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Abstract. Circular RNAs (circRNAs), with their crucial roles in gene
regulation and disease development, have become a rising star in the
RNA world. A lot of previous wet-lab studies focused on the interaction
mechanisms between circRNAs and RNA-binding proteins (RBPs), as
the knowledge of circRNA-RBP association is very important for un-
derstanding functions of circRNAs. Recently, the abundant CLIP-Seq
experimental data has made the large-scale identification and analysis of
circRNA-RBP interactions possible, while no computational tool based
on machine learning has been developed yet.

We present a new deep learning-based method, CRIP (CircRNAs Interact
with Proteins), for the prediction of RBP binding sites on circRNAs,
using only the RNA sequences. In order to fully exploit the sequence
information, we propose a stacked codon-based encoding scheme and a
hybrid deep learning architecture, in which a convolutional neural net-
work (CNN) learns high-level abstract features and a recurrent neural
network (RNN) learns long dependency in the sequences. We construct
37 datasets including sequence fragments of binding sites on circRNAs,
and each set corresponds to one RBP. The experimental results show that
the new encoding scheme is superior to the existing feature representa-
tion methods for RNA sequences, and the hybrid network outperforms
conventional classifiers by a large margin, where both the CNN and RNN
components contribute to the performance improvement. To the best of
our knowledge, CRIP is the first machine learning-based tool specialized
in the prediction of circRNA-RBP interactions, which is expected to play
an important role for large-scale function analysis of circRNAs.

1 Introduction

Circular RNAs (circRNAs) are a special type of non-coding RNAs, whose struc-
tures are characterized by non-linear backsplicing. Although categorized as non-
coding RNAs, their potential to code for proteins has been reported recently [27].
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Compared to linear RNA molecules, circRNAs are more stable and conserved
across species [18]. Natural circRNAs have been discovered 20 years ago, while
their important roles in gene regulation and disease development have attracted
public attention only until recent years [17][23].

Benefiting from the high-throughput sequencing techniques, a large number
of circRNA loci have been discovered in human genomes. Various databases
and computational methods have been designed for circRNAs. For instance,
circBase collects datasets of circRNAs and provides visualized tools for browsing
circRNAs at genome scale and identifying circRNAs in sequencing data [15];
CIRCpedia also allows users to search, browse and download circRNAs with
expression characteristics/features in various cell types/tissues including disease
samples [37]; CircR2Disease focuses on the associations between circRNAs and
diseases [13]; and CircInteractome houses the RBP- and miRNA-binding sites
in human circRNA sequences [10].

According to previous studies, the regulatory functions of circRNAs largely
rely on their interactions with microRNAs and RNA-binding-proteins (RBPs),
acting as miRNA sponges [25][16][17] and RBP sponges [9][38]. In order to detect
the interactions between proteins and RNAs, high-throughput techniques have
been developed, including both in vivo and in vitro experiments [36,32]. In
[24], the authors applied a soft-clustering method, RBPgroup, to various CLIP-
Seq datasets, and grouped RBPs that specifically bind to the same RNA sites.
[20] reported an approach circScan to identify regulatory interactions between
circRNAs and RBPs by discovering back-splicing reads from cross-linking and
immunoprecipitation followed by CLIP-Seq data.

Due to the availability of abundant RNA sequences, the prediction of protein-
RNA interaction based on machine learning methods has been a hot topic in the
bioinformatics field [21], as the data-driven methods can save the costly and
laborious work of biological experiments. The prediction of protein-RNA bind-
ing sites is essentially a classification problem, involving both sequence feature
representation for RNAs and classification models. The existing feature repre-
sentation methods of RNAs fall into two major categories, based on statistical
properties and sequence encoding schemes, respectively.

