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Abstract 

Although the increasing use of whole-exome and whole-genome sequencing have improved the yield of genetic 

testing for Mendelian disorders, an estimated 50% of patients still leave the clinic without a genetic diagnosis. 

This can be attributed in part to our lack of ability to accurately interpret the genetic variation detected through 

next-generation sequencing. Variant interpretation is fundamentally reliant on accurate and complete gene 

annotation, however numerous reports and discrepancies between gene annotation databases reveals that the 

knowledge of gene annotation remains far from comprehensive. Here, we detect and validate transcription in 

an annotation-agnostic manner across all 41 different GTEx tissues, then connect novel transcription to known 

genes, ultimately improving the annotation of 63% of the known OMIM-morbid genes. We find the majority of 

novel transcription to be tissue-specific in origin, with brain tissues being most susceptible to misannotation. 

Furthermore, we find that novel transcribed regions tend to be poorly conserved, but are significantly depleted 

for genetic variation within humans, suggesting they are functionally significant and potentially have human-

specific functions. We present our findings through an online platform vizER, which enables individual genes to 

be visualised and queried for evidence of misannotation. We also release all tissue-specific transcriptomes in a 

BED format for ease of integration with whole-genome sequencing data. We anticipate that these resources will 

improve the diagnostic yield for a wide range of Mendelian disorders. 
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Introduction 
 

Genetic and transcriptomic studies are fundamentally reliant on accurate and complete human gene 

annotation. Gene definitions are required for the quantification of expression and splicing from RNA-

sequencing experiments, interpretation of significant GWAS signals and variant interpretation from genetic 

tests. The latter is a crucial step in molecular diagnosis, which involves ascertaining the genetic cause of disease 

for a patient with a suspected Mendelian disorder1. Importantly, successful molecular diagnosis can improve 

the management of symptoms, inform genetic counselling and provide therapeutic opportunities for diagnosis 

and prevention. With the advancement in next-generation sequencing technology and concomitant reduction in 

associated costs, genetic diagnosis has progressed from traditional targeted sequencing of mutation hotspots to 

in-silico panels using whole exome sequencing (WES) and, more recently, whole genome sequencing (WGS)2–4. 

WES and WGS have improved the ability to identify variants associated with disease and increasingly, are an 

integral part of the diagnostic journey. However, despite these advances, our understanding of the genetic 

aetiology of Mendelian disorders remains incomplete and consequently, the current rate of genetic diagnosis 

remains only 25-50%5,6. 

A key component of the molecular diagnosis of Mendelian disorders is the ability to distinguish 

pathogenic variants from the many rare, functional yet non-pathogenic variants present in any human genome. 

Given that the vast majority of currently known pathogenic variants fall within exonic regions, variants located 

within intronic regions or intergenic regions are unsurprisingly downgraded in importance7. However, as our 

understanding of transcriptomic complexity improves it is apparent that existing annotation remains 

incomplete even amongst known genes. Comparison of different gene annotation databases reveals that over 

17,000 Ensembl genes fall into intronic or intergenic regions according to the AceView database and 

predictably, the choice of reference annotation greatly influences the output of variant interpretation software 

such as VEP and ANNOVAR8,9. Thus, incomplete annotation may cause pathogenic variants to be overlooked 

within coding regions that are yet to be annotated, despite them having been sequenced. When taken together 

these findings suggest that improvements to gene annotation will increase the diagnostic yield from genetic 

tests10.  

There is evidence to suggest that improvements to gene annotation may be most important for the 

diagnosis of neurogenetic disorders. While the large phenotypic overlap and variability of neurogenetic 

disorders has meant that unbiased WES or WGS approaches to genetic testing have greater diagnostic utility, 

these disorders remain amongst those with the lowest diagnostic rate. A recent report estimates that as few as 

26% of patients in this category are successfully diagnosed11. Given that the human brain is the tissue with the 

highest prevalence of alternative splicing, genes important for brain function may be predicted to have 

disproportionately high levels of misannotation, which we define as the number of genes for which annotation 

remains inaccurate or incomplete12. In fact, several studies analysing RNA-sequencing derived from human 

brain tissue have discovered transcription originating from intronic or intergenic regions (henceforth termed 

novel)13,14. In particular, Jaffe and colleagues found that as much as 41% of human frontal cortex transcription 

was novel. Therefore, taking into account both the genetic heterogeneity of neurogenetic disorders and the 
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human brain’s susceptibility to misannotation, improvements to gene annotation may be of greatest benefit to 

the diagnosis of this important set of conditions. 

