
Using deep maxout neural networks to improve the accuracy of
function prediction from protein interaction networks

Cen Wan1,2, Domenico Cozzetto1,2, Rui Fa1,2, David T. Jones1,2,*,

1 Bioinformatics Group, Department of Computer Science, University College London,
London, United Kingdom
2 Biomedical Data Science Laboratory, The Francis Crick Institute, London, United
Kingdom

* d.t.jones@ucl.ac.uk

Abstract
Protein-protein interaction network data provides valuable information that infers direct
links between genes and their biological roles. This information brings a fundamental
hypothesis for protein function prediction that interacting proteins tend to have similar
functions. With the help of recently-developed network embedding feature generation
methods and deep maxout neural networks, it is possible to extract functional
representations that encode direct links between protein-protein interactions
information and protein function. Our novel method, STRING2GO, successfully adopts
deep maxout neural networks to learn functional representations simultaneously
encoding both protein-protein interactions and functional predictive information. The
experimental results show that STRING2GO outperforms other network
embedding-based prediction methods and one benchmark method adopted in a recent
large scale protein function prediction competition.

Introduction 1

The realisation of the complex relationships between genotypes and phenotypes has 2

been fostering the collection and analysis of genome-wide datasets of molecular 3

interactions detected from patterns of physical binding, transcript co-expression, mutant 4

phenotypes, etc. Many specialised databases exist to store and integrate such 5

heterogeneous data at different levels of biological complexity. At one end of the scale, 6

the IMEx consortium gathers non-redundant protein-protein interactions (PPIs) from 7

peer-reviewed scientific publications, and provides manually curated details about the 8

experimental conditions [1]. At the opposite end, several resources extend these primary 9

data with indirect or predicted associations to paint a more complete picture for whole 10

organisms [2-5]. For instance, STRING [5] considers experimentally detected PPIs, 11

conserved mRNA co-expression, co-mention in abstracts and papers, interactions from 12

curated databases, conserved gene proximity, gene co-occurrence/co-absence and gene 13

fusion events. Interactions in such databases are typically assigned confidence scores, 14

which can be used for integration purposes [2,6,7]. Not only these data provide valuable 15

direct links between genes and their biological roles, but also form the basis for protein 16

function prediction methods that do not rely on traditional annotation transfers from 17

sequence. Omics data have long offered a suitable opportunity by lending themselves to 18

network representations, where genes or protein products are nodes and edges represent 19
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molecular interactions. This modelling approach can be easily exploited using the 20

“guilt-by-association” principle: if the edges reflect biological facts reliably, adjacent 21

nodes have more similar functions than those further away in the network – e.g. because 22

they form a macromolecular complex, or their activities are coordinated in a specific 23

biological process. 24

The earliest methods therefore transfer annotations from nodes that are either 25

adjacent or within close distance, possibly taking into account the enrichment of the 26

functional labels [8]. Because the network topology is far from uniform and different 27

functions arise from unevenly sized gene sets, using one particular distance or number of 28

neighbours inevitably affects prediction accuracy. More sophisticated algorithms 29

therefore try to group the nodes into functional modules or communities – each 30

associated with a given function – and then make annotation transfers within them 31

[9-14]. The preliminary identification of functionally coherent subgraphs, however, poses 32

additional challenges, which can make module-assisted predictors less accurate than 33

those based on neighbour counting [15]. More recently, network propagation methods 34

have become increasingly popular to address a wide range of problems [16]. They 35

broadcast annotations from labelled proteins to others by running random walks, which 36

visit the nodes in the network randomly until stopping criteria are met [17-19]. If the 37

edges are weighted, this information controls the probability of traversing them; 38

otherwise equal probabilities are used. Because the propagation is affected by node 39

degree and edge weights, this approach reduces the chance of erroneous predictions from 40

highly multifunctional hub proteins to adjacent nodes, which perform fewer functions. 41

Alternatively, the transition probabilities can be used to encode directly the nodes as 42

multi-dimensional features, and thus to make functional annotations with nearest 43

neighbour strategies [20,21]. Cho et al. (2016) [22] and Gligorijević et al. (2018) [23] 44

have instead used them to embed the STRING networks jointly – that is to map nodes 45

to continuous features, which best explain the transition probabilities and the graph 46

topology. The usefulness of the resulting features has been demonstrated for the task of 47

protein function prediction. 48

This study proposed a novel PPI network-based protein function predicting method, 49