Traditionally, RN A sequence classification adopts handcrafted features, which
are mainly extracted from statistical properties. For instance, k-tuple nucleotide
composition [39] is the most basic method, which lays the foundation for a series
of statistical feature extraction methods of RNAs. Note that RNAs have 4 differ-
ent nucleotides, ‘A (Adenine)’, ‘G (Guanine)’, ‘C (Cytosine)’ and ‘U (Uracil)’,
thus k-tuples have 4% different combinations, which means that each RNA se-
quence corresponds to a 4*-dimensional feature vector. This type of features can
capture the short-range or local sequence order information [5].

During the past decade, with the rise of deep learning, sequence encoding
methods have attracted more and more research attention. One-hot encoding
is a simple and common feature representation method, which has been widely
used in biological sequence classification [3]. For RNA/DNA sequences, each nu-
cleotide is encoded as a 4-dimensional binary vector, which can work with both


https://doi.org/10.1101/499012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/499012; this version posted December 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

traditional classifiers and deep models. Furthermore, some researchers incorpo-
rated the secondary structure of RNAs and encoded them in the one-hot manner
[31].

Besides the feature representation, various machine learning methods have
been applied in the prediction of molecular interactions. For instance, support
vector machines (SVMs) and random forests (RFs) have been applied to protein-
protein prediction [33] and RNA-protein prediction [26]. Deep learning models
have also merged, e.g., DeepBind based on CNN [1], iDeep based on multiple
feature fusion [29] and iDeepE based on local and global CNNs [30].

Despite the progress on predicting interactions between linear RNAs and
RBPs, the computational tools for identifying the interactions between circR-
NAs and RBPs have not been reported yet. Although the existing methods for
linear RNAs could be applied, customized tools for circRNAs are needed due to
the following reasons. First, the mechanisms of circRNAs interacting with RBPs
are different from those of other types of RNAs, thus the existing methods may
not be generalized well to circRNAs. Second, circRNAs have limited information
for the prediction. For linear RNAs, besides the sequences, secondary structures
information is usually extracted and incorporated into the predictor. Unlike lin-
ear RNAs, which have free ends and diversified secondary structure elements,
circRNAs are more topologically constrained (a covalently closed continuous
loop). Third, there is still room to improve the current predictors for RNA-
protein interactions. For one thing, the conventional one-hot representation may
lose much information of sequence patterns due to the low dimensionality and
simple encoding scheme. For another, the capabilities of deep learning models
are not yet fully exploited.

In this study, we propose a deep learning-based model for predicting RBP
binding sites on circRNAs using sequence information alone, named CRIP, which
is driven by a new stacked codon-based encoding scheme and a hybrid neural
network model as the classifier. We assess the new method on the benchmark
data sets of protein-circRNA binding sites, CRIP achieves higher prediction
accuracy compared with both the traditional classifiers and state-of-the-art deep
learning models. As far as we know, this is the first predictor for circRNA-protein
interactions using machine learning, which will assist in revealing important roles
of circRNAs in gene regulation.

2 Methods

In this study, we design a hybrid neural network model to predict the interactions
between circRNAs and proteins. We first collected RBP binding sites in circRNA
sequences from the CLIP-Seq experimental data. Instead of using the traditional
one-hot encoding method, we propose a stacked codon-based encoding to get an
initial representation for the RNA sequences. Then we use the CNN to learn high-
level features from the initial representation and the long short-term memory
(LSTM) network to learn dependency within the sequences. Finally, two fully


https://doi.org/10.1101/499012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/499012; this version posted December 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

connected layers are used to determine whether the given circRNA fragment is
a binding site or not. The whole pipeline is shown in Fig. 1.