  To address this issue, we used publicly available transcriptomic data to improve the annotation of 

genes across the genome, with a focus on genes known to cause Mendelian disease as reported in the Online 

Mendelian Inheritance in Man (OMIM) catalogue. We define transcription in an annotation-agnostic manner 

from 41 GTEx tissues. We find that while novel transcription is widespread across all tissues, it is most 

prevalent in human brain and, collectively, is relatively depleted for genetic variation, suggesting it is 

functionally important. By combining novel expressed regions (ERs) with split read data, defined as reads that 

have a gapped alignment to the genome, we link these regions to known OMIM genes. To aid the ease of 

integration with WGS data, we have released all 41 tissue-specific transcriptomes in a BED format and built an 

online platform vizER, which allows individual genes to be queried and visualised. Overall, we improve the 

annotation of 1929 (63%) OMIM genes, a vital step for the accurate assignment of variant pathogenicity, and 

anticipate that this will lead to improvements in diagnostic yield from WGS, particularly for neurogenetic 

disorders.   
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Methods 

OMIM data 

Phenotype relationships and clinical synopses of all Online Mendelian Inheritance in Man (OMIM) genes were 

downloaded using http://api.omim.org on the 29th of May 201815. OMIM genes were filtered to exclude 

provisional, non-disease and susceptibility phenotypes retaining 2,898 unique genes (termed OMIM-morbid 

genes) that were confidently associated to 4,034 Mendelian diseases. Phenotypic abnormality groups were 

linked to corresponding affected Genotype-Tissue Expression (GTEx) tissues through manual inspection of the 

HPO terms within each group by a medical specialist16.  

 

GTEx data 

RNA-seq data in base-level coverage format for 7,595 samples originating from 41 different GTEx tissues was 

downloaded using the R package recount version 1.4.613. Cell lines, sex-specific tissues and tissues with 10 

samples or below were removed. Samples with large chromosomal deletions and duplications or large CNVs 

previously associated with disease were filtered out (smafrze = “USE ME”). Coverage for all remaining samples 

was normalised to a target library size of 40 million 100bp reads using the area under coverage value provided 

by recount2. For each tissue, base-level coverage was averaged across all samples to calculate the mean base-

level coverage. GTEx split read data, defined as reads with a non-contiguous gapped alignment to the genome, 

was downloaded using the recount2 resource and filtered to include only split reads detected in at least 5% of 

samples for a given tissue and those that had available donor and acceptor splice sequences. 

 

Optimising the detection of transcription  

Transcription was detected across 41 GTEx tissues using the package derfinder version 1.14.017. The mean 

coverage cut-off (MCC), defined as the number of reads supporting each base above which bases were 

considered to be transcribed, and max region gap (MRG), defined as the maximum number of bases between 

expressed regions (ERs) below which adjacent ERs will be merged, were optimised. Optimisation was 

performed using 156,674 non-overlapping exons (defined by Ensembl v92) as the gold standard18. Exon 

biotypes of all Ensembl v92 exons were compared to this set of non-overlapping exons to ensure we were not 

preferentially optimising for one particular biotype (Supplementary figure 1). Non-overlapping exons were 

selected as these definitions would be least likely to be influenced by ambiguous reads. For each tissue, we 

generated ERs using mean coverage cut-offs increasing from 1 to 10 in steps of 0.2 (46 cut-offs) and max gaps 

increasing from 0 to 100 in steps of 10 (11 max region gaps) to produce a total of 506 unique transcriptomes. 

For each set of ERs, we found all ERs that intersected with non-overlapping exons, then calculated the exon 

delta by summing the absolute difference between the start/stop positions of each ER and the overlapping exon 

(Figure 1a). Situations in which a single ER overlapped with multiple exons were removed to avoid assigning 

the ER to an incorrect exon when calculating downstream optimisation metrics. For each tissue, we selected the 

mean coverage cut-off and max region gap, which minimised the difference between ER and “gold standard” 

exon definitions (median exon delta) and maximised the number of ERs that precisely matched the boundaries 
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of exons (number of ERs with an exon delta equal to 0). All ERs that were <3bp in width were removed as these 

were below the minimum size of a microexon19.  

 

Calculating the transcriptome size per annotation feature 

ERs were classified with respect to the annotation feature (exon, intron, intergenic) with which they 

overlapped. A minimum of 1bp overlap was required for an ER to be categorised as belonging to a given 

annotation feature. ERs overlapping multiple annotation features were labelled with a combination of each. 

This generated 6 distinct categories – “exon”, “exon, intron”, “exon, intergenic”, “exon, intergenic, intron”, 

“intergenic” and “intron” (Supplementary figure 1a). ERs classified as “exon, intergenic, intron” were removed 

from all downstream analysis as these formed only 0.54% of all ERs and were presumed to be technical 

artefacts generated from regions of dense, overlapping gene expression. For each tissue, the length of all ERs 

within each annotation feature was summed generating the total Mb of ERs per annotation feature. Normalised 

variance of exonic, intronic and intergenic ERs was calculated by dividing the standard deviation of the total Mb 

of ERs across tissues by the mean total Mb of ERs for each annotation feature. To compare between brain and 

non-brain tissues, the total Mb of intronic and intergenic ERs were first summed together to generate an overall 

measure of novel transcription abundance across brain and non-brain tissues, then a two-sided Wilcoxon rank 

sum test was applied. 