STRING2GO. It adopts deep maxout neural networks to learn a novel type of 50

functional biological network feature representations simultaneously encapsulating both 51

node neighborhoods and co-occurrence functions information. These higher-level 52

representations are learnt in a supervised way by training deep maxout neural networks 53

to output all the terms in biological process domain associated with an input protein – 54

an approach that has led to higher predictive accuracy in the past [24,25]. The 55

experimental results show that STRING2GO significantly outperforms other PPI 56

network embedding-based protein function prediction methods. 57

Materials and methods 58

Data Collection 59

Firstly, human proteins were retrieved from the UniProtKB/SwissProt release 2017_05 60

[26], while the corresponding protein-protein interactions information was retrieved from 61

STRING v10.0 [27] that includes seven component networks from heterogeneous data 62

sources and one integrated network. The mapping between UniProtKB/SwissProt 63

accession numbers and Ensembl protein identifiers adopted in STRING was obtained by 64

using the Biomart tool [28]. 65

Experimentally supported Gene Ontology (GO) term annotations – identified with 66

evidence code EXP, IDA, IPI, IMP, IGI or IEP – were collated from the 67

UniProtKB/SwissProt release 2017_05 and UniProt-GOA release 168 [29], and 68

December 11, 2018 2/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/499244doi: bioRxiv preprint 

https://doi.org/10.1101/499244
http://creativecommons.org/licenses/by/4.0/


propagated over “is a” relationships in the Gene Ontology database [30] - GO obo file 69

release 2017-04-28. To assure the feasibility of the following machine-learning 70

experiments, only biological process (BP) annotating at least 100 proteins were initially 71

considered. To guarantee that the predictions are sufficiently specific and informative, 72

this list was subsequently filtered so that only the deepest terms in the ontology were 73

retained – i.e. the terms a and b were kept if and only if there are no “is_a” paths from 74

a to b and from b to a. These steps yielded a vocabulary consisting of 204 BP terms 75

(detailed information is included in Table S1). 76

The set of human proteins was split into a large subset for GO term-specific classifier 77

training and a small subset for held-out evaluation. 10,667 proteins with at least one 78

cellular component term were initially selected from the whole set. Out of these, 1,000 79

proteins were randomly selected for held-out evaluation from the subset of 80

well-annotated entries – i.e. those with at least 28, 5 and 14 experimental or electronic 81

biological process, molecular function and cellular component terms respectively. After 82

removing electronic annotations, the held-out set for BP terms contains 982 proteins, 83

while the large set contains 5,000 proteins. In addition, we also create a separated 84

protein-set for a temporal annotation validation by selecting 428 proteins who had no 85

experimental annotation by any 204 BP terms but received at least one after 6 months. 86

The source files were collected from UniProtKB/SwissProt release 2017_11, 87

UniProt-GOA release 174 and GO obo file 2017-10-30. 88

Predictive performance evaluation 89

Predictive performance was evaluated on the ability to annotate both individual labels 90

(GO term-centric) and protein function (protein-centric), following the methodology 91

adopted in [31]. For the GO term-centric evaluation, we calculate the F1 score for 92

evaluating the GO term-specific classifier training quality over 10-fold cross validation 93

on the large training protein-set and the predictive performance on the held-out 94

protein-set. In details, the GO term-centric F1 (i.e. F1GO) score is used for evaluating 95

the performance of methods when predicting protein annotations for individual GO 96

terms. As shown in Equation 1, the F1 score is obtained by calculating the harmonic 97

mean of precision and recall values. The precision value (Equation 2) is calculated by 98

dividing the number of true positive (TP) predictions over the summation of true 99

positive and false positive (FP) predictions, while the recall value (Equation 3) is 100

calculated by dividing the number of true positive (TP) predictions over the summation 101

of true positive and false negative (FN) predictions. 102

103

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

For the protein-centric evaluation, we calculate the Fmax score by predicting the GO 104

term annotations for the held-out protein-set using the trained GO term-specific 105

classifiers. The Fmax score is used by CAFA experiments [31] for evaluating the 106

performance of methods when predicting GO term annotations for all protein samples. 107

As shown in Equation 4, the Fmax score is obtained by choosing the maximum averaged 108

F1 score over all protein samples’ GO term annotation prediction, according to the 109

varied decision threshold. The averaged F1 score for threshold τ is calculated by the 110

averaged precision Precisionτ (Equation 5) and recall Recallτ (Equation 6) values. The 111
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Fig 1. Flow-chart of STRING2GO-based protein function prediction method

Precisionτ value is calculated by the total amount of precision values for the GO term 112

annotation predictions of all protein sequences S, over the number of protein sequence 113

m with at least one GO term annotation predictive posterior probability being equal or 114

greater than the value of threshold τ . Analogously, the Recallτ value is calculated by 115

the total amount of recall values for the GO term annotation predictions of all protein 116

sequences S, over the total number of protein sequences n. Then the corresponding τ to 117