2.1 Data preparation

In order to assess the prediction performance of CRIP, we construct a bench-
mark set of RBP-binding sites on circRNAs. The bound sequences are extracted
from the circRNA Interactome database (https://circinteractome.nia.nih.
gov/), which houses over 120,000 human circRNAs [11]. Considering that our
model conducts prediction based solely on circRNA sequences and a high se-
quence identity may cause biased result for machine learning methods, we use
the CD-HIT package [14] with a threshold of 0.8 to eliminate redundant se-
quences. Finally, we have a total of 32,216 circRNAs associated with 37 RBPs.
For each RBP, we build a classification model, where the positive samples are
derived from verified binding sites on circRNAs. Following our previous works
[29], we extract sequence segments spanning upstream 50 nt and downstream
50 nt around the binding sites corresponding to the read peaks. Thus each sam-
ple is a segment of length 101. The negative samples are extracted from the
remaining fragments of the circRNAs, with the same length as positive samples.
The positive samples and negative samples are also filtered to remove redundant
sequences with a cutoff of 0.8 using CD-HIT. The positive-to-negative ratio is
1:1, and detailed data statistics are listed in Supplementary Table S1.

In addition, since CRIP is also applicable to linear RNA data, we compare
the performance of CRIP with the existing tools on the prediction of interactions
between linear RNAs and RBPs, using previously published benchmark sets of
linear RNAs, i.e., the same dataset used in iIONMF [35] and iDeep [29], retrieved
from DoRiNA [4] and iCount (http://icount.biolab.si/). There are 31 datasets
derived from CLIP-Seq data, corresponding to 31 experiments and covering 19
RBPs. The positive and negative samples are generated in the same way de-
scribed above, and each of the 31 datasets has 5000 training samples and 1000
test samples, both of which has the positive-to-negative ratio of 1:4.
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Fig. 1: Flowchart of the proposed CRIP method. CRIP represents RNA sequences by
stacked codon-based encoding, which is fed into a CNN module followed by a BiLSTM
module and further classified through two fully connected layers.

2.2 Stacked codon-based encoding

With the increasing applications of deep learning methods in sequence analysis,
traditional feature extraction methods, like k-mer frequency, have been largely
replaced by sequence encoding methods. Especially, one-hot encoding has been
widely used in biological sequence classification [3]. However, one-hot has ob-
vious drawbacks. For RNA/DNA sequences, each nucleotide is encoded as a
4-dimensional binary vector. Such a low-dimensional feature representation may
be incompetent to characterize the sequence information well. Especially, the
sequence context information is not encoded in one-hot method.

In order to incorporate context information and get an expanded vector
space retaining more sequence features, we propose a new method, called stacked
codon-based encoding. Inspired by the recent finding of circRNAs that they can
code for proteins [27], we map each 3 consecutive nucleic acids (i.e. 3-mer) in
the circRNA sequences into a pseudo amino acid. The mapping is similar to the
translation of codons, except that the mapping is conducted in an overlapping
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manner due to the indeterminacy of the starting site. Also, since this is not a
real translation process, we allow stop codons in the middle of the sequence.

Since there are 64 combinations of 3-mers and only 21 different characters
(20 amino acid plus a stop codon), each amino acid may correspond to multiple
codons. Therefore, our stacked codon-based encoding method can be regarded
as a variant of k-mer method, where k = 3. That is, we extract k-mer from
the left to right of a sequence using a sliding window in an overlapping way;
while unlike k-mer method, which leads to a high-dimensional feature space
(4%), we convert the 3-mers into a 21-length alphabet, thus reducing the feature
dimensionality and grouping the 3-mers with common biological properties at
the same time. Finally, we encode the ‘amino acid’ sequences by the conventional
one-hot method, i.e. each amino acid and the stop codon is converted into a 21-D
binary vector, where only one feature equals 1.

Let & be an RNA sequence of length L. It will be converted into a pseudo-
amino acid sequence, whose alphabet is A=A, C, D, E, F, G, H, I, K, L, M, N,
P,Q, R,S, T, V, W, Y, Z where ‘Z’ denotes the stop codon. § is represented
by a 21x(L-2)-D matrix M (there are a total of L — 2 overlapping codons for a
sequence of length L). The jth column of the matrix is a one-hot vector for the
jth letter in the converted sequence &', where j € {1,2,---,L — 2}. Then the
elements of M are represented in Eq. (1),

1 ifi=1Ig
Mi,j:{ hT (1)

0 otherwise

where S is the jth character of S, I s; denotes the index of S in the alphabet
A and i € {1,2,---,21}.

