI x I-1    -0.0066     0.0108     0.5417 

EI x R-1    -0.0092     0.0068     0.1756 

ER x I-1     0.0363     0.0106     0.0006 

ER x R-1     0.0062     0.0046     0.1783 

I-1 x R-1     0.1461     0.0136     0.0000 

Monkey identity    -0.0460     0.0017     0.0000 

 1 

 Like response times after the end of informative outcomes, response times for choices after 2 

the animal had harvested the last reward in a trial were significantly longer than for choices when 3 

reward remained to be harvested (Student’s t-test, t(145,078) = -46.3694, p < 10-300; mean RT for 4 

reward remaining = 0.2037 ± 0.00055 sec, mean RT for reward finished = 0.2877 ± 0.0028 sec). 5 

Interestingly and surprisingly, we did not see an effect of expected rewards on response times. 6 
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Naïve regression revealed that response times were faster for higher expected information (linear 1 

regression, β = -0.0524 sec/bits, p < 1x10^-317; Fig. S1A, main text) and seemingly for higher 2 

expected reward (linear regression, β = -0.0664 sec/units juice, p < 1x10^-282). However, after 3 

Bonferroni correction for the number of tests, the only significant covariates that include expected 4 

reward also include an information covariate, either expected information (EI) or the previous 5 

choice’s information outcome (I-1). In addition, response times were faster following more 6 

informative (βCNxI-1 = -0.0241 ± 0.0023 sec/bitsinfo) but slower following more rewarding (βCNxR-1 7 

= 0.0524 ± 0.0062 sec/unitsjuice) previous choice outcomes. There was some monkey-to-monkey 8 

variability; the influence of the interaction of choice number and expected information was 9 

significant in monkey L but, after Bonferroni correction, not in monkey R (tables S4 and S5). 10 

 To corroborate the lack of effect of reward size on response times, we directly compared 11 

response times for identical trial histories except for the size of past rewards. This test explicitly 12 

controls for all other covariates. To directly assess the effect of expected reward on response time, 13 

we compared the response times for choices that were matched for the history of choices on that 14 

trial but for the size of the rewards, that is, they were matched for the choice number of the choice, 15 

information outcomes received thus far, and choice numbers of the rewards received, but not for 16 

the size of the rewards received on those choice numbers. Only one such t-test was significant 17 

regardless of Bonferroni correction, for response times during the second choice following receipt 18 

of a large or small reward on the first choice. Table S3 lists all the p-values from this set of tests. 19 

Each row corresponds to the choice number for which response times were compared. Each 20 

column corresponds to the choice number in the trial during which either the large or small reward 21 
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was received, thereby selecting a subset of the response times during the corresponding choice 1 

number to compare. For example, the first row (Choice number = 2) picks out all response times 2 

during the second choice, and the first column (First choice in trial) picks out the response times 3 

for which either a large or small reward was received during the first choice in the trial. The first 4 

entry (Choice number = 2, First choice in trial) lists the p-value from the t-test comparing the 5 

responses during the second choice where the first choice was the large reward to those response 6 

times during the second choice where the first choice was the small reward. As can be observed 7 

from Table S3, only the first test is significant. 8 

 9 

Table S3: 10 

Choice 

Number 

First choice 

in trial 

Second 

choice 

Third choice Fourth choice Fifth choice 

2 0.0028 0 0 0 0 

3     0.9290     0.0665          0          0          0 

4     0.9665     0.1059     0.2784          0          0 

5     0.5433     0.2474     0.9829     0.1807          0 

6     0.8676     0.3773     0.5329     0.0669     0.3958 

 11 

Individual regression results of response times against choice number, expected information, 12 

expected reward, previous behavioral information outcomes, previous choice reward outcome, and 13 

all 2-way interactions now follow:  14 

 15 
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Table S4: Monkey L (103,914 choices, 17319 trials), RT regression:  1 