Fmax score is used as the prior knowledge to calculate the other type of protein-centric 118

averaged F1 score, i.e. Fτ , for the temporal annotation validation. 119

Fmax = maxτ{2 ∗
Precisionτ ∗ Recallτ
Precisionτ + Recallτ

} (4)

Precisionτ =
1

m

∑
s

TPs,τ
TPs,τ + FPs,τ

(5)

Recallτ =
1

n

∑
s

TPs,τ
TPs,τ + FNs,τ

(6)

STRING2GO - a novel protein function prediction method 120

based on learning representations simultaneously encoding the 121

protein-protein interaction and functional annotation 122

information 123

In general, the STRING2GO method is composed of a three-stage machine learning 124

procedure. As shown in the flow-chart of Fig 1, at the first stage, it adopts the network 125

embedding representation generation methods (e.g. Mashup and Node2vec discussed in 126

this work) to generate the vector representations for individual proteins based on the 127

protein-protein interaction network. Then the Deep Maxout Neural Networks (DMNNs) 128

feed-forward those generated representations as the inputs to a set of GO term 129

annotations of individual proteins as the outputs. The new type of functional 130

representations (denoted as STRING2GOEmbedding) that simultaneously encode the PPI 131
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and protein functional annotation information are extracted from the outputs of the 3rd 132

hidden layer of DMNNs after finishing the backward propagation optimisation. Finally, 133

STRING2GO trains a library of Support Vector Machines (SVMs) to predict the 134

posterior probability of annotating individual GO terms to the target proteins. Here, we 135

denote this type of STRING2GO method as STRING2GOEmbedding+SVM for clarity. In 136

addition, due to the natural functionality of DMNNs, we also propose another type of 137

STRING2GO method, denoted as STRING2GOEmbedding+Sigmoid, which directly adopts 138

the sigmoid function in the last layer of DMNNs to make predictions. 139

In this work, we evaluate the predictive performance of our two types of 140

STRING2GO method on predicting the BP terms located in the deep positions in the 141

GO-DAG, benchmarking with the conventional raw network embedding 142

representations-based method, i.e. Embedding+SVM, that merely adopts the raw 143

network embedding representations to train the SVMs for making predictions. 144

Network embedding representation generation 145

In this work, we adopt two types of network embedding representation generation 146

methods, i.e. Mashup [22] and Node2vec [32], to derive representations from STRING 147

networks. Mashup firstly evaluates the diffusion states of nodes in the network by 148

random walks with a restart approach. Then the truncated singular value 149

decomposition is applied to the diffusion state matrix in order to learn a lower 150

dimensional representation space that optimally approximates the original diffusion 151

states information. The usefulness of the resulting network embedding representations 152

has been demonstrated for a range of functional classification tasks, including function 153

and genetic interaction prediction. As suggested, the best-performing Mashup-derived 154

representations are 800 dimensional and generated by the random-walk sampling 155

strategy with the restart probability of 0.5. 156

Analogously, Node2vec firstly obtains the node neighborhood information by 157

truncated random walks. Then a Skip-gram [33,34] shallow neural network is used to 158

generate a representation space, where the nodes contain the maximum likelihood of 159

preserving corresponding node neighborhood information. In this work, the 160

neighborhood information was sampled through random walks of length ten, which were 161

biased towards close neighbors by setting the parameter q to 2. We also evaluate the 162

performance of representations in different dimensions, i.e. 32, 64, 128, 256 and 512, 163

generated from all different STRING networks [20,21]. 164

Deep maxout neural networks training 165

Deep Maxout Neural Networks (DMNNs) are used for learning the more abstract 166

representations simultaneously encoding the PPI network information and the patterns 167

of term co-occurrence in the biological process functional domain. The network 168

architecture was implemented using the Keras package with Theano backend and 169

consisted of three fully connected hidden layers, followed by an output layer with as 170

many neurons as the numbers of terms selected for the biological process functional 171

domain. Each hidden layer had batch-normalized inputs [35], which were combined 172

through maxout units [36], and were subject to dropout [37] in the course of training. A 173

sigmoid function was used to activate the output neurons. 174

To limit the computational requirements for model optimization, the initial 10-fold 175

cross validation (with random split of instances) experiments were run in order to 176

identify the best combination of optimizer (AdaGrad), number of maxout units (3), 177

learning rate (0.05), batch size (100 elements), and number of epochs (150), keeping 178

fixed the weight initialisation (Glorot uniform method) and the number of units in all 179

hidden layers, by considering the highest F1GO scores for predicting all 204 BP terms. 180
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Subsequent training stages were aimed at selecting the optimal dimensions of hidden 181

layers that lead to the highest median F1GO scores (here rounded to two decimal places), 182

from a limited set of options (300, 500, 700 and 1,000). In addition, we also evaluate the 183

predictive performance when using the same dimensions for both input features and the 184