As illustrated in Fig. 1, the corresponding pseudo-amino acid sequence of the
input sequence GAGUAA is ESVZ, where GAG codes for E, AGU codes for S,
GUA codes for V and UAA is a stop codon. Since the indexes of E, S, V and
7 in the alphabet is 4, 16, 18 and 21, respectively, then the generated matrix
M is 21x4-D, and My 1, Mg 2 , Mg 3 and My 4 are equal to 1, while other
elements are zero.

For comparison, we consider another coding scheme, called IUPAC [7], which
provides another alphabet including 16 characters. IUPAC considers the genetic
variation, thus each character in its alphabet corresponds to a polymorphic sta-
tus of nucleic acids, like ‘A or C’” and ‘not G’, as shown in Supplementary Table
S2 [19]. In this paper, the IUPAC method refers to the extended one-hot using
the IUPAC alphabet.

2.3 The CNN layers

The convolutional neural network (CNN) has been demonstrated to have power-
ful capability to extract high-level abstract features, not only for image process-
ing but also natural language processing tasks [34]. In this study, we also employ
CNN as a feature extractor, whose input is the sequence encoding, i.e., the ma-
trix M described in Section 2.2. Assume the size of M is d x [, where d is the
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dimensionality of the one-hot vectors (d = 21 for the stacked codon-based en-
coding) and [ is the length of the converted pseudo-amino acid sequence, we take
a one-dimensional convolution along the sequence. For the convolutional layer,
we set the length of a filter as hy, which means that the filters are operated on
hy words/tokens. Let X; be the original encoding matrix for the segment of the
input sequence processed by the sliding kernels at the ith time step, which is
actually a submatrix of M, consisting of the ith to (i +hy—1)-th columns of M.
For convenience, we take the transposed submatrix of M as X;. Then the size
of X; is (i 4+ hy — 1) x d. The corresponding outputs of all X;s passing through
the j-th sliding kernel turns out to be a column vector, y’/. Each element, yf is
defined in Eq. (2),

y! = g(X; * W[5, 5] + b;), @)
ie{l,2,---,l—h;+1},5€{1,2,--- ,n}

where ¢(-) is a ReLU function, n is the number of the filters, W is the convo-

lutional filter (W € R?s*@*7) "and b is the bias. In the pooling layer, we choose

an average pooling over the sequence with the length of h,. The output of the

pooling layer for the jth filter is a column vector defined as z’, where the mth

element, 27 , is computed as Eq. (3),

kth,—1

i1 j

Fm = > v
Pog=k

l—hy+1
hp

3)

me{1,2,.-.,{ J},k:(m—l)xhp—l—l.

Let Z be the matrix whose column vectors are z7, i.e., the high-level features
learned by the CNN model. Z is fed to the subsequent BiLSTM model for clas-
sification.

2.4 The BiLSTM layer

Through the convolutional filters and average pooling layers, the CNN module
learns and integrates local information of RNA sequences. Then we stitch the
data of all the channels of each subunit into a new feature vector. In order to
further exploit the sequence information, we adopt a bidirectional long and short-
term memory network (BiLSTM). Compared with traditional recurrent neural
networks (RNNs), LSTM has advantages in addressing the vanishing/exploding
gradient problem and long-term dependency. Especially, BILSTM exploits the
contextual information on both sides. Let s, and s; be the hidden states for the
forward and backward computation at the tth time step. The calculation of s;
and s, relies on s,_; and s;+1, respectively, as defined in Eqs. (4) and (5).

st = f(Uz; + Ws,_yy), (4)
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where U and W are the weight matrices for the input and the hidden state,
respectively, and z; is the input vector in the tth step, i.e., the tth row vector of
Z.

s; = f(Uz + W s y), (5)
where U and W' are the weight matrices for the input and the hidden state used

in the backward computation, respectively. To integrate contextual information,
the output for tth step is defined as,

Out; = g(Vs; + V,s;) (6)

where V and V' are the transformation matrices of the preceding and following
context for the current time step.