Covariate Beta p-value 

Choice number (CN) 0.0372 0.0000 

Expected information (EI)     0.0255     0.1783 

Expected reward (ER)    -0.1040     0.0359 

Previous information (I-1)     0.0699     0.0000 

Previous reward (R-1)    -0.4660     0.0000 

CN x EI    -0.0175     0.0000 

CN x ER    -0.0030     0.7213 

CN x I-1    -0.0300     0.0000 

CN x R-1     0.0515     0.0000 

EI x ER     0.0610     0.0000 

EI x I-1    -0.0297     0.0246 

EI x R-1     0.0025     0.7646 

ER x I-1     0.0661     0.0000 

ER x R-1     0.0035     0.5433 

I-1 x R-1     0.1469     0.0000 

 2 

Table S5: Monkey R (41,166 choices, 6861 trials), RT regression: 3 

Covariate Beta p-value 

Choice number (CN) 0.0205 0.0000 

Expected information (EI)     0.0170     0.5211 

Expected reward (ER)    -0.0154     0.8228 

Previous information (I-1)     0.0304     0.1001 

Previous reward (R-1)    -0.4908     0.0000 

CN x EI    -0.0107     0.0108 
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CN x ER     0.0070     0.5437 

CN x I-1    -0.0088     0.0257 

CN x R-1     0.0532     0.0000 

EI x ER     0.0029     0.8431 

EI x I-1     0.0512     0.0054 

EI x R-1    -0.0370     0.0012 

ER x I-1    -0.0405     0.0229 

ER x R-1     0.0116     0.1345 

I-1 x R-1     0.1392     0.0000 

 1 

 2 

Model Fits to the Behavior 3 

 Model fits to the behavior revealed that monkeys generally chose targets in the same 4 

pattern regardless of which targets had been most recently rewarded or informative.  5 

This finding was corroborated by the daily dominant pattern results reported in the main text. 6 

Monkey R chose targets in the same pattern across all 14 recording sessions, whereas monkey L 7 

chose targets in the same pattern on 24 sessions, with four patterns accounting for the remaining 8 

six days (two days each for two of the patterns and one each for the remaining two patterns). 9 

 10 

Behavioral Entropy Additional Results 11 

 From the distribution of step sizes on each choice number, we calculated the behavioral 12 

entropy (BE) (0.0294 to 0.5021 bitsBE; meanBE = 0.1139 ± 0.0170 bitsBE across all choices) and 13 

correlated these values with choice number (CN), the next choice’s expected information (EI) and 14 
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expected reward (ER), the previous choice’s information (I-1) and reward (R-1) outcomes, and all 1 

2-way interactions. After combining both monkeys’ data, all covariates significantly influenced 2 

behavioral entropy (p < 0.05, Bonferroni corrected) except for the interaction of expected 3 

information and reward from the previous choice (EI x R-1, p > 0.6). The effects of previous 4 

information outcome (I-1) and expected information (EI) interactions with choice number were 5 

both significant across the two monkeys (multilinear regression, all p’s < 0.0000001; both 6 

monkeys: βCNxEI = -0.1260 ± 0.0011 bitsBE/bitsinfo; βCNxI-1 = -0.0538 ± 0.0008 bitsBE/bitsinfo; Fig. 7 

S1C) and significant for both monkeys individually (monkey L: βCNxI-1 = -0.0672 ± 0.0009 8 

bitsBE/bitsinfo; βCNxEI = -0.1626 ± 0.0012 bitsBE/bitsinfo; monkey R: βCNxI-1 = -0.0181 ± 0.0017 9 

bitsBE/bitsinfo, βCNxEI = -0.0296 ± 0.0024 bitsBE/bitsinfo; Fig. S1C). The effects of the interaction of 10 

choice number and reward were significant but inconsistent: later previous reward outcomes 11 

resulted in significantly increased variability in the second monkey but not the first, whereas later 12 

reward expectations resulted in significantly increased variability in the first monkey but not the 13 

second (multilinear regression, all p’s < 0.0000001 except where indicated; both monkeys: βCNxR-14 