3rd hidden layer outputs. Note that, due to the well-known curse of dimensionality issue 185

[38], if more than two different dimensions of the 3rd hidden layer outputs obtain the 186

same median F1GO scores, we only choose the lowest ones as the optimal dimensions. 187

188

Support vector machine training 189

Scikit-learn [39] was used to train a set of GO term-specific Support Vector Machines 190

(SVMs) with a radial basis function (RBF) kernel, the parameters of which were 191

identified through a grid search as those maximising the F1GO score across the stratified 192

10-fold cross validation experiments. To train each classifier, the set of positive 193

instances consisted of the proteins annotated with the target GO term t or its 194

descendants, while the set of negative instances are all remaining proteins not annotated 195

with the target GO term or its descendants. Finally, the well-known Platt scaling 196

method [40] was used to transform the predictive scores of individual SVMs into a 197

probability distribution of binary classes. The data and code can be accessed via 198

https://github.com/psipred/STRING2GO 199

Results 200

We firstly report the experimental results about evaluating the predictive information 201

included in different STRING networks that are used for generating the raw network 202

embedding representations by two different methods, i.e. Mashup and Node2vec. Then 203

we evaluate the predictive performance of the STRING2GO-learnt functional 204

representation (i.e. STRING2GOMashup and STRING2GONode2vec) by comparing with 205

their corresponding raw network embedding representations. We also compare the 206

performance of Mashup and Node2vec methods when they are used to generate the raw 207

network embedding representations or be the component methods of STRING2GO to 208

learn the functional representations. Finally, we further compare all prediction methods 209

involved in this work, also benchmarking with the Naïve method [31]. 210

Predictive power included in different STRING networks 211

To begin with, we compare the predictive power of different STRING networks by 212

adopting the Mashup or Node2vec-generated network embedding representations as the 213

inputs of DMNNs for predicting protein function (i.e. STRING2GOMashup+Sigmoid and 214

STRING2GONode2vec+Sigmoid). Overall, the Combinedscore network-derived embedding 215

representations show the best predictive performance among all different STRING 216

networks-derived ones when using either Mashup or Node2vec methods, while the 217

Textmining network-derived representations also obtain the competitive predictive 218

accuracy. As shown in the 4th and 7th columns of Table 1, the Combinedscore 219

network-derived representations obtain the highest median F1GO (hereafter, denoted by 220

F̃1GO) scores (0.23 and 0.17) using Mashup and Node2vec respectively. The 221

Combinedscore network also contains the largest number of proteins, interactions and 222

the highest coverage (as shown in the columns 8-10 of Table 1), when mapping the 223

STRING network-included proteins to the training protein-set. The Textmining 224

network-derived representations obtain the second highest F̃1GO score (0.22) using the 225

Mashup method, while also obtain the same highest F̃1GO score (0.17) using the 226
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Table 1. The optimal dimensions of raw network embedding representations and the corresponding 3rd hidden layer outputs
(a.k.a. the STRING2GO-learnt functional representations) with their corresponding predictive power for biological process
terms prediction, and the main characteristics of different STRING networks

STRING Mashup Node2vec
No. Proteins No. Interactions

Coverage on
Networks Input 3rd Hidden F̃1GO Input 3rd Hidden F̃1GO Training set

Combinedscore 800 800 0.23 128 500 0.17 19247 8548002 93.4%
Textmining 800 700 0.22 128 1000 0.17 19088 7632934 93.3%

Experimental 800 700 0.19 128 1000 0.13 16858 3473862 90.4%
Coexpression 800 700 0.14 256 700 0.09 12774 1537924 72.0%

Database 800 700 0.11 128 700 0.04 7937 424860 56.9%
Neighborhood* 800 300 0.00 32 32 0.00 3514 152248 20.9%
Cooccurrence* 800 300 0.00 32 32 0.00 2754 47478 16.6%

Fusion* 800 300 0.00 32 32 0.00 1495 4120 9.7%
* : Note that those STRING networks obtain 0.00 of F̃1GO scores with all different dimensions, only the lowest dimensions are reported.

