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Cancer immunotherapies rely on how interactions between cancer and immune system cells are
constituted. The more essential to the emergence of the dynamical behavior of cancer growth
these are, the more effectively they may be used as mechanisms for interventions. Mathematical
modeling can help unearth such connections, and help explain how they shape the dynamics of cancer
growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system
interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches.
We did this for a family of three related models of increasing complexity. To this end, we developed
a base model of CISI, which captures some essential features of the more complex models built
on it. We find that the base model and its derivates can plausibly reproduce biological behavior
that is consistent with the notion of an immunological barrier. This behavior is also in accord
with situations in which the suppressive effects exerted by cancer cells on immune cells dominate
their proliferative effects. Under these circumstances, the model family may display a pattern
of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are
possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for
bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in
combination with the administration of immune effector cells, modifications in cancer cell killing may
be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas
to test immunotherapeutic interventions in silico in a stochastic version of the base model. This
bistability-reliant approach to cancer interventions might offer advantages over those that comprise
gradual declines in cancer cell numbers.

INTRODUCTION

Mathematical modeling of cancer-immune system in-
teractions can reveal the fundamental mechanisms that
govern the dynamics of tumor growth [1, 2], and repre-
sent and important tool to devise and test new forms of
immunotherapy in silico [3]. The modeling relies on the
appropriate integration of how these different cell types
affect one another [4–8]. Recent studies have uncovered
a plethora of interactions by which cancer cells affect im-
mune cells, and vice versa [2, 9]. For instance, cancer cells
elicit immune responses by a variety of effector cells [9–
11]. These effector cells, in particular white blood cells,
natural killer cells (NKs) and cytotoxic T lymphocytes
(CTLs) can lyse cancer cells [12], inhibiting tumor growth
or even eliminating microscopic tumors altogether — a
process termed immunosurveillance [13, 14]. However,
cancers have also been shown to be able to suppress
the proliferation of effector cells, which typically target
cancer cells with specific biochemical signatures [15, 16].
Cancer cells accrue mutations that, by changing these
signatures, enable them to partially evade recognition
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[1, 17, 18]. Furthermore, cancers may actively down-
regulate immune responses elicited against them [19–23],
for example by recruiting the action of T regulatory cells
[9, 24, 25], leading to immunosupression. A summary of
these interactions shows that all combinations of stim-
ulation and suppression on growth between cancer and
immune cells may act simultaneously (see Figure 1A).
These interactions direct the interplay between the can-
cer and the immune system. Thus, their integration into
mathematical models can reveal how immunotherapeutic
approaches may be employed with maximum efficiency.
The main immunotherapy approaches today work by im-
pairing mechanisms that allow cancers to evade immune-
recognition or by the administration of effector cells to
the host [9, 26] (see Figure 1B).

Due to their importance for immunotherapy, mathe-
matical models of cancer-immune interactions have been
the focus of intense theoretical efforts over the last decade
[1, 2]. At the heart of this theoretical effort lies the task
of identifying what features of cancer-immune dynamics
are most effectively used to achieve immunotherapeutic
success, i.e. cancer eradication. Following this tradition,
we focus on deterministic, population based non-spatial
models for analysis. We do this for two reasons. First,
their mathematical simplicity is better suited to unam-
biguously reveal those model properties that are crucial
for the modification of a cancer’s state, since the number
of factors influencing the dynamics is manageable and
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FIG. 1. Cancer-immune system interactions and effects of immunotherapy. A) Interactions governing the dynamics
between cancer cells (T) and immune cells targeting the cancer cells —termed effector cells— (E). A complex web of interactions
has been identified [1, 2, 9], with both cell types capable to both stimulate and suppress each others’ growth. B) Immunotherapy
acts by either increasing the killing rate of effector cells, for example by administrating new effector cells into the host (adoptive
T cell transfer), or by impairing the escape mechanisms cancer cells adopt to avoid being cleared, for example by monoclonal
antibody therapy.

understandable [2]. Second, we can draw from a broad
body of theory about immune system pressures devel-
oped within cancer research [2, 8, 27–31] as well as in
virus dynamics, and in particular, human immunodefi-
ciency virus (HIV) dynamics research [32–43]. To ex-
plore immunotherapeutic interventions in silico, we use
a stochastic version of one of the models analyzed.