 

Annotating ERs with split read data 

Intronic and intergenic ERs were connected to known genes using reads, which we term split reads, with a 

gapped alignment to the genome, presumed to be reads spanning exon-exon junctions (Supplementary figure 

2b). Such exon-exon junctions are defined as non-contiguous reads which fall on the boundary between two 

exons of the same mRNA molecule, therefore when aligned to the genome these reads have a break in the 

middle indicating the splicing out of an intron. Split read data was categorised into three groups: annotated 

split reads, with both ends falling within known exons; partially annotated split reads, with only one end falling 

within a known exon; and unannotated split reads, with both ends within intron or intergenic regions. In this 

way, intron and intergenic ERs that overlapped with partially annotated split reads were connected to known 

genes.  

 

Validation of detected transcription 

Transcription was validated across different versions of Ensembl and within an independent dataset. ERs that 

overlapped purely intronic or intergenic regions according to Ensembl v87, but fell within exons according to 

v92, were counted as novel transcription that was validated in later versions of Ensembl. Furthermore, ERs 

overlapping exonic regions in Ensembl v87 now classified as intronic or intergenic in v92 were measured to 

control for expected corrections in gene definitions. To assess whether the total Kb of validated novel ERs 

entering v92 annotation was greater than what would be expected by chance, we generated 10,000 random 

sets of length-matched regions for each tissue that were intronic or intergenic with respect to Ensembl. Using a 

one sample Wilcoxon test, we compared the total Kb of intronic and intergenic ERs entering annotation to the 

total Kb distribution of the randomised intronic and  intergenic regions, respectively.  
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Validation within an independent dataset was performed using RNA-seq coverage data from 49 control 

frontal cortex (BA9) samples originally reported by Labadorf and colleagues (2015) and available via the 

recount R package version 1.4.613,20. ERs derived from the GTEx frontal cortex (BA9) data were re-quantified 

using this independent frontal cortex dataset and those that had a mean coverage of at least 1.4 (the optimised 

MCC for the GTEx frontal cortex data), were counted as novel transcription that was validated.  

 

Analysing the conservation and constraint of novel ERs 

Conservation scores in the form of phastCons7 (derived from genome-wide alignments of 7 mammalian 

species) were downloaded from UCSC21,22. Constraint scores generated from the genome-wide alignment of 

7,794 unrelated human genomes were downloaded as context dependent tolerance scores (CDTS)23. The raw 

phastCons7 and CDTS were in bins of 1bp and 10bp, respectively, therefore when annotating the 

corresponding positions of ERs, we aggregated each score as a mean across the entire genomic region of 

interest. To account for missing CDTS values, we calculated the coverage of each ER by dividing the number of 

bases annotated by the CDTS by the total length of the ER. For all downstream analysis, we filtered out ERs for 

which CDTS coverage was less than 80%.  

 To assess whether our novel ERs were more constrained or conserved than by expected by chance, we 

compared the phastCons7 and CDTS of novel ERs to 10,000 randomised length-matched sets of intronic and 

intergenic ERs for each tissue. For each of the 10,000 iterations, we first selected a random intronic or 

intergenic region that was larger than the respective ER, then selected a random segment along the randomised 

region which matched the length of the corresponding ER. The randomised regions were annotated with 

constraint scores and CDTS using the aforementioned method. The mean CDTS and phastCons7 of the novel 

ERs (split by annotation feature) were compared to the corresponding distribution of CDTS and phastCons7 of 

the randomised regions using a one sample, two-tailed t-test. For easier interpretation when plotting, CDTS 

scores have been converted to their opposite sign, therefore for both phastCons and CDTS, the higher the value 

the greater the magnitude of conservation or constraint as shown in Figure 4a.  

 

Checking ER protein coding potential 

Intronic and intergenic ERs that were intersected by 2 split reads were extracted. The split reads were used to 

determine the precise boundaries of the ER. The R package Biostrings version 2.46.0 was used to extract the 

DNA sequence corresponding to the ER genetic co-ordinates from the genome build hg3824. Since the 

translation frame was ambiguous without knowledge of the other exons that are part of the transcript that 

included the novel ER, we converted the DNA sequence to amino acid sequence for all three possible frames 

starting from the first, second or third base. Any ER that had at least 1 frame that did not include a stop codon 

was considered to be potentially protein coding.  