1 = 0.0235 ± 0.0030 bitsBE/unitsjuice, βCNxER = 0.0775 ± 0.0026 bitsBE/unitsjuice; monkey L: βCNxR-1 15 

= 0.0014 ± 0.0033 bitsBE/unitsjuice, p > 0.66, βCNxER = 0.0980 ± 0.0029 bitsBE/unitsjuice; monkey R: 16 

βCNxR-1 = 0.0734 ± 0.0063 bitsBE/unitsjuice, βCNxER = 0.0064 ± 0.0055 bitsBE/unitsjuice, p > 0.24; Fig. 17 

S1C). Here we report the full regression results (Table S7). 18 

 19 

Table S6: Beta coefficient values, standard errors, and p-values from regression of behavioral 20 

entropy against the listed covariates and 2-way interactions. 21 
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Covariate Beta SE p-value 

Choice number 0.1238 0.0013 0 

Previous info 

outcomes 

    0.1882     0.0033          0 

Expected info     0.4966     0.0053          0 

Previous reward 

outcomes 

   -0.1367     0.0265     0.0000 

Expected reward    -0.4285     0.0116     0.0000 

CN x I-1    -0.0538     0.0008          0 

CN x EI    -0.1260     0.0011          0 

CN x R-1     0.0235     0.0030     0.0000 

CN x ER     0.0775     0.0026     0.0000 

I-1 x EI    -0.0438     0.0041     0.0000 

I-1 x R-1     0.0256     0.0077     0.0009 

I-1 x ER     0.0448     0.0039     0.0000 

EI x R-1     0.0013     0.0029     0.6608 

EI x ER     0.0835     0.0025     0.0000 

R-1 x ER     0.0907     0.0034     0.0000 

Monkey ID     0.0110     0.0005     0.0000 

 1 

We now report the full individual monkey regressions: 2 

 3 

Table S7: Monkey L (103,914 choices, 17319 trials), behavioral entropy regression: 4 

Covariate Beta SE p-value 

Choice number 0.1503 0.0014 0 
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Previous info 

outcomes 

    0.2552     0.0037          0 

Expected info     0.6727     0.0060          0 

Previous reward 

outcomes 

    0.1177     0.0299     0.0001 

Expected reward    -0.4810     0.0130     0.0000 

CN x I-1    -0.0672     0.0009          0 

CN x EI    -0.1626     0.0012          0 

CN x R-1     0.0014     0.0033     0.6646 

CN x ER     0.0980     0.0029     0.0000 

I-1 x EI    -0.0659     0.0047     0.0000 

I-1 x R-1    -0.0580     0.0087     0.0000 

I-1 x ER     0.0518     0.0044     0.0000 

EI x R-1     0.0095     0.0033     0.0044 

EI x ER     0.0680     0.0029     0.0000 

R-1 x ER     0.0847     0.0038     0.0000 

 1 

Table S8: Monkey R (41,166 choices, 6861 trials), behavioral entropy regression: 2 

Covariate Beta SE p-value 

Choice number 0.0603 0.0027 0.0000 

Previous info 

outcomes 

    0.0196     0.0070     0.0053 

Expected info     0.0450     0.0113     0.0001 

Previous reward 

outcomes 

   -0.7385     0.0565     0.0000 

Expected reward    -0.1875     0.0246     0.0000 
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CN x I-1    -0.0181     0.0017     0.0000 

CN x EI    -0.0296     0.0024     0.0000 

CN x R-1     0.0734     0.0063     0.0000 

CN x ER     0.0064     0.0055     0.2483 

I-1 x EI     0.0031     0.0089     0.7224 

I-1 x R-1     0.2299     0.0164     0.0000 

I-1 x ER     0.0258     0.0083     0.0019 

EI x R-1    -0.0159     0.0062     0.0110 

EI x ER     0.1156     0.0054     0.0000 

R-1 x ER     0.0993     0.0072     0.0000 

 1 

The uninformative outcomes could occur for choices four and five, as some choices occurred when 2 

the previous choice’s outcome was uninformative, after the current trial’s pattern was already 3 

revealed. In the text, we reported that behavioral entropy was greater following uninformative than 4 

informative choices, collapsing across choices four and five. Both choices four and five 5 

individually reflected this finding (CN4: BEinfo = 0.2050 ± 0.0003678 bits, BEno_info = 0.2801 ± 6 