In this study, we have explored whether there exist
simple, consistent properties of cancer-interaction models
that might be harnessed to devise effective immunother-
apy approaches. We investigated this question in a fam-
ily of three related models of increasing complexity. To
this end, we developed a base model of cancer immune
system interaction (CISI), which captures some essen-
tial features of more complex models. The purpose of
the model is thus to serve as a potentially useful guide
for treatment therapies based on immune action. We
analyzed under what parameter regimes the model pro-
duces biologically plausible behavior, and investigated
how steady states are affected by changes in these param-
eters. We then successively extended the model to first
include more complex features of cancer-immune system
interactions [36], such as saturating proliferative stimula-
tion and exhaustion and in a second step, to include the
action of NKs and CTLs. The common properties identi-
fied in these models were then used to study how combi-
nations of immunotherapeutic treatments may work to-
gether to achieve eradication. To this end, we imple-
mented stochastic simulations of the base model and an-
alyzed how the dynamics are affected by adoptive T cell
transfer [44–47], as well as by the disruption of immune

evasion mechanisms of the cancer through for example
monoclonal antibody therapy [9] [48].

MATERIALS AND METHODS

To analyze the algebraic properties of a system of equa-
tions involving cancer-immune interactions, we used the
program Mathematica [49]. To find equilibrium points in
situations where this was not algebraically possible, we
used the rootSolve package in R [50–52].

Since all ordinary differential equations (ODEs) here
described are deterministic, the time course of the decline
of cancer cell numbers will always follow the same con-
tinuous trajectory given the identical initial conditions.
However, when small cancer cell numbers are reached,
the temporal order at which the discrete events occur
that underpin the dynamics will become important. Such
events include the replenishment of immune cells and
cancer cell deaths. Thus, at small cell numbers, account-
ing for the stochasticity of these events will add realism
to the simulation, and help decide when eradication has
effectively been achieved. To this end, we employed the
Gillespie algorithm, where the interactions between cell
types are explicitly simulated. Stochastic simulations of
all ODEs were run in the R language for statistical com-
puting [53] by using the Gillespie algorithm [54] with tau
leaping in the adaptivetau package [55]. If not stated
otherwise, simulations were run with the set of param-
eter values given in Table I. For alternative strategies
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to account for the stochasticity of CISI at the temporal
mesoscale see [56].

To model treatment, two possible procedures were con-
sidered. First, an increase in the ability of immune cells
to detect and eliminate cancer cells — their killing rate
or efficacy. Second, adoptive immune cell transfer, corre-
sponding to the injection of immune cells into the system
[44, 45]. Both of these mechanisms enhance the suppres-
sion of cancer growth by the immune system and can be
applied in concert as combination immunotherapy. The
time at which the killing rate is first enhanced, the treat-
ment time τk, can differ from the time at which cancer-
specific immune cells are first injected into the system τE .
Also, the time period during which each of these treat-
ment approaches are administered can vary, with ∆τk the
treatment period for killing efficacy enhancement, and
∆τE the period for immune cell transfer.

We assume that treatment always consists in the ad-
ministration of either immunoactivating compounds or
immune cells into the host system, and we denote the
amount of compound delivered as the administered dose.
In the increased killing efficacy approach, we assume that
the alteration induced by the administration of the com-
pound is permanent, which is reflected in a change of the
killing efficacy parameter of NK or CTLs, ∆c, or ∆k,
respectively. The change occurs gradually over the time
course of the treatment. For example, an initial CTL
killing efficacy k before treatment initiation will by in-
creased by ∆k/∆τk every day, leading to a final efficacy
of k + ∆k .