2.5 Output concatenation and the fully connected layers

By convention, only the last output of LSTM is fed to the fully connected layer
for final classification. In this study, we find that the outputs of previous time
steps also contain some information helpful for the classification. Therefore, we
concatenate the output vectors of all the time points, i.e.,

Out,; = Out;HOut,@P - - - POut,, (7)

In addition, since the concatenated output has a high dimensionality, we add
two fully connected layers to gradually reduce the dimensionality for the final
classification, and the softmax layer maps all outputs to probabilities.

Outj, = g(W},Outyy + b},) (8)
Out?, = g(W3.0ut}, +12,) (9
Out = softma:v(Outfcc) (10)

where ¢ is the ReLU function, W}c and chc are the weight matrices, and b}c
and bfcc are the bias terms.

2.6 Motif analysis

To further explore the sequence patterns of RBP-binding sites on circRNAs, we
search motifs from the positive sequence fragments via the MEME suite [2]. The
motifs are extracted for each RBP dataset respectively, and the most significant
motif corresponding to each RBP is shown in Supplementary Table S3, where
the width of motifs ranges from 8 to 15.
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3 Experimental Results

3.1 Experimental settings

In CRIP, the CNN module mainly consists of two parts. The convolution layers
have a total of 102 filters with size 7 x 21, and the pooling layers adopt a window
with size 5 x 1. The BiLSTM contains 120 neurons. The activation function used
in the middle layer is ReLu and in the final output layer is softmax. Adam
algorithm is used as the optimizer with learning rate 0.0001, the loss function is
categorical cross-entropy, and early stopping is also used to avoid overfitting. The
training and test sample ratio is 4:1. And a 5-fold cross-validation is adopted on
the training set to select parameters. Through a grid search on the validation set,
the batch size of 50 and the training epoch number of 30 achieve the optimum
results.

3.2 Performance of CRIP

Investigation on the feature encoding In order to represent RNA sequences,
both traditional feature extraction methods and sequence encoding schemes have
been investigated. For instance, in [33] and [26], k-mer frequencies were used
as features and classified by SVMs and random forests. Some recent works,
DeepBind [1], iDeep [29], and iDeepS [28], adopted one-hot encoding and deep
learning models as classifiers.

Here we compare the stacked codon-based encoding with two other sequence
encoding methods, i.e. traditional one-hot and IUPAC code [19]. Table 1 shows
averaged AUCs of the three encoding methods on the 37 circRNA datasets,
working with two different classifiers, namely BiLSTM (i.e., the RNN part in
the hybrid neural network) and the hybrid neural network, respectively. In both
cases, our method achieves the best performance, and ITUPAC outperforms one-
hot slightly. Obviously, our method and IUPAC have larger alphabets than the
conventional one-hot method, and the extended encoding space is helpful to
retain sequence features. As can be seen, benefiting from the CNN module, all
the three encoding methods get improved accuracy, and the performance gap
becomes smaller compared to using only the LSTM component, suggesting that
the deep learning architecture can compensate for the initial simple features.

Investigation on the learning models As described in Sections 2.3 and 2.4,
our model includes a CNN module and a BiLSTM module. In order to evaluate
the contribution of each module in the hybrid neural network, we examine the
performance of the single modules, respectively. The results are shown in Fig. 2.
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Fig.3: Comparison of AUCs between
CRIP and the predictors based on tra-
ditional machine learning models on 37
circRNA datasets.

Fig.2: The AUCs of the LSTM module,
CNN module and the hybrid model on 37
circRNA datasets.