0.0017 bits, t(24178) = -52.0376, p ~ 0; CN5: BEinfo = 0.2402 ± 0.0005666 bits, BEno_info = 0.3627 7 

± 0.0012,  t(24178) = -96.3793, p ~ 0). The individual monkey results reflected this difference as 8 

well (for monkey L: for choice number four: BEinfo = 0.2907 ± 0.0007 bits, BEno_info = 0.3272 ± 9 

0.0032 bits, t(7857) = -12.4444, p < 1x10^-34; for choice number five: BEinfo = 0.3481 ± 0.001 10 

bits, BEno_info = 0.4334 ± 0.0017,  t(7857) = -37.2945, p < 1x10^-279; for monkey R: for choice 11 

number four: BEinfo = 0.2889 ± 0.001 bits, BEno_info = 0.4264 ± 0.0034 bits, t(6859) = -35.3207, p 12 
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< 1x10^-250; for choice number five: BEinfo = 0.3005 ± 0.0012 bits, BEno_info = 0.4455 ± 0.0017,  1 

t(6859) = -58.4394, p ~ 0). Thus, the effects were consistent and strong in both monkeys.  2 

 3 

Additional Neural Results: Elastic Net Regression 4 

Our three checks—verifying the presence of the significant covariates, comparing the 5 

elastic net weights to the original GLM weights for all covariates, and a similar comparison 6 

restricted to only the significant covariate coefficients from the original GLM (see supplemental 7 

methods)—confirmed our original GLM analysis. First, none of the significant covariates 8 

identified by our original GLM for any cell during any epoch for either monkey received a 9 

coefficient of 0 from the elastic net regression. This suggests that our regression results were robust 10 

despite the correlations in the covariates.  11 

Second, we compared the e_scores (see supplemental methods) for the elastic net and 12 

original GLM regressions. The average e_score = 1.3747 ± 0.5120 (monkey L: e_score = 1.5968 13 

± 0.7405; monkey R: e_score = 0.9084 ± 0.0823), suggesting that the elastic net regression tended 14 

to weight the covariates more than the original GLM, though this was clearly driven by monkey 15 

L. (Examination of the individual covariate comparisons further revealed that this effect was 16 

driven by the immense weight that the elastic net regression put on expected information for 17 

monkey L; see table below.) The following table reports the individual covariate e_scores (mean 18 

± sem). Note that the elastic net regression weighted expected information much more than the 19 

original GLM but only for monkey L. All other fits for that epoch were comparatively reasonably 20 

close to the original GLM. 21 
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 1 

Table S9: Elastic-net regression results for main GLM. 2 

Covariate Monkey L Monkey R Both 

Choice number (CN)    1.1228 ± 0.2436 1.0377 ± 0.0728 1.0953 ± 0.1664 

Expected reward (ER) 0.8528 ±  0.0441 0.8867 ± 0.0337 0.8637 ± 0.0317 

Expected information 

(EI) 

11.1105 ± 10.1277 0.8904 ± 0.0505 7.8137 ± 6.8609 

Previous choice info (I-

1) 

0.7180 ± 0.1358 0.6169 ± 0.1955 

 

0.6854 ± 0.1112 

Previous choice reward 

(R-1) 

0.7588 ± 0.0303 0.7914 ± 0.0350 

 