In the immune cell transfer approach the change in
immune cell numbers is not permanent. Because the im-
mune cells are assumed to be rendered ineffective at a
predefined rate (for example by the shedding of NKG2D
ligands such as MIC-A, MIC-B [9] or alternatively, by
the upregulation the ligands PD-L1 or PD-L2 [15, 16]),
immune cell numbers will be affected by already present
cancer cells. Thus, immune cell numbers will change de-
pending on the state of the cancer due to its suppressive
effect on immune cell proliferation. Conversely, cancer
cell numbers will vary due to immune cell killing. Anal-
ogously to the dosage of killing efficacy increasing com-
pounds, effector cells are administered at daily doses of
∆E/∆τE cells, until the full dose of ∆E has been dis-
pensed.

RESULTS

Base-model of cancer-immune system interactions

We develop a base model of cancer-immune cell in-
teraction. The model follows a large body of theory that
uses two-equation deterministic ODEs to describe the in-
teraction between cancer tumor cells and immune system
cells [2, 8, 27–31]. This model aims to replicate some ba-
sic features of cancer dynamics with a minimum of added
complexity. With such an approach, qualitative insights

about the behavior of the system can be obtained by rel-
atively simple mathematical analysis. To this end, we
make four fundamental assumptions. First, we assume
the existence of immune cells, which are able to detect
and kill tumor cells [10, 11]. These cells may eliminate
microscopic tumors before they grow to endanger the or-
ganism; a process termed immunosurveillance [13, 14].
Second, these immune cells comprise the action of all
cells that control tumor growth by antigen recognition
and subsequent elimination [2], including natural killer
(NK) cells [61] and CD8+ T cells (or CTLs) [62] and are
termed effector cells. The process by which the cancer
cells are neutralized is called lysis [12]. A background
level of effector cells is present at all times [63]. Third,
we assume that tumor growth is well described by a logis-
tic growth in the absence of immune cells [2]. Fourth, the
interactions between tumor and cancer cells are governed
by mass-action kinetics [8].

The third assumption of logistic growth warrants spe-
cial discussion. The dynamics of tumor growth remain
a debated issue in the literature. Benzekry et al. com-
pared different theoretical growth dynamics in lung and
breast tumor data of mice [64]. They concluded that
Gompertzian growth typically best predicts data. Gom-
pertzian growth dynamics are motivated by the obser-
vation that tumor growth prior to detection appears to
be faster than after detection [2]. This suggests that the
initial unbounded growth may be limited by the exhaus-
tion of growth resources or cancer cell’s mutual growth
impairment. Gompertzian growth dynamics, developed
on the basis of birth and death processes, account for
this behavior, and yield a sigmoidal type of growth curve
for cancer cell numbers. However, the Gompertz model
suffers from serious drawbacks, while other models did
almost equally as well as the Gompertzian in predicting
data [64]. Because an upper bound of the proliferation
rate is imposed by cell division time, the Gompertz model
cannot adequately describe the dynamics of very small
tumors [2, 29]. Furthermore, theoretical analysis reveals
that Gompertzian growth is at odds with the immuno-
surveillance hypothesis, because the immune response is
unable to eradicate cancers that grow in a Gompertzian
fashion [2, 28]. Thus, given these assessments, we chose
a growth model that retains a sigmoidal cancer growth
curve shape, namely logistic growth. With this, we pre-
serve the notion of an exhaustion of growth resources.
We note however, that alternative growth models may
also successfully capture tumor growth patterns.

Our base model differs from most models in the lit-
erature in that it combines proliferative and suppressive
effects of cancer cells on immune cells in one single term
that describes its net effect. In this way, we can analyze
how the systems behaves depending on the net effect of
these opposing forces.

The equations for the base model are:
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Parameter Description Value

a maximum replication rate of cancer cells [5] 0.514 day−1

b inverse carrying capacity of tumor [5] 1.02 · 10−9 cells−1

k killing efficiency of immune cells [57, 58] 10−4 − 10 cells−1day−1

σ replenishment rate of immune cells [35] 10 cells · day−1

d immune cell death rate [59, 60] 1 · 10−2 day−1

m maximum immune cell proliferation rate −10−6 day−1

TABLE I. Standard parameter values for the base model.

dT

dt
= aT (1− bT )− kTE, (1)

dE

dt
= σ − dE +mET. (2)

Tumor or cancer cells T , grow at a maximal rate a in
a logistic fashion. The population density of the cancer
cells is regulated by the coefficient b, which acts as an
inverse carrying capacity. The cancer cells are detected
and killed by effector cells E at a net rate k [8]. We
assume a constant supply of effector cells at a rate σ
[34, 35], and a death rate d per effector cell [33]. Effector
cells can either be stimulated to proliferate or be impaired
in their growth at a rate m, the net growth increase or
decrease due to the presence of cancer cells. In other
words, m can attain positive as well as negative values.