Node2vec method. Moreover, in terms of the predictive information included in other 227

component networks, the Experimental network-derived embedding representations 228

show the third highest predictive accuracy, since they obtain sequentially higher F̃1GO 229

scores than the ones derived by the Database and Coexpression networks respectively. 230

Note that, the embedding representations derived from Neighbourhood, Cooccurrence 231

and Fusion networks show poor predictive performance, since their F̃1GO scores are all 232

equal to zero, and the mapping coverages are all lower than 21.0%. Hereafter, we 233

consider learning the functional representations by STRING2GO only from those 5 234

networks including relatively rich PPI information and high coverage. 235

We then report the optimal dimensions of network embedding representations 236

derived by Mashup and Node2vec methods from those 5 STRING networks. According 237

to the suggestion in [22], we define 800 as the optimal dimensions for the input network 238

embedding representations derived by Mashup. In terms of the Node2vec-derived 239

network embedding representations, as shown in the 5th column of Table 1, 128 are the 240

overall optimal dimensions, since 4 out of 5 network-derived embedding representations 241

in 128 dimensions obtain the highest F̃1GO scores for predicting 204 biological process 242

terms. We then report the optimal dimensions of the STRING2GO-learnt functional 243

representations (a.k.a. the 3rd hidden layer outputs of DMNNs) w.r.t. the 244

corresponding optimal dimensions of raw network embedding representation inputs. 245

Generally, STRING2GO encodes the functional predictive information in a high 246

dimensional representation space (ranging from 500 – 1000 dimensions), when using 247

either Mashup or Node2vec as the raw network embedding representation generation 248

method. As shown in the 3rd and 6th columns of Table 1, the optimal dimensions of the 249

3rd hidden layer outputs vary between 500 to 1000. Recall that we also evaluate the 250

cases when the dimensions of the 3rd hidden layer outputs are the same to the 251

dimensions of raw network embedding representation inputs. None of the functional 252

representations based on Node2vec-derived network embedding representations obtain 253

higher F̃1GO scores when using the same dimensions of inputs as the dimensions of 3rd 254

hidden layer outputs, e.g. using 128 as the dimensions of both representation inputs and 255

the 3rd hidden layer outputs. 256

257
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Fig 2. F̃1GO scores obtained by network embedding representations and the corresponding STRING2GO-learnt functional
representations based on (a) Combinedscore, (b) Textmining, (c) Experimental, (d) Database and (e) Coexpression networks
by using SVM or Sigmoid function over the 10-fold cross validation during the GO term-specific classifiers training stage

The functional representations learnt by STRING2GO encode 258

higher predictive power than the corresponding raw network 259

embedding representations 260

We evaluate the predictive performance of STRING2GO-learnt functional 261

representations by conducting pairwise comparisons with the corresponding raw network 262

embedding representations respectively. Generally, in terms of GO term and 263

protein-centric metrics, both STRING2GOMashup and STRING2GONode2vec functional 264

representations obtain higher predictive accuracy than Mashup and Node2vec-derived 265

raw network embedding representations. In detail, during the GO term-specific classifier 266

training stage, as shown in Fig 2.a-2.e, both orange and green bars are lower than other 267

ones. This fact indicates better classifier training quality by using 268

STRING2GOMashup+SVM, STRING2GONode2vec+SVM, STRING2GOMashup+Sigmoid and 269

STRING2GONode2vec+Sigmoid than the ones obtained by Mashup+SVM and 270

Node2vec+SVM, when using all five different STRING networks to generate embedding 271

representations. 272

The held-out evaluation results further confirm that the STRING2GO-learnt 273

functional representations contain higher predictive information. As shown in Table 2, 274

the F̃1GO scores obtained by STRING2GOMashup+SVM and STRING2GONode2vec+SVM 275

reach to 0.270 and 0.182 respectively, whereas the F̃1GO scores obtained by 276

Mashup+SVM and Node2vec+SVM are both equal to 0.000. This pattern is consistent 277

when adopting all other types of STRING component networks, except 278

STRING2GONode2vec+SVM and Node2vec+SVM both obtain zero F̃1GO scores when 279

using the Coexpression network to generate the raw embedding representations (as 280

shown in Table 2). STRING2GOMashup+Sigmoid and STRING2GONode2vec+Sigmoid also 281

respectively obtain higher F̃1GO scores than Mashup+SVM and Node2vec+SVM based 282

on all five different STRING networks. The scatter-plots in Fig 3 show the pairwise 283
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Table 2. Summary on experimental results obtained by different network embedding representations and corresponding
functional representations based on Combinedscore, Textmining, Experimental, Database and Coexpression networks working
with different classification algorithms during held-out evaluation and temporal annotation validation

Prediction Methods

Combinedscore Textmining Experimental Database Coexpression

Held-out Temporal Held-out Temporal Held-out Temporal Held-out Temporal Held-out Temporal

F̃1GO Fmax Fτ F̃1GO Fmax Fτ F̃1GO Fmax Fτ F̃1GO Fmax Fτ F̃1GO Fmax Fτ

Mashup-based

STRING2GOMashup+SVM 0.270 0.497 0.309 0.275 0.483 0.296 0.146 0.450 0.263 0.130 0.412 0.225 0.116 0.392 0.258