 

Gene properties influencing misannotation  

All Ensembl v92 genes were marked with a 1 or a 0 depending on whether we detected a reannotation for that 

gene in the form of an ER connected to the gene using a split read, with 1 representing a detected reannotation 

event. Details of gene length, biotype, transcript count and whether the gene overlapped another gene were 
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retrieved from the Ensembl v92 database. Brain-specificity was assigned using the Finucane dataset and 

selecting the top 10% of brain-specific genes when compared to non-brain tissues25. Mean gene TPM was 

calculated by downloading tissue-specific TPM values from the GTEx portal and summarised by calculating the 

mean across all tissues. The list of OMIM genes (May 2018) was used to assign whether a gene was known to 

cause disease or not. We used a logistic regression to test whether different gene properties significantly 

influenced the variability of misannotation (formula = misannotation ~ brain specific + mean TPM + 

overlapping gene + transcript count + gene biotype + gene length). 
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Results 

Accurately detecting transcription in an annotation-agnostic manner  

We applied the R package derfinder to discover genome-wide transcription from 41 GTEx tissues16. By default, 

derfinder utilises RNA-sequencing base-level coverage data to detect continuous blocks of transcribed bases 

termed expressed regions (ERs) in an annotation-agnostic manner using the mean coverage cut-off (MCC)17. In 

order to define ERs more accurately, we improved upon the original derfinder methodology by including an 

additional parameter we call the max region gap (MRG), which merges adjacent ERs that have been segmented 

due to the variability in read depth even across an individual exon (see detailed Methods). Both the MCC and 

MRG were optimised using a set of exons with the most reliable and accurate boundaries, namely all exons 

from Ensembl v92 that did not overlap with any other exon18. For each tissue, we first generated 506 possible 

transcriptomes using unique pairs of MRCs and MRGs to produce a total of 20,746 sets of ERs across all 41 

tissues. Then for each transcriptome, all ERs that intersected non-overlapping exons were extracted and the 

absolute difference between the ER definition and the corresponding exon boundaries, termed the exon delta, 

was calculated (Figure 1a). We summarised the exon delta for each transcriptome using two metrics, the 

median exon delta and the number of ERs with exon delta equal to 0. The median exon delta represents the 

overall accuracy of all ER definitions, whereas, the number of ERs with exon delta equal to 0 indicates the 

extent to which ER definitions precisely match overlapping exon boundaries. The MCC and MRG pair that 

generated the transcriptome with the lowest median exon delta and highest number of ERs with exon delta 

equal to 0 was chosen as the most accurate transcriptome definition for each tissue. Across all tissues, 50-54% 

of the ERs tested had an exon delta = 0, suggesting we had defined the majority of ERs accurately. Taking the 

cerebellum as an example, our optimised ERs were on average 96bps (67% of the median exon size) more 

accurate than would be generated if we had applied the derfinder parameters used in the existing literature 

(MCC: 0.5, MRG: None equivalent to 0) (Figure 1a &1b). In summary, we improved upon and optimised existing 

methodology to detect genome-wide transcription without reliance on existing annotation and as a result, 

defined 41 tissue-specific transcriptomes with increased accuracy.  

 

Novel transcription is widespread across all human tissues and most commonly observed in brain  

To assess how much of the detected transcription was novel, we calculated the total size in base pairs of ERs 

that did not overlap known annotation. ERs were first categorised with respect to the genomic features (exons, 

introns, intergenic) with which they overlapped as defined by the Ensembl v92 reference annotation 

(Supplementary Figure 2a). Those that solely overlapped intronic or intergenic regions were classified as novel. 

We discovered 8.4 to 22Mb of novel transcription across all tissues, consistent with previous reports that 

annotation remains incomplete26,27. Novel ERs predominantly fell into intragenic regions suggesting we were 

improving the annotation of known genes rather than discovering new genes (Figure 2a).  

Although novel transcription was found to be ubiquitous across tissues, the abundance varied greatly 

between tissues (Figure 2e, 2f). To investigate this further, we compared the variance in total Mb of exonic ERs 

to intergenic and intronic ERs, normalised to the mean total Mb of each respective annotation feature. We 

found that the levels of novel transcription varied 3.4-7.7x more between tissues than the expression of exonic 
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ERs (normalised variance of exonic ERs: 0.066Mb, intronic ERs: 0.222Mb, intergenic ERs: 0.481Mb). 

Furthermore, focusing on a subset of novel ERs for which we could infer the precise boundaries of the 

presumed novel exon (using intersecting split reads), we found that more than half of these ERs were detected 

in only 1 tissue and that 85.9% were found in less than 5 tissues (Supplementary figure 3). This suggests that 

novel ERs are largely derived from tissue-specific transcription, potentially explaining why they have not 

already been discovered.  

This finding lead us to hypothesise that genes highly expressed in brain would be amongst the most 

prone to misannotation, due to the difficulty of sampling human brain tissue, the cellular heterogeneity of this 

tissue and the particularly high prevalence of alternative splicing12. As we predicted, the quantity of novel 

transcription found within brain was significantly higher than non-brain tissues (p-value: 2.35e-10) (Figure 2e 

& 2f). In fact, ranking the tissues by descending Mb of novel transcription demonstrated that brain tissues 

constituted 13 of the top 14 most misannotated tissues. Interestingly, the importance of improving annotation 

in the human brain tissue was most apparent when considering purely intergenic ERs and ERs that overlapped 

exons and extended into intergenic regions (Figure 2d & 2e). This observation lead us to question whether 

there were specific features of a gene, which could be used to predict, which genes were most likely to be 

misannotated. We ran a logistic regression testing whether gene properties including measures of structural 

gene complexity and specificity of expression in human brain increased its likelihood of being misannotated. 