We proceed to analyze the possible equilibria of this
system. We start by observing that (T ∗1 , E

∗
1 ) = (0, σ/d)

is always a fixed point of the ODEs above. Two further
solutions for T ∗ can be represented by the quadratic for-
mula (see Appendix A):

T ∗2,3 =
a(m+ bd)±

√
∆s

2abm
, (3)

where

∆s = (a(m+ bd))2 − 4abm(ad− kσ). (4)

A closer inspection of the properties of the dynamics of
(1-2) reveals that all biologically relevant cases, namely
those in which T ∗2,3 > 0, are consistent with m < 0 (see
Appendix A). This corresponds to a net immune cell pro-
liferation suppression by cancer, which can arise by vari-
ous mechanisms [15, 16, 19–23, 36]. m < 0 is also where
a bistability pattern in the steady states of (1-2) emerges.
The alternative m > 0, leads to scenarios which are at
odds with well established concepts of cancer modeling,
and produce incomplete dynamics (see Appendix A). In
particular, they conflict with the well-established notion
of an immunological barrier [8]; the idea that tumors
have to grow above a critical threshold to reach a large
size close to carrying capacity [2]. Temporary changes in
the activity of the immune system can lead to fluctua-
tions in tumor size which place its size above the barrier,
which then lead to cancer.

There are three possible cases of sign arrangements of
the roots of (3) under m < 0: i) both negative, ii) one
positive and one negative, iii) both positive. Scenario i)
has T ∗1 as only biologically plausible solution. Only the
cancer-free state exists. Case ii) signifies a single attrac-
tive equilibrium at a non-zero tumor size. The emergence
of a cancerous cell suffices to ignite a replicative process
that induces the establishment of a tumor close to car-
rying capacity 1/b. Thus iii), where T ∗2,3 > 0, is the only
case which admits stable equilibria compatible with an
existing immunological barrier.

For T ∗2,3 > 0 to be satisfied, and while assuming that
a > 0 and b > 0 for biological reasons, we obtain the
following conditions (see Appendix A):

m < 0 (5)

m+ bd < 0 (6)

k > kl = ad/σ (7)

k < ku =

(
ad− (a(m+ bd))2

4abm

)
1

σ
(8)

= kl −
(

(a(m+ bd))2

4abm

)
1

σ
.

These results reveal a bistability pattern that is me-
diated by the killing efficacy k. Figure 2 shows how
the increase in the parameter k leads to a bifurcation
in the stable states of T and to bistability for k. At
k < kl the system will reside in the aforementioned case
ii). By increasing k above kl but below ku, the system
will enter case iii), and move to i) as k > ku. In line
with our expectations, values of k below the threshold
value kl represent a similar situation as would be ex-
pected in the absence of immune cells: unchecked cancer
growth. If k is gradually increased above kl, the tumor
cells would have to begin replicating at increasingly large
initial sizes in order to avoid being absorbed by the at-
tractor at T ∗1 = 0, that is, to be suppressed by the im-
mune system. This is where the bifurcation appears, and
now three equilibria, of which two are stable, dominate
the dynamics. The parameter range spanned between ku

and kl, |ku − kl| = (a(m+bd))2

4abmσ is highly dependent on the
ratio of b and m, as well as σ. Lastly, large values of k
above ku entail that even few effector cells are able to
clear the tumor, and even large tumors are eliminated
with certainty.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2020. ; https://doi.org/10.1101/498741doi: bioRxiv preprint 

https://doi.org/10.1101/498741
http://creativecommons.org/licenses/by-nc/4.0/


5

10−5 10−3 10−1 101 103
0.0

0.2

0.4

0.6

0.8

1.0

k [cells ⋅ day−1]