STRING2GOMashup+Sigmoid 0.237 0.495 0.312 0.239 0.478 0.290 0.183 0.442 0.247 0.131 0.427 0.144 0.121 0.392 0.247

Mashup+SVM 0.000 0.470 0.290 0.000 0.463 0.287 0.000 0.420 0.229 0.000 0.392 0.238 0.000 0.371 0.242

Node2vec-based

STRING2GONode2ve+SVM 0.182 0.458 0.319 0.115 0.446 0.290 0.124 0.422 0.256 0.087 0.353 0.169 0.000 0.349 0.236

STRING2GONode2vec+Sigmoid 0.187 0.471 0.312 0.188 0.472 0.314 0.143 0.440 0.258 0.111 0.408 0.238 0.043 0.381 0.246

Node2vec+SVM 0.000 0.444 0.293 0.000 0.437 0.278 0.000 0.418 0.249 0.000 0.386 0.221 0.000 0.360 0.219

* Naive N/A 0.363 0.254

comparisons of F1GO scores obtained by different methods, and the dashed-lines 284

indicate the median values of difference between pairs of F1GO scores. In detail, Fig 285

3.a-3.d show that almost all dots (in blue) drop in the area above the diagonal, 286

indicating higher F1GO scores for predicting the majority of BP terms by using the 287

functional representations learnt by STRING2GO based on the Combinedscore network 288

by using either SVM or Sigmoid function as the classification algorithm. As shown in 289

Fig 3.e-3.t This pattern is consistently observed when applying on almost all other four 290

different STRING networks, except the Coexpression network that leads to competitive 291

performance between STRING2GONode2vec and Node2vec, since the dashed-lines in Fig 292

3.s and Fig 3.t are almost overlapping on the diagonal. The Wilcoxon signed-rank test 293

results in Table S3 further confirm that the STRING2GO-learnt functional 294

representations obtain significantly higher GO term-centric F1GO scores than the raw 295

network embedding representations. 296

From the perspective of protein-centric evaluation (i.e. considering the Fmax and Fτ 297

metrics), the STRING2GO-learnt functional representations also obtain higher 298

predictive accuracy based on the Combinedscore network. As shown in Table 2, the 299

functional representations STRING2GOMashup and STRING2GONode2vec both obtain 300

higher Fmax scores (i.e. 0.497 and 0.458 obtained by using SVM, 0.495 and 0.471 301

obtained by using Sigmoid function) than the network embedding representations 302

generated by Mashup and Node2vec (i.e. 0.470 and 0.444 obtained by using SVM). The 303

precision-recall curves in Fig 4.a also show that the STRING2GO-learnt functional 304

representations obtain higher precision and recall values simultaneously, since the 305

middle parts of red and blue curves locate in higher position than the orange one, while 306

the middle parts of grey and black curves also locate in higher position than the green 307

one. As shown in Table 2 and Fig 4.b-4.e, this pattern is consistent when adopting the 308

other four types of STRING component networks to generate representations, except 309

STRING2GONode2vec+SVM obtaining lower Fmax scores than Node2vec+SVM based on 310

the Database and Coexpression networks. 311

Analogously, the functional representations STRING2GOMashup and 312

STRING2GONode2vec obtain higher Fτ scores based on the Combinedscroe network 313

(0.309 and 0.319 obtained by SVM, while 0.312 obtained by Sigmoid function) than the 314

raw network embedding representations generated by Mashup and Node2vec (0.290 and 315

0.293 by using SVM). This pattern is consistent when using all other STRING networks, 316

except the Database network which only leads to higher Fτ score obtained by 317

STRING2GONode2vec+Sigmoid than the one obtained by Node2vec+SVM. 318
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Fig 3. F1GO scores obtained by different network embedding representations and the corresponding STRING2GO-learnt
functional representations based on (a-d) Combinedscore, (e-h) Textmining, (i-l) Experimental, (m-p) Database and (q-t)
Coexpression networks by using SVM or Sigmoid function for classification
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Fig 4. Precision-recall curves of different methods and the Fmax scores obtained by the best-performing methods based on
(a) Combinedscore, (b) Textmining, (c) Experimental, (d) Database and (e) Coexpression networks

The raw network embedding representations derived by 319

Mashup show higher predictive power 320

We also compare the predictive performance of Mashup and Node2vec-derived network 321

embedding representations and the corresponding STRING2GO-learnt functional 322
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representations respectively. Generally, the raw network embedding representations 323

derived by Mashup and Node2vec methods obtain competitive predictive accuracy by 324

using SVM as the classification algorithm. To begin with, during the training stage, the 325