We also accounted for factors which might be expected to contribute to errors in ER identification, including 

whether the gene overlapped with another known gene making attribution of reads more complex. We found 

that the annotation of brain-specific genes and those with higher transcript complexity were more likely to 

have evidence for incomplete annotation (Table 1). Overlapping genes, with gene length accounted for, were 

not significantly more misannotated, demonstrating that novel transcription is not merely a product of noise 

from intersecting genes. Together these findings demonstrate that widespread novel transcription is found in 

all human tissues, but the quantity varies extensively between tissues, with the genes with brain-specific 

expression being most prominently misannotated.  

 

Novel transcription validates across different versions of Ensembl and within an independent 

dataset 

We recognised that a proportion of novel transcription may originate from technical variability or pre-mRNA 

contamination, thus we aimed to assess the reliability of novel ERs through validation across different versions 

of Ensembl and within an independent dataset. Firstly, we measured how many Kb of novel transcription 

would now be considered annotated in Ensembl v92 if we had performed this categorisation using Ensembl 

v87. Across all tissues, an average of 68Kb (43-127Kb) of transcription that was novel with respect to Ensembl 

v87 was now annotated in Ensembl v92. This was 5.3x (3.2-10.1x) greater in every tissue compared to the Kb 

of ERs overlapping exons in Ensembl v87 that had become purely intronic or intergenic in Ensembl v92, 

suggesting that the quantity of validated novel ERs was over and above what would be estimated to be detected 

solely through refinements to the gene annotation across Ensembl versions (Figure 3a). To further assess 

whether this was greater than what would be expected by chance, we compared the total Kb of novel ERs 

entering v92 annotation for each tissue to 10,000 sets of random length-matched intronic and intergenic 
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regions. For all tissues, the total Kb of both intronic and intergenic ERs that were now annotated in Ensembl 

v92 was significantly higher than the total Kb distribution of the randomised negative control regions, implying 

a high validation rate of novel ERs (Supplementary figure 4). Notably, brain regions had significantly higher Kb 

of ERs entering Ensembl v92 annotation from Ensembl v87 than other non-brain tissues, even when 

subtracting the Kb of ERs leaving Ensembl v87 (p-value: 7.6e-9), suggesting the greater abundance of brain-

specific misannotation was not purely attributed to increased level of noise.  

Since comparison of different Ensembl versions was limited to confirming a small subset of novel ERs, 

in order to gain an overall indication of the rate of validation across all ERs, we investigated whether our GTEx 

frontal cortex derived ERs could also be discovered in an independent frontal cortex dataset reported by 

Labadord and colleagues20. As expected, ERs which overlapped with annotated exons had near complete 

validation (>= 89%), but importantly 62% of intergenic and 70% of intronic ERs respectively were also 

detected in the second independent frontal cortex dataset (Figure 3b). While this high validation rate implied 

the majority of all ERs were reliably detected, we investigated whether a subset of ERs that had evidence of 

RNA splicing as well as transcription would have even better rates of validation. Evidence of transcription is 

provided by the coverage data derived using derfinder, whilst split reads, which are reads with a gapped 

alignment to the genome, provide evidence of intron splicing (Supplementary figure 2b). With this in mind, we 

focused our attention on the putative spliced ERs as indicated by the presence of an overlapping split read. 

Consistent with expectation, we found that ERs with split read support had higher validation rates than ERs 

lacking this additional feature. This increase in validation rate for ERs with split read support was greatest for 

intergenic and intronic ERs with the validation rate rising to 87% for intergenic ERs and 88% for intronic ERs 

(as compared to 99% for ERs overlapping exons, Figure 3b). Even when considering this set of highly validated 

ERs with split read support, 1.7-3.8Mb of intronic and 0.5-2.2Mb of intergenic transcription was detected 

across all 41 tissues. In summary, the majority of novel ERs were reliably detected and validated in an 

independent dataset.  

 

Unannotated expressed regions are functionally important and some have the potential to be 

protein coding 

We investigated whether novel ERs were likely to be of functional significance using measures of both 

conservation and genetic constraint. The degree to which a base is evolutionarily conserved across species is 

strongly dependent on its functional importance and accordingly, conservation scores have been used to aid 

exon identification28. However, this measure is unable to capture genomic regions of human-specific 

importance. Thus, we investigated novel ERs not only in terms of conservation but also genetic constraint. 