re
la

tiv
e 

tu
m

or
 b

ur
de

n 
bT

FIG. 2. Bistability of immune control of tumor growth. In-
creasing values of k lead to the emergence of a bifurcation
in equilibrium tumor cell numbers. The emergence of the bi-
furcations is indicated by black, vertical dashed lines. The
upper blue line shows the largest stable steady states and
the lower dashed blue line shows the smallest of the steady
states, while red lines show unstable steady states for a given
k value. If bT is one, the cancer has reached carrying capac-
ity. At bT = 0, no cancer cells exist. Thus, above a threshold
value ku, the cancer is cleared. The parameter values are
m = −10−6, σ = 10 [35, 65], d = 2 × 10−2 [59, 60], a = 0.514
[5], b = 1.02 × 10−9 [5].

At intermediate k (case iii) the base level of effector
cells crucially affects the dynamics. In the absence of
cancer, the equilibrium level of effector cells is at σ/d.
The appearance of cancer cells will induce a killing pro-
cess mediated by k. High enough effector cell levels will
suppress tumor growth. In reality, the tumor might fluc-
tuate above some threshold within which effector cells
control it, and the suppression of further T cell prolifera-
tion (m < 0) by the cancer will dominate over the killing.
Thus, the conditions (5-8) mark the region of killing ef-
ficacy values that constitute an immunological barrier to
the cancer. Increasing k values imply that this barrier is
heightened: existing effector cells improve their capacity
to completely eliminate the cancer.

This analysis may serve as a model to think about how
to efficiently combine immunotherapy approaches. These
results suggest that one mechanism to generate biologi-
cally plausible bistability is consistent with situations in
which the cancer’s immunosuppressive effects outweigh
its immunoproliferative effects (m < 0). The existence
of a bifurcation implies that increasing killing efficacies
will not simply gradually diminish cancer cell numbers.
Instead, an increase above above a critical value ku can
terminally clear the cancer. Equally, if k is located in
the range kl < k < ku, the adoptive transfer of effector

cells may work by perturbing cancer cell numbers below
the unstable equilibrium point T ∗2 , after which it will be
absorbed into T ∗1 = 0 and be cleared.

Model variations

The here presented base-model, despite being strongly
simplified, can help us intuitively understand more com-
plex models of cancer-immune system interactions. In
the following, we demonstrate that the basic bistability
phenomenon can be replicated in two related, but more
complex variations of the base-model. When possible,
we analyze whether multistability can arise, because of
its relation to cancer dormancy, and because it might
mitigate the effect of treatment.

Incorporating saturation effect of tumor cells on
immune response

A natural way to extend the base-model is to include
more biologically plausible assumptions about the behav-
ior of effector cells. Here, we retain the basic assumptions
going into the base model, but refine the way that effector
cells are reacting to the presence of tumor. In particular,
we follow the approach by Conway et al., which allows
for a very general set of behaviors of effector cells to arise
and also provides estimates for the parameters [36]. This
study is set in the context of HIV, where a great body
of theory has been devoted to the particulars of CTL
behavior [33]. The equations are:

dT

dt
= aT (1− bT )− kTE, (9)

dE

dt
= σ − dE + be

T

κe + T
E − de

T

κd + T
E. (10)

Here, the interactions governing the rate of change in
tumor cells have remained intact. Effector cell growth
can now be stimulated at a maximum rate be [36, 66].
The proliferation rate saturates with the number of tu-
mor cells T , and is half-maximal at the Michaelis-Menten
constant κe [36]. In contrast, effector cells can be ex-
hausted by contact with tumor cells, and die from its
consequences at a maximal rate de [36, 67]. As with pro-
liferation, a saturation ensues in the exhaustion which is
mediated by κd. For typical values of these parameters
see Table II in Appendix B. Models with a saturation
term dT

dt have been analyzed before [68], and have been
thoroughly discussed in for example [3].