F̃1GO score obtained Mashup+SVM is higher than the one obtained by Node2vec+SVM 326

based on the Combinedscore network, since the orange bar is higher than the green one 327

in Fig 2.a. However, both Mashup+SVM and Node2vec+SVM obtain poor predictive 328

performance on the held-out evaluation, due to the zero F̃1GO scores. But the statistical 329

significance test results (see Table S2) show that the former still outperforms the latter. 330

Those patterns are consistent when using all other 4 types of STRING networks to 331

generate the raw embedding representations, as reported in Fig 2.b-2.e, Tables 2 and S1. 332

In terms of the protein-centric evaluation, Mashup+SVM obtains a higher Fmax score 333

(0.470) than Node2vec+SVM (0.444). The Combinedscore network-based 334

precision-recall curves in Fig 4.a confirm that the orange curve locates in higher position 335

than the green one. Those patterns are also consistent in cases when using other four 336

different STRING component networks to generate representations, as shown in Fig 337

4.b–4.e. However, Node2vec+SVM outperforms Mashup+SVM on the temporal 338

annotation validation. As reported in Table 2, although the latter obtains higher Fτ 339

score based on three STRING component networks (i.e. Textmining, Database and 340

Coexpression), the former obtains the highest Fτ score (0.293) based on the 341

Combinedscore network. 342

We then further conduct comparisons on predictive performance of two different 343

STRING2GO-learnt functional representations respectively based on Mashup and 344

Node2vec-derived raw network embedding representations. During the GO term-specific 345

classifiers training stage, STRING2GOMashup obtains higher F̃1GO scores than 346

STRING2GONode2vec by using either SVM or Sigmoid function as the classification 347

algorithm, based on the Combinedscore and Coexpression networks. As shown in Fig 2.a 348

and 2.e, where red and blue bars are higher than the black and grey ones respectively. 349

When using the other 3 STRING component networks, STRING2GONode2vec obtains 350

higher F̃1GO scores by using SVMs, whereas STRING2GOMashup still outperforms the 351

former by using Sigmoid function as the classification algorithm. 352

The held-out evaluation results in Table 2 show a consistent pattern that 353

STRING2GOMashup obtains higher F̃1GO scores (statistically significant according to 354

Table S2) and Fmax scores than STRING2GONode2vec based on the Combinedscore 355

network by using either SVM or Sigmoid function, respectively. As shown in Fig 4.a, 356

the majority parts of the red and blue curves clearly locate in higher position than the 357

black and grey ones. Those patterns are consistent when using the other 4 STRING 358

networks, as shown in Table 2 and Fig 4.b-4.e. However, STRING2GONode2vec obtains 359

better predictive performance during the temporal annotation validation, since the 360

former obtains the highest Fτ score (0.319) by using SVM (based on the Combinedscore 361

network) among all methods when adopting all different STRING networks. 362

The STRING2GO-learnt functional representations with 363

support vector machines obtain the highest accuracy on 364

predicting 204 BP terms 365

We then compare all prediction methods discussed in previous sections, i.e. two types of 366

STRING2GO methods (i.e. STRING2GOEmbedding+SVM and 367

STRING2GOEmbedding+Sigmoid) adopting two types of raw network embedding 368

representations (i.e. the ones generated by Mashup and Node2vec respectively), and the 369

methods that only exploit the raw network embedding representations to make 370

predictions by using SVM as the classification algorithm. We also compare those 371

methods with the Naïve prediction method [31], which makes predictions by considering 372
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the annotation frequency in the database as the prior knowledge. Overall, 373

STRING2GOEmbedding+SVM is the best-performing method according to both the GO 374

term and protein-centric metrics. During the GO term-specific classifiers training stage, 375

STRING2GOMashup+SVM and STRING2GONode2vec+SVM obtain almost the same 376

highest F̃1GO scores among all prediction methods by using all different STRING 377

networks. As shown in Fig 2, the latter obtains the highest GO score (0.824) based on 378

the Textmining network, while the former obtained almost the same highest F̃1GO score 379

(0.822) based on the Combinedscore network. The held-out evaluation results also 380

confirm that STRING2GOMashup+SVM obtains the highest F̃1GO score (0.275) by using 381

the Textmining network, while also obtains the significantly higher F1GO scores than 382

other methods basing on the Combinescore network (see Friedman test with Holm 383

post-hoc correction results in Table S3). STRING2GOMashup+SVM obtains the highest 384

Fmax score (0.497) based on the Combinedscore network and higher Fmax scores than 385

all other methods based on all other STRING networks except the Database network. 386

In terms of the Fτ score metric, STRING2GONode2vec+SVM obtains the highest Fτ score 387

(0.319) by using the Combinedscore network among all methods based on all different 388