0.7693 ± 0.0234 

CN x ER 0.8339 ± 0.0982 0.8451 ± 0.0446 0.8375 ± 0.0679 

CN x EI 0.9729 ± 0.0595 0.7348 ± 0.1256 0.8961 ±  0.0577 

CN x I-1 0.9328 ± 0.0921 0.9516 ± 0.0424 0.9389 ± 0.0637 

CN x R-1 0.8031 ± 0.0440 0.8104 ± 0.0303 0.8054 ± 0.0313 

ER x EI 1.0155 ± 0.0494 0.9859 ± 0.0530 1.0060 ± 0.0375 

ER x I-1 0.9935 ± 0.0135 1.0092 ± 0.0111 0.9986 ± 0.0098 

ER x R-1 1.0699 ± 0.0803 1.0123 ± 0.0946 1.0513  ± 0.0622 

EI x I-1 0.9987 ± 0.0088 1.0003 ± 0.0300 0.9992 ± 0.0113 

EI x R-1 0.9921 ± 0.0097 0.9481 ± 0.0508 0.9779 ±  0.0176 

I-1 x R-1 0.7766 ± 0.0703 1.1050 ± 0.3644 0.8825 ±  0.1266 

Third, we ran these same statistics, but restricted only to the significant covariates from our 3 

original GLM. The average e_score = 0.9682 ± 0.0035 (monkey L: e_score = 0.9694 ± 0.0039; 4 

monkey R: e_score = 0.9615 ± 0.0087), a very good fit between the elastic net results and the 5 
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original GLM, especially compared to the e_score for all covariates, suggesting that the original 1 

GLM was a fair representation of the influence of the different covariates. 2 

 3 

Additional Neural Results: Anticipation Epoch PCC Neuron Responses 4 

 In the main text, we reported that PCC neurons preferentially signaled expected 5 

information over expected reward. Significantly more neurons encoded expected information than 6 

expected reward (χ2 = 12.86, p < 0.0005), and significantly more neurons encoded the interaction 7 

of choice number and expected information than the interaction of choice number and expected 8 

reward (χ2 = 23.04, p < 0.000005). This preference was maintained until the last choice number in 9 

a trial (CN2: 23 (19%) EI, 10 (8%) ER; CN3: 24 (19%) EI, 9 (7%) ER; CN4: 21 (17%) EI, 4 (3%) 10 

ER; CN5: 19 (15%) EI, 6 (5%) ER; CN6: 16 (13%) ER; Fig. 2C). Of the cells significantly 11 

encoding the interaction of choice number and expected information, 19 (63%) were negatively 12 

encoding and 11 (37%) were positively encoding, with a mean regression weight (βCNxEI) = -0.11 13 

± 0.075 (spikes/sec)/(choice*bitsinfo) (Student’s t-test against βCNxEI = 0, t(29) = -1.52, p > 0.1). 14 

The mean effect of the interaction on firing rates across the whole population was significant and 15 

negative, as 71 (57%) cells showed a negative influence and 53 (43%) a positive influence, with a 16 

mean regression weight (βCNxEI) = -0.056 ± 0.025 (spikes/sec)/(choice*bitsinfo) (Student’s t-test, 17 

t(123) = -2.24, p < 0.05). As the trial progressed, PCC neurons generally showed lower firing rates 18 

for more informative expectations, matching the decrease in subject response times and in choice 19 

variability for larger information expectations. The full results of our GLM are reported in table 20 

S10. 21 
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 1 

Table S10: Full numbers of cells encoding all covariates for anticipation epoch, all choices 2 

inclusive (including diverge choices). 3 

Covariate Monkey L (84 neurons) Monkey R (40 neurons) 

Choice number (CN)    15     2 

Expected reward (ER)   4     0 

Expected information (EI) 18 3 

Previous choice info (I-1) 13 3 

Previous choice reward (R-1) 17 4 

CN x ER 4 0 

CN x EI 23 7 

CN x I-1 8 3 

CN x R-1 11 2 

ER x EI 11 2 

ER x I-1 15 1 

ER x R-1 0 0 

EI x I-1 22 5 

EI x R-1 15 0 

I-1 x R-1 9 2 

 4 

 5 

Additional Behavioral Entropy Encoding Results by Monkey 6 

 In the anticipation epoch, 51 neurons in monkey L (37 β’s > 0, 14 β’s ≤ 0; mean βBE = 7 