As with the base model, T ∗1 = 0 is always a fixed point.
The rest of the fixed points are determined by the roots
of a cubic equation (see Appendix B). For the system of
equations to generate bistability, that is, to give rise to
exactly two positive equilibria in T , the following set of
conditions needs to be satisfied (see Appendix B):
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18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2 > 0 (11)

−2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(B2 − 3AC)

√
9A2

B2 − 3AC

))
− B

3A
< 0 (12)

2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(3AC −B2)

√
9A2

B2 − 3AC

)
− 2π

3

)
− B

3A
> 0, (13)

where

A = −ab (d− be + de) , (14)

B = ab(beκd − deκe − d(κd + κe)) (15)

+a(de + d− be)− σk,
C = a(deκe − beκd) (16)

+ad(κd + κe − bκdκe)− σk(κd + κe),

D = κdκe (ad− σk) . (17)

Analogously to the base model, a closer inspection of
this result reveals that biologically plausible dynamics are
consistent with A = ab (be − de − d) < 0 (see Appendix
B1 ). Interestingly, this expression is independent of κe
or κd. Since a, b > 0, this implies that be < d+de0 which

is analogous to the situation where m < 0 in the base
model. The treatment rationale identified in the base
model may therefore also be applicable for the extended
base model with saturation (9-10).

In Conway et al’s work [36], this condition is satisfied
by be < de, which is also functionally equivalent to m < 0
in our base-model: the effector cell population decreases
due to cancer-mediated exhaustion. Importantly, the pa-
rameter choice in Conway et al. is also consistent with the
emergence of bistable and multistable equilibira.

Besides bistable patterns, the system (9-10) can also
generate a pattern of multistability. The conditions to
obtain four equilibria in T for (9-10) reads:

18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2 > 0 (18)

−2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(B2 − 3AC)

√
9A2

B2 − 3AC

))
− B

3A
> 0, (19)

where A,B,C and D are as in (14). Again, a biolog-
ically plausible arrangement of equilibrium points is in
agreement with A < 0. Figure 5 shows that bistability
becomes common for de > 1 and k > 5 · 10−4, with the
elimination of cancer ensuing after a critical k-threshold
is surpassed.

The existence of multiple stable equilibria may be in-
terpreted as cancer dormancy (see Discussion). Cancer
dormancy is the phenomenon of a period of non-growth of
tumors. Often, this occurs in small, nearly undetectable
tumors residing within body tissues [69]. These small
tumors are said to be dormant, that is, not growing to
large and more threatening sizes. Figure 5 shows that
multistability is possible in (9-10). The existence of mul-
tistability in two-equation models has been predicted and
shown in other work [8, 29, 70]. Here, we give precise an-
alytical conditions for its emergence under (9-10). When
in a multistable regime, an increase in killing efficacy k
might not directly lead to the elimination of the cancer
if treatment is started when the cancer is near carrying
capacity 1/b. Instead, a new microscopic steady state
(MISS, [29]) might be attained before a further increase
in k leads to cancer clearance.

Incorporating natural killer (NK) cells and
tumor-specific CTL response

In a next step, we incorporated a further level of com-
plexity by distinguishing between two types of effector
cells: natural killer or NK cells, and cytotoxic T lympho-
cytes or CTLs. Models that account of the different roles
between NK and CTL can be highly complex [5]. To bet-
ter understand where possible bistabilities originate from,
we restrict ourselves to an extension of the base model
with saturation, following an approach inspired by de Pil-
lis et al. [5] and Conway et al. [36]. Effector cells are now
split into NK cells N and CTLs E:

dT

dt
= aT (1− bT )− cNT − kTE, (20)

dN

dt
= σ − µN + bn

T

κbn + T
N − dn

T

κdn + T
N, (21)

dE

dt
= −dE + be

T

κbe + T
E (22)

−de
T

κde + T
E + ωNT.