Table 1: Comparison of different encoding methods on 37 circRNA datasets

Average AUC
Method BiLSTM Hydrii neural network
Codon-based encoding| 0.845 0.872
One-hot 0.821 0.862
IUPAC 0.828 0.868

Apparently, the single modules do not perform as well as the hybrid model
which has an average AUC of 0.872. The CNN module is better than the BiLSTM
module (0.861 vs. 0.845). It shows that CNN does have an advantage in feature
extraction and can extract more accurate information for the detection of RNA-
protein interaction.

3.3 Comparison with the existing predictors for predicting
circRNA-RBP interactions

Comparison with traditional machine learning methods Regardless of
space structure, the identification of RBP-binding sites on RNAs relies on the
same information source, namely RNA sequences, for any types of RNAs. Thus,
we apply previous methods designed for linear RNAs to the circRNA data. Es-
pecially, in [26], the authors proposed RPISeq-SVM and RPISeq-RF to identify
RNA-protein interactions, which used two representative shallow learning mod-
els, SVMs and random forests. And the RNA sequence features were represented
by normalized 4-mer composition. Here we implement these two methods, which
are trained and evaluated using the same 37 circRNA datasets as CRIP. The
results are shown in Fig. 3.
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The advantages of CRIP over the traditional learning methods are obvious.
Among the 37 datasets, CRIP achieves the best results on 30 datasets. The
average AUC of CRIP is 0.872, which is 4.6% higher than that of the SVM
(0.834), and 13.4% higher than that of RF (0.769), demonstrating the advantages
of the proposed deep model against traditional learning methods.

Comparison with the existing deep learning methods To further assess
the performance of CRIP, we compare it with the deep learning based predic-
tors using sequences alone, including DeepBind [1] and iDeepS [30], while iDeep
and iDeepE are excluded in the comparison due to the following reasons: i)
iDeep requires annotation information of gene regions and clip-cobinding [29];
ii) iDeepE breaks sequences into multiple overlapping subsequences with size
101, which yields better performance than DeepBind for long sequences but per-
forms similarly to DeepBind for short sequence fragments. DeepBind utilizes
only sequence features and adopts a sequence CNN, while iDeepS integrates
both sequence and secondary structure information, and adopts a similar model
architecture as CRIP. Since these two methods were designed for linear RNAs
rather than circRNA, to perform a fair comparison, we conduct the experiments
on the benchmark sets for linear RNAs, including 31 datasets. The results are
shown in Fig. 4.

mmm CRIP DeepBind HE iDeepS

1.0

0.9

0.7 1

0.6 1

0.5

AGO1234
\GO2MNASE

g
3

Fig.4: Comparison of the AUCs of DeepBind, iDeepS and CRIP on 31 linear RNA
datasets

Apparently, CRIP has achieved the best results for most of the RBPs. For
some RBPs, like the Argonaute family of proteins (AGO), CRIP has a much
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higher AUC than the two other methods. iDeepS has a slight advantage over
DeepBind, perhaps because the secondary structure information incorporated
in iDeepS helps improve the prediction accuracy. On average, CRIP obtains an
AUC value of 0.856, which is higher than that of DeepBind (0.835) and iDeepS
(0.839). This experiment demonstrates that CRIP not only applies to linear
RNAs, but also improves AUC for about 2% compared with the state-of-the-art
deep models designed for linear RNAs.

3.4 Experiments for the RBPs common to circRNAs and linear
RNAs

The models trained on linear RNAs could not simply be applied to
circRNAs Previous studies have employed both shallow and deep learning
models for predicting RNA-protein interactions, but none of them was designed
for circRNAs. Note that there are some RBPs shared by circRNAs and other
types of RNAs, thus we compare the RBPs used in this study and previous
studies [28][30] and find 11 RBPs common to linear RNAs and circRNAs. We
first check whether the predictors trained by linear RNAs can be generalized to
circRNAs.