0.0077 ± 0.0045, t(50) = 1.70, p = 0.095; mean across all 84 neurons βBE = 0.0061 ± 0.0028, t(83) 8 

= 2.15, p < 0.05) and 19 neurons in monkey R (14 β’s > 0, 5 β’s ≤ 0; mean βBE = 0.0062 ± 0.0033, 9 
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t(18) = 1.86, p = 0.078; mean across all 40 neurons βBE = 0.0051 ± 0.0014, t(39) = 2.45, p < 0.05) 1 

significantly predicted behavioral entropy.  2 

 3 

Additional Encoding Results of Time of Receipt of Last Information 4 

 In the main text, we reported that 98 of 124 neurons distinguished before and after receiving 5 

the last information. This fraction was similar across the two monkeys: monkey L: 67 neurons 6 

(80%); monkey R: 31 neurons (78%). 7 

 8 

Additional Behavioral Entropy Encoding Results Before and After Receiving Last Information 9 

 Each trial’s binned spike counts were regressed against the time in the trial (TT), time of 10 

last informative outcome (TL), and their interaction (TTxTL). Of the cells significantly encoding 11 

the different states, 21 (21%) fired less and 77 (79%) fired more after the animal received all 12 

information compared to before, with a mean regression coefficient βTTxTL = 0.017 ± 0.0030 13 

spikes/information period (Student’s t-test against βTTxTL = 0, t(97) = 5.52, p < 5 x 10-7). Across 14 

the entire population, 30 (24%) fired more and 94 (76%) fired less before compared to after, with 15 

a mean regression coefficient βTTxTL = 0.014 ± 0.0025 spikes/information period (Student’s t-test, 16 

t(123) = 5.52, p < 5 x 10-7).  17 

 Higher firing in individual neurons tended to predict behavioral entropy both before and 18 

after receiving the last bit of information. We next examined the size of the modulation of this 19 

choice-by-choice signaling. In our population, 74 (60%) cells predicted behavioral entropy before 20 

receiving the last informative outcome (all cells: mean βBE_before = 0.0016 ± 0.00064 bits/spike, 21 
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Student’s t-test: t(123) = 2.43, p < 0.05; significant cells: mean βBE_before = 0.0018 ± 0.00096 1 

bits/spike, Student’s t-test: t(73) = 1.83, p = 0.071) whereas only 24 (19%) predicted behavioral 2 

entropy after (all cells: mean βBE_after = 0.0025 ± 0.0012 bits/spike, Student’s t-test: t(123) = 2.05, 3 

p < 0.05; significant cells: mean βBE_after = 0.0044 ± 0.0022 bits/spike, Student’s t-test: t(23) = 2.27, 4 

p < 0.05; Fig. S3). Though the mean normalized population response failed to differentiate high 5 

from low average behavioral entropy trials after receipt of the last information as reported in the 6 

text, the choice-by-choice analysis of behavioral entropy revealed consistent and significant 7 

positive modulation both before and after. In sum, averaging the modulation of neuronal firing 8 

rates showed that PCC neurons showed higher firing for high behavioral entropy both before and 9 

after, albeit with many fewer significant cells after. 10 

 11 

Supplemental Figures 12 
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 1 

Figure S1. Coefficient values from response time and behavioral entropy regressions. A. 2 

Coefficient values from regression of response time against listed covariates. B.  Coefficient values 3 

from regression of behavioral entropy against listed covariates. CN = choice number; EI = 4 

expected information; I – 1 = previous choice information outcome; ER =  expected reward; R – 5 

1 = previous choice reward outcome. Error bars either occluded by points or ± 1 s.e.m. * = p < 6 

0.05, Bonferroni corrected. 7 
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 1 

Figure S2. The multiplexing of behavioral entropy and time of receipt of last information in the 2 

PCC population. The population multiplexed information boundary signaling with behavioral 3 

entropy encoding, with higher firing rates for more variable choices before the last informative 4 

outcome but not after. n = 124 cells; * = p < 0.05; blue line = time of last informative outcome. 5 

 6 
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