Here, cancer cells T are killed at rates c by NK cells,
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and at rates k by CTLs. The dynamics of the NK is now
analogous to the dynamics of immune cells in (9-10). We
assume a constant supply of NK cells σ stemming from
the host’s hematopoesis. NK cells die naturally at a rate
µ. The maximum NK proliferation rate induced by the
presence of cancer cells is bn, and the saturation coeffi-
cient is κbn. Again, exhaustion occurs at a maximum rate
dn and the saturation in T is half maximal at κdn. For
CTLs, following [5], we assume that there is no constant
supply of cells. Instead, CTL growth is stimulated by
the NK-cancer cell interactions at a rate ω. This model-
ing approach ensures that CTLs are activated only after
the emergence of the NK immune response [5]. Several
biological mechanisms appear to exist by which NKs can
stimulate CTL growth [71]. The work of Fan et al sug-
gests that already activated NK cells can facilitate the
priming of CTLs by means of IFN-γ [72]. The prolifer-
ation and exhaustion terms are as in the extended base
model.

The model (20-22) can generate substantially more
complex behavior than the two previously analyzed. As
in the previous models (1-2 and 9-10), T ∗1 = 0 is always
a fixed point. However, the NK-CTL model may allow
for up to five other fixed points (see Appendix C ). This
is because finding the steady states of (20-22) can be re-
duced to finding the roots of the rate of change of T ,
dT
dt (T ), which is a polynomial of sixth order. The five
fixed points besides T ∗1 = 0, are the roots of a fifth order
polynomial, for which no general solutions exist. Thus,
we cannot draw similar conclusions for the existence of
real fixed points as in the previous, relying on analogous
conditions on discriminants ∆s > 0 or ∆ > 0. How-
ever, similarly to the base model (1-2), a similar condi-
tion to m < 0 is compatible with biologically plausible
arrangements of fixed point’s stabilities. The expression
analogous to m < 0 is (see Appendix C ):

−ab ((be − de − d) (bn − dn − µ))− kσω < 0 (23)

The analogy to m < 0 arises from k, σ, ω > 0, valid
bounds in most biological contexts. If tumor cells are able
to exhaust NKs and CTLs, that is, if both (be − de − d) <
0 and (bn − dn − µ) < 0, then the system can display
biologically reasonable behavior. Note that unlike the
previous models, this condition can be satisfied by other
means as well, such as increasing k. Again, the con-
dition is independent of the four saturation coefficients
κbe, κde, κbn, κdn.

Due to the analytical unfeasability of the model (20-
22), we resorted to numerical methods to prove the ex-
istence of basic bistability patterns (see Appendix C )
[50, 51]. We found that the system is able to display
bistability similar to that found in the extended base
model with saturation (see Figure 6).

Bistability-based Strategies of Cancer
Immunotherapy

The existence of bistability patterns in simple non-
spatial cancer models as well as its variations, can be
informative to the assessment of immunotherapeutic op-
tions and of their efficacy. Taking the base model (1-2)
as a foundation, three intervention approaches seem ap-
parent. First, the elimination of the exhaustive effects of
cancer on the immune cells (m < 0 → m > 0). Second,
the increase of the killing efficacy of effector cells above
some threshold (k < ku → k > ku). Third, the admin-
istration of effector cells (E → E + ∆E).In terms of the
dynamics, this represents pushing the state of the sys-
tem into the attraction basin of T = 0. Combinations of
these therapy approaches have previously been explored
in simulations [68], and constitute a promising avenue of
future research [9].

In current immunotherapy, the two main available
tools for cancer cell reduction correspond to the second
(antibody therapy) and third (adoptive T cell transfer)
options [9, 26]. In antibody therapy, an increase in killing
efficacy is attained by disrupting cancer cells mechanisms
to avoid recognition by immune cells, effectively impair-
ing T cell killing. This impairment occurs by the acquisi-
tion of mutations in cancer cells that, for example, lead to
the expression of the PD-L1 and PD-L2 ligands [15, 16].
These ligands are known bind to the PD-1 receptors on
T cell surfaces, thereby downregulating the activation of
the T cells. Monoclonal antibodies binding to the ligands
can interrupt this cancer escape mechanism and make the
cancer cells visible for the immune system again, making
them a useful way to effectively increase k. In adoptive T
cell transfer [44, 45], T cells are pre-programmed to kill
host cells that carry particular biochemical signatures,
for example certain peptides on their surface. The sig-
natures are chosen such that they match characteristic
features of cancer cells. Subsequently, these specific T
cells are grown and injected into the blood stream of the
patient [9].