Constraint scores, measured here as a context-dependent tolerance score (CDTS), represent the likelihood of a 

base to be mutated within humans23. By comparing our detected novel ERs to 10,000 randomised sets of 

length-matched intronic and intergenic regions, we found that novel ERs were less conserved than expected, 

but significantly more constrained than expected by chance (p-value < 2e-16, Figure 4a). This would suggest 

that they have an important functional role specifically in humans. Furthermore, considering the importance of 

higher-order cognitive functions in differentiating humans from other species, we measured the constraint of 

brain-specific novel ERs separately, on the basis that these ERs may be the most genetically constrained of all 
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novel ERs identified. Indeed, we found that brain-specific novel ERs were significantly more constrained than 

other novel ERs, supporting the view that improvements in gene annotation are likely to have a 

disproportionate impact on our understanding of human brain diseases (Figure 4b).  

Another metric of functional importance is whether a region of the genome is translated into protein 

and notably most known Mendelian disease mutations fall within protein-coding regions. For this reason, we 

investigated whether novel ERs could potentially encode for proteins. Here, we focused on the subset of novel 

ERs which had evidence of splicing, since the overlapping split reads could be used to assign the precise 

boundaries of ERs, allowing us to confidently retrieve the DNA sequence and corresponding amino acid 

sequence for each novel ER. A total of 2,961 ERs covering 274Kb were found to be potentially protein coding, 

which represented 57% of the ERs analysed, highlighting the possibility of pathogenic variants disrupting 

protein function having been overlooked within these regions due to incomplete annotation.  

 

Misannotation of OMIM genes may limit genetic diagnosis 

We assessed the completeness of annotation for genes already known to cause Mendelian disease, since 

misannotation of this set would likely have the greatest impact on genetic diagnosis. Novel ERs were first 

connected to known genes using split reads (Supplementary figure 2b, see detailed Methods) to provide a 

conservative estimate of novel annotation. Next, we filtered for OMIM-morbid genes and found that 63% of this 

set of OMIM-morbid genes were misannotated, suggesting that despite many of these genes having been 

extensively studied, the annotation of most OMIM-morbid genes remains incomplete (Figure 5a). Given that 

OMIM-morbid genes often produce abnormalities specific to a given set of organs or systems, we investigated 

the relevance of novel transcription to disease by matching the human phenotype ontology (HPO) terms 

obtained from the disease corresponding to the OMIM-morbid gene to the GTEx tissue from which ERs 

connected to that gene were derived. We discovered that 72% of misannotated OMIM-morbid genes had an 

associated novel ER originating from a phenotypically relevant tissue (Figure 5b). This phenomenon was 

exemplified by MYH3, which encodes the embryonic myosin heavy chain 3 protein and when mutated can cause 

distal arthrogryposis types 2A (Freeman-Sheldon syndrome), 2B (Sheldon-Hall syndrome) and type 8 (multiple 

pterygium syndrome)29,30. We detect a 117bp intronic ER in MYH3 in skeletal muscle, which matches the 

affected disease tissue (Figure 5d). Interestingly, this ER which connects to two protein-coding exons of MYH3 

through split reads, is not conserved within mammals (phastCons7: 0) but is amongst the top 11% of most 

constrained regions of the genome suggesting a human-specific function. We postulate that the poor 

conservation of the ER and the complex pattern of MYH3 gene expression with post-natal expression being 

limited to specialised muscle tissues (such as extraocular, jaw-closing and regenerating muscle)31, would 

explain why this probable novel exon was not previously reported. Similarly, we detected a cerebellar-specific 

72bp intronic ER with respect to ERLIN1. When disrupted this gene is known to cause spastic paraplegia 62 

(SPG62), an autosomal recessive form of spastic paraplegia, which has been reported in some families to cause 

not only lower limb spasticity, but also cerebellar abnormalities32. The novel ER we detected in cerebellum had 

the potential to code for a non-truncated protein and connected through intersecting split reads to two 

flanking, protein-coding exons of ERLIN1, supporting the possibility of this ER being a novel protein-coding 

exon. Furthermore, the putative novel exon was highly conserved (phastcons7 score: 1) and was amongst the 
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top 30% most constrained regions in the genome, suggesting it is functionally important both across mammals 

and within humans (Figure 5c). Currently, variants located in the novel ERs detected in both MYH3 and ERLIN1 

would not be captured using WES and if identified in WGS would be misassigned as non-coding variants. This 

would mean that identification of pathogenicity would be highly driven by statistical evidence of the variant 

associating with cases rather than controls which would be very challenging for such rare disorders (–100 

Freeman Sheldon syndrome: ~100 known cases, Sheldon-Hall syndrome: <100 known cases, Multiple 

Pterygium syndrome: ~50 known cases, Spastic Paraplegia 62: prevalence <1/1,000,000).  
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Discussion 
 
In recent years, the use of next-generation sequencing has changed the landscape of clinical genetics. WES and, 

to a lesser extent, WGS are becoming key components of diagnostic testing and have dramatically accelerated 

the discovery of new disease-causing genes. However, recent analyses predict that there is a finite pool of 

disease-causing genes, which will be exhausted by 2020 or earlier33. With the reducing number of potential 

disease genes left to discover, we believe genetic diagnosis will become ever more reliant on the accuracy and 

completeness of the annotation of known disease-related genes. Foreseeing this, we build on existing resources 

to develop a method to accurately detect novel transcription in an annotation-agnostic manner, connect novel 

ERs to known genes and ultimately, improve the annotation of 63% of all OMIM-morbid genes.  