STRING networks. 389

The second best performing method is STRING2GOEmbedding+Sigmoid. 390

STRING2GOMashup+Sigmoid obtains higher F̃1GO scores than either Mashup+SVM or 391

Node2vec+SVM during the classifier training stage. It also obtains the second highest 392

F̃1GO scores during the held-out evaluation based on 2 out of 5 networks (except the 393

case when STRING2GOMashup+Sigmoid obtains the highest F̃1GO score based on the 394

Experimental, Database and Coexpression networks). From the perspective of 395

protein-centric metrics, STRING2GOMashup+Sigmoid obtains the second highest Fmax 396

based on 3 out of 5 STRING networks, while STRING2GONode2vec+Sigmoid obtains the 397

overall second highest Fτ score (0.314) based on the Textmining network. 398

In addition, all of those methods discussed above obtains higher Fmax scores than 399

the Naïve prediction method based on almost all 5 individual STRING networks (as the 400

yellow curves shown in Fig 4.a-4.e), with exception of STRING2GONode2vec+SVM based 401

on the Database and Coexpression networks and Node2vec+SVM based on the 402

Coexpression network. All those methods also obtain higher Fτ scores than the Naïve 403

prediction method based on the Combinedscore and Textmining networks. 404

Discussion 405

Overall, as discussed in previous sections, the functional representations learnt by 406

STRING2GO show substantial improvement on the predictive power of the raw network 407

embedding representations. We further investigate the improvement of predictive power 408

of the STRING2GO-learnt functional representations by evaluating the enlarged 409

distances between two classes of training protein samples. We firstly calculate the 410

Euclidean distance between the centroids of two classes by using the Mashup-based 411

representations’ values standardized into the range of (0,1) in the same dimensional 412

space, i.e. 800 dimensions for both Mashup and STRING2GOMashup. Then we calculate 413

the correlation coefficient between the distances and F1GO scores obtained by held-out 414

evaluation. As shown in Fig 5.a, the x axis denotes the distance between two classes 415

calculated by using either the raw Mashup-derived network embedding representations 416

(blue), or the corresponding functional representations (red) STRING2GOMashup, based 417

on the Combinedscore network, while the y axis denotes the corresponding F1GO score 418

obtained by adopting those different representations working with SVMs to predict 419

individual BP terms. It is obvious that the distances between two classes of proteins for 420

individual GO terms are all enlarged by STRING2GO, while the correlation coefficient 421

values between distances and F1GO scores for both types of representations are positive, 422
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Fig 5. (a) Linear relationship between distances of two classes protein samples and F1GO scores obtained by Mashup-derived
network embedding representations and the corresponding functional representations on classifier training stage (c) The 2D
space visualization of distribution of protein samples belonging to GO:0090150 using the Mashup-derived network embedding
representations and (d) the STRING2GOMashup functional representations transformed by t-SNE.

indicating that the larger distances lead to higher predictive accuracy. 423

We also display an example of the increased distance between two classes of proteins 424

when predicting the term GO:0090150, which shows the highest improvement on the 425

classifier training quality obtained by using STRING2GOMashup+SVM, compared by 426

using Mashup+SVM. Fig 5.b-5.c respectively show the 2-D visualization of raw 427

Mashup-derived network embedding representations and the corresponding 428

STRING2GO-learnt functional representations after transforming by t-SNE [41]. The 429

red dots denote the protein samples belonging to class “Annotated”, while the green dots 430

denote the protein samples belonging to class “Not-annotated”. The red dots are 431

distributed in the similar scale of green dots in Fig 5.b, whereas the most of red dots are 432

clustered in the right side in Fig 5.c. This fact indicates that the functional 433

representations successfully encode higher discriminating power against two classes of 434

protein samples. 435

Conclusion 436

In this work, we present a novel deep learning-based protein function prediction method 437

STRING2GO, which successfully learns a novel type of functional representations to 438

train the down-stream classifiers for making predictions. STRING2GO shows the 439

highest accuracy when predicting biological process protein functions, compared with 440

other state-of-the-art network embedding representation-based protein function 441

prediction methods. Based on this STRING2GO learning framework, there is potential 442

for further improving the predictive accuracy by integrating representations from other 443

data sources with the current PPI network embedding representations in a future study. 444

Supporting information 445

Table S1 List of 204 biological process Gene Ontology terms studied in this work. 446
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Table S2 Two-tailed Wilcoxon signed-rank tests at 0.05 of significance level on F1GO 447

scores obtained by different pairs of prediction methods over the hold-out evaluation. 448

Table S3 Friedman test with Holm post-hoc correction results on F1GO scores 449

obtained by different prediction methods over the hold-out evaluation. 450
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