For each circRNA test set of the 11 shared RBPs, we compare the perfor-
mance of CRIP with iDeep* !. Fig. 5 shows the prediction results of iDeep* and
CRIP for the common RBPs. As can be seen, CRIP outperforms iDeep* on all
of the 11 datasets. Especially for FUS, HNRNPC and MOV10, CRIP improves
the AUC by more than 10%, indicating that the training sequences in iDeep*
(linear RNAs) may be very different from the test sequences (circRNAs), and
these two types of RNAs may differ in the interaction mechanisms to the same
RBPs.

This experiment demonstrates the necessity of developing a specific predictor
for identifying binding sites in circRNA sequences, not only for new RBPs, but
also for the shared RBPs with linear RNAs.

Linear RN As and circRNAs binding to the same RBPs differ in pre-
diction accuracy Compared with linear RNAs, circular RNAs have their dis-
tinct structure and mechanism for binding to proteins, which motivates us to
develop a new tool for identifying circRNA-protein interactions, while CRIP can
actually be applied to any type of RNAs. As mentioned in Section 3.4, circR-
NAs share some RBPs with linear RNAs. Therefore, we compare the prediction
performance of CRIP on the common RBPs for linear RNAs and circRNAs, as
shown in Fig. 6.

Among the 11 common RBPs, circRNAs have a lower accuracy on 8 datasets.
The performance of linear RNAs and circRNAs differs a lot for some RBPs, e.g.
FUS and SFRS1. The reasons for the performance difference are manifold. As
a machine learning-based method, the performance of CRIP heavily relies on

! Since circRNAs only have sequence information, we retrain the iDeep [29] using
linear RNA sequences alone and name it iDeep™.
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Fig.5: Comparison of AUCs of CRIP and iDeep on the common RBPs. iDeep” is
trained on linear RNAs and evaluated on test circRNAs. CRIP is trained on training
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Fig. 6: Comparison of AUCs for common RBPs shared by linear RNAs and circRNAs,
where the AUCs for linear RNAs and circRNAs are obtained both by CRIP using
sequence information.
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the scale of training data. In the linear RNA dataset, each RBP corresponds to
10000 sequence segments in the training set (5000 positives and 5000 negatives);
while when we construct the circRNA dataset, we extract fragments from all
binding sites, thus if there is a large number of binding sites on a circRNA, then
it will have abundant training samples; otherwise the training set will be small.
In other words, our datasets vary in scale. Generally, a large training set will lead
to good performance. For instance, the FUS and HNRNPC datasets of circRNA
binding sites are the two biggest ones among the 11 RBPs, with 20000 and 14224
positive samples, respectively. Both of them achieve better accuracy compared
against their corresponding datasets of linear RNAs. Especially, for FUS, the
AUCs of circRNA data and linear RNA data are 0.930 vs. 0.849. However,
there are a few exceptions. On the QKI dataset, CRIP also performs better
on circRNAs than on linear RNAs (0.960 vs. 0.904), but the number of positive
training samples is only 1033, suggesting that there are other factors affecting the
prediction accuracy. Through a motif search using the MEME suite, we identify
a conserved and concentrated pattern, ‘ACUAAC’, on the circRNAs binding to
QKI. This motif has been verified and was included in the CISBP-RNA database
[32]. Similarly, we also find two other conserved fragments, which are consistent
with the motifs in CISBP-RNA, namely ‘UGUA’ for the binding to Pum2 and
‘UUUU’ for the binding to TIA1 (Table 2). These two datasets have only 2829
and 2202 positive samples, respectively, while their accuracies are very close to
those of their corresponding sets on linear RNAs. From these observations, we
conclude that conserved motifs may also help in the performance enhancement.

Table 2: Some common motifs shared by circRNAs and linear RNAs.