We find that most probable novel exons we detect have a restricted expression pattern, which is often 

disease-relevant and significantly more abundant in brain. Furthermore, since our approach does not rely on 

conservation across species to annotate novel exons, we are able to identify ERs which are likely to be of 

human-specific importance. Using constraint scores generated from aligning 7,794 human genomes and 

PhastCons conservation scores we find that collectively our probable novel exons, while not necessarily 

conserved are depleted for genetic variation within humans suggesting that they are potential sites for 

pathogenic variation23. Interestingly, the putative tissue-specific origin and human-specific functions of the 

novel transcription we detect also provides a reasonable explanation for their omission from existing 

annotation databases and the abundance of novel transcription in human brain. The practical difficulty of 

accessing the brain reduces the number of available brain-specific datasets and its higher transcriptomic 

diversity is known to generate a higher number of brain-specific transcripts. In addition, we find that brain-

specific ERs have the highest constraint scores, emphasising their specific importance in humans. Together 

these factors suggest that the resource we have generated will have the greatest impact on the diagnosis of 

neurogenetic disorders.  

Since the underlying aim of our analyses is the improvement of diagnostic yield for genetic testing, we 

provide the vizER web interface and BED-formatted descriptions of novel ERs, which will serve as an important 

resource for clinical scientists and clinicians in the diagnosis of Mendelian disorders. Finally, we note that as 

the availability of cell-specific and cell state-specific RNA-seq data increases, novel exon discovery is likely to 

accelerate and will provide additional insights into the molecular processes underpinning rare genetic 

disorders.
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Figures

 
Figure 1 – Optimisation of the detection of transcription. a) Transcription in the form expressed regions (ERs) was detected in an 

annotation agnostic manner across 41 human tissues. The mean coverage cut-off (MCC) is the number of reads supporting each base above 

which that base would be considered transcribed and the max region gap (MRG) is the maximum number of bases between ERs below which 

adjacent ERs would be merged. MCC and MRG parameters were optimised for each tissue using the non-overlapping exons from Ensembl 

v92 reference annotation. b) Line plot illustrating the selection of the MCC and MRG that minimised the difference between ER and exon 

definitions (median exon delta). c) Line plot illustrating the selection of the MCC and MRG that maximised the number of ERs that precisely 

matched exon definitions (exon delta = 0). The cerebellum tissue is plotted for (b) and (c), which is representative of the other GTEx tissues. 

Green and red lines indicate the optimal MCC (2.6) and MRG (70), respectively.   
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Figure 2 – Transcription detected across 41 GTEx tissues categorised by annotation feature. Within each tissue the length of the ERs 

Mb overlapping a) all annotation features b) purely exons c) exons and introns d) exons and intergenic regions e) purely intergenic regions 

f) purely introns according to Ensembl v92 was computed. Tissues are plotted in descending order based on the respective total size of 

intronic and intergenic ERs. Tissues are colour-coded as indicated in the x-axis, with GTEx brain regions highlighted with bold font. At least 

8.4Mb of novel transcription was discovered in each tissue, with the greatest quantity found within brain tissues (mean across brain tissues: 

18.6Mb, non-brain: 11.2Mb, two-sided Wilcoxon rank sum test p-value: 2.35e-10)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/499103doi: bioRxiv preprint 

https://doi.org/10.1101/499103
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

17 

 

 

Figure 3 – Validation of novel transcription. a) The classification of ERs based on v87 and v92 of Ensembl was compared. Across all 

tissues, the number of intron or intergenic ERs with respect to v87 that were known to be exonic in the newest version of Ensembl (minimum 

250) was greater than the number of ERs overlapping exons according to v87 that were now unannotated in v92 (maximum 87). Tissues are 

plotted in descending order based on their respective total size of intergenic and intronic ERs. Tissues are colour-coded as indicated in the x-

axis, with GTEx brain regions highlighted with bold font. b) Barplot represents the percentage of ERs seeding from the GTEx frontal cortex 

that validated in an independent frontal cortex RNA-seq dataset reported by Labadord and colleagues. ERs defined in the seed tissue were 

re-quantified using coverage from the validation dataset, after which the optimised mean coverage cut off was applied to determine 

validated ERs. Colours represent the different annotation features that the ERs overlapped and the shade indicates whether the ER was 

supported by split read(s).  
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Figure 4 – Novel ERs collectively serve an important function for humans and a proportion can form potentially protein coding 

transcripts. a) Comparison of conservation (phastCons7) and constraint (CDTS) of intronic and intergenic ERs to 10,000 sets of random, 

length-matched intronic and intergenic regions. Novel ERs marked by the red, dashed line are less conserved than expected by chance, but 

are more constrained. Brain–specific ERs marked by the green, dashed lines are amongst the most constrained. Data for the cerebellum 

shown and is representative of other GTEx tissues. b) The DNA sequence for ERs overlapping 2 split reads was obtained and converted to 

amino acid sequence for all 3 possible frames. 2,168 ERs (57%) lacked a stop codon in at least 1 frame and were considered potentially 

protein-coding.   
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Figure 5 – Misannotation of OMIM genes. a) A novel ER connected through a split read was discovered for 63% of OMIM-morbid genes. b) 