These two novel treatment methods can be combined
to take advantage of the bistability phenomenon in can-
cer. We used the base model (1-2) to investigate how a
combination of both approaches could be used to clear
the tumor, while accounting for the stochastic effects aris-
ing from singular cell-to-cell interactions. Starting from
an already established tumor, increasing the efficacy of
killing of effector cells will not by itself necessarily lead
to the elimination of the tumor, unless very high levels of
killing efficacy can be attained. Instead, increasing the
killing efficacy by two orders of magnitudes will lead the
system to equilibrate at tumor cell numbers lower than
the carrying capacity (see Fig. 2). If the treatment with
monoclonal antibodies has been effective enough, it will
have shifted the system into a regime with two stable
equilibria, out of which one is the cancer-free state. If
now the system is perturbed further with adoptive T cell
transfer into the attraction basin of the cancer-free equi-
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librium, the waning of the effects of the first treatment
will not lead to the reemergence of the cancer. Thus, the
generation of a temporary bistability in the system can
be exploited to perturb it into a cancer-free state.

To model the combined effects of killing efficacy in-
creases by PD-1 specific monoclonal antibody and adop-
tive T cell transfer treatments, we used stochastic ver-
sion of the base cancer immune interaction model (1-
2) (see Materials and Methods). Figure 3 shows the
time courses of the dynamics with and without treat-
ment. Without treatment, a cancer that has surpassed
the immunological barrier will grow unrestricted up to
levels very close to carrying capacity (Fig. 3A). The com-
bined administration of effector cells and killing efficacy-
increasing compounds at first only gradually reduces can-
cer numbers (Fig. 3B). Daily administered effector cells
∆E/∆τE (Materials and Methods) can only temporarily
affect the dynamics before they are rapidly suppressed
and exhausted by the cancer (m < 0). When the state
of the system is pushed into the attraction basin of the
cancer-free state, cancer numbers rapidly plummet to-
wards zero. Further injections of effector cells become
unnecessary, and effectors build up.

We then investigated whether an increase in k and the
administration of effector cells E work together in a syn-
ergistic or antagonistic fashion to remove the tumor. Fig-
ure 4 shows the outcome of combination immunotherapy,
initiated simultaneously for antibody and T cell injec-
tions. Each immunotherapeutic approach may clear the
cancer on its own. A marked frontier between cancer
presence and clearance emerges. A lowering of killing
efficacies along this frontier will lead to insufficient pres-
sure to clear the cancer, but can be compensated by an
increase in adoptive transfer doses. The linear shape of
the frontier indicates that the two approaches do not mu-
tually impair each others’ function.

DISCUSSION

In this study, we have shown that the base model can
only reproduce biologically plausible behavior if the sup-
pressive effects exerted by cancer cells on immune cells
dominate their proliferative effects. Under these circum-
stances, the base model displays a conspicuous pattern
of bistability : The cancer-immune interaction dynamics
gives rise to two distinct, stable states (a cancer-free, and
a full-grown tumor state). Under bistability, the modi-
fication of the killing efficacy can lead to a bifurcation
in cancer cell numbers, where the system may abruptly
be tipped into a new, cancer-free state. Furthermore,
in situations where exhaustion prevails over prolifera-
tion in immune cells, all analyzed models can produce
bistability patterns that are biologically plausible. If this
condition is not satisfied, the base model cannot pro-
duce biologically plausible behavior across a range of k.
We also formulated more complex extensions of the base
model, which can generate multistability, a dynamic be-

havior that can be interpreted as stable microscopic can-
cers [28], or cancer dormancy [8, 69]. We gave the ex-
act conditions under which multistability might arise in
one model extension inspired by [36]. We also examined
how bistability may be used for effective combination im-
munotherapy. We tested a combination of two different
immunotherapeutic approaches in stochastic simulations
of the base model. We found that the combination of
treatment interventions is able to clear the cancer, and
that the different treatments approaches do not impair
one another.

How both treatment approaches investigated here
would work in isolation has to some extent been stud-
ied in other work [2, 27, 