RBP [Known Motif* |Motif logo generated by circRNA binding sites

QKI | ACUAACY LgQSUAARgé.é..%..ée#

Pum2| UGUAHAUA }U UA_,:.AQA

TIA1 | UUUUUBK }QUUQUUUQUUCUUUU

*The known motifs are represented by IUPAC code in the CISBP-RNA database [32] and
extracted from linear RNAs.

4 Discussion

This study explores the potential of predicting circRNA-RBP interactions based
on RNA sequences using a deep neural network model. The main contributions
include:
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— Construct benchmark datasets of circRNA segments binding to RBPs, and
propose the first specific predictor for the identification of RBP binding sites
on circRNAs;

— Design a new encoding scheme to represent RNA sequences, and successfully
apply it to the prediction of RBP binding sites on both circRNAs and linear
RNAs;

— Employ a hybrid deep neural network to further enhance the performance.

The success of CRIP lies in the enriched feature representation and powerful
DNN model. Unlike the conventional one-hot method which encodes nucleic
acids one by one, the new encoding method traverses the 3-mers sequentially
in an overlapping manner, just like the traditional k-mer feature extraction,
and then encode the 3-mers into a binary vector according to the codons for
amino acids. Thus, benefiting from the context information retained in the 3-
mers and the expanded feature space, the new stacked-codon encoding provides
more informative representations. Moreover, the CNN and BiLSTM components
further learn high-level abstract features and contextual information from the
encoding vectors, respectively.

Besides the evaluation of the new model, we perform motif analysis for cir-
cRNAs interacting with 37 different RBPs. Specifically, we use the MEME tool
[2] to extract conserved patterns from the binding sites. Supplementary Table
S3 shows the most significant motifs (according to E-value) extracted from the
positive samples for each RBP. As mentioned in Section 3.4, we find that some
circRNAs have the same motifs as linear RNAs when binding to the same RBPs,
indicating the two types of RNAs may share a common binding mechanism. We
also find that the binding sites for some RBPs exhibit a common pattern, i.e.
“GAAGAAG”, including AGO2, ALKBH5, CAPRIN1, LIN28B, IGF2BP3, etc.
Actually, it is a common motif related to RNA modification [22, §].

Despite the common motifs, for the same RBP, binding sites on circRNAs
and linear RNAs may have large sequence diversity. A typical example is the
dataset for binding to FUS. The classifier trained on linear RNAs has a very low
prediction accuracy on circRNAs (Fig. 5); while using CRIP which is trained
on circRNAs, the accuracy becomes much higher than that of linear RNAs.
Therefore, it would be interesting to explore the different binding mechanisms
that lead to performance variance.

In addition, there exist some potential applications of CRIP. RBPs have been
discovered to play important roles in circRNA production. To identify those
RBPs related to circNRA biogenesis, we need to first predict the interactions
between circRNAs and all available RBPs. As some RBPs, e.g. FUS [12] and
QKI [6], have been experimentally verified to be involved in circRNA biogene-
sis, through the analysis on the binding sequence patterns from these verified
interactions, we can identify novel RBPs involved in circRNA biogenesis.
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5 Conclusions

This study aims to identify circRNA-protein interaction sites by using a machine
learning model. By treating the task as a binary classification problem, we pro-
pose a new sequence encoding scheme and a hybrid neural network model. The
idea of the new encoding method is to convert RNA triplets into pseudo-amino
acids based on nucleotide codons in an overlapping manner, and represent the
pseudo-amino acids via one-hot encoding. And the hybrid neural network con-
sists of a CNN module and a BILSTM module. The goal of using a hybrid model
is to combine the advantages of both the two deep architectures, and obtain
better high-level abstraction feature representations for the classification. The
experiments show that both the new sequence encoding method and the hybrid
model contribute to the performance improvement. Compared to the existing
predictors, our model has an obvious advantage in the prediction accuracy. We
believe that this tool will contribute to uncovering functions of circRNAs.
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