Comparison of the phenotype (HPO terms) associated with each misannotated OMIM-morbid gene and the GTEx tissue from which 

misannotations were derived. Through manual inspection, HPO terms were matched to disease-relevant GTEx tissues and for 72% of 

misannotated OMIM genes, the associated novel ER was detected in the phenotype-relevant tissue. Visualised examples of misannotated 

OMIM-morbid genes c) ERLIN1 and d) MYH3. Top track represents the genomic region including the gene of interest marked in green. 

Second group of tracks detail the split reads and ERs overlapping the genomic region derived from the labelled tissue. Blue ERs overlap 

known exonic regions and red ERs fall within intronic or intergenic regions. Blue split reads overlap blue ERs, while green split reads overlap 

both red and blue ERs, connecting novel ERs to OMIM-morbid genes. Thickness of split reads represents the proportion of samples of that 

tissue in which the split read was detected. Only partially annotated split reads (solid lines) and unannotated split reads (dashed lines) are 
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plotted. The last track displays the genes within the region according to Ensembl v92, with all known exons of the gene collapsed into one 

“meta” transcript. 
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Gene property Estimate P-value 

Brain-specific 0.093 *** 

Transcript count 0.016 *** 

Gene length 4.18E-07 *** 

Gene biotype - protein coding 0.218 *** 

Gene biotype – lincRNA -0.039 *** 

Gene biotype - processed pseudogene -0.154 *** 

Gene biotype - unprocessed pseudogene -0.093 *** 

Gene biotype – other -0.113 *** 

Gene TPM -2.62E-06 0.4 

Overlapping gene 1 0.83 

  *** p <= 2e-16 

Table 1 – Gene properties influencing misannotation Gene characteristics such as brain specificity, transcript count, gene 

length, mean TPM and whether the gene overlapped with another were used to assess which genes were the most likely to be 

identified as misannotated. Brain-specific, longer, protein-coding genes of high transcript complexity were the most likely to be 

misannotated. Blue and red highlights positive and negative significant estimates, respectively.  
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Supplementary figures 

 

Supplementary figure 1 – Proportion of exons that fall into different gene biotypes. Comparison of the proportion of exons that are 

classified within the different gene biotypes between all exons from Ensembl v92 and the non-overlapping set of exons used to optimise the 

detection of transcription.  
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Supplementary figure 2 – Characterising ERs using Ensembl annotation features and split reads. a) Illustration of the ER 

categorisation dependent on overlap with existing gene annotation. ERs in red are considered novel transcription. Blue ERs are those that 

overlap existing exons and are considered part of existing annotation. Grey ERs were uninformative and likely an artefact generated from 

genomic regions with high amounts of noise, pre-mRNA or overlapping genes, therefore were removed from all downstream analysis. b) 

Diagram showing the use of split reads (reads with a gapped alignment to the genome) to characterise novel ERs. Split reads were classified 

as annotated, partially annotated or unannotated dependent on whether the acceptor or donor sites both overlapped, only 1 of the acceptor 

or donor sites overlapped or neither overlapped known Ensembl v92 exon boundaries respectively. Partially annotated split reads were used 

to connect novel ERs to known genes. Partially annotated and unannotated split reads were used to provide evidence of RNA processing for 

novel ERs. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/499103doi: bioRxiv preprint 

https://doi.org/10.1101/499103
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

24 

 
Supplementary figure 3 – Tissue specificity of novel ERs. Taking all intronic and intergenic ERs that were intersected by two non-

overlapping split reads, we inferred the precise boundaries of this set of 5,129 unique novel ERs. We then counted the number of tissues in 

which these ERs were detected. The majority (51.3%) of ERs were detected in only 1 tissue and 85.9% were detected in less than 5 tissues.  
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Supplementary figure 4 – Total Kb of novel ER entering Ensembl v92 annotation compared to random, length-matched intron and 

intergenic regions For each of the 41 tissues, 10,000 random sets of intron and intergenic (with respect to Ensembl v87) regions were 

generated and length matched to the intron and intergenic ERs derived from that tissue. For all 10,000 sets, we counted the total Kb of 

regions that were now exonic in Ensembl v92, shown by distributions of black dots on the graph. Red “X”’s mark the actual total Kb of novel 

ERs for each tissue that were validated and one-sample Wilcoxon rank sum tests were used to test whether this quantity was significantly 

different from the randomised sets (all p-values < 2e-16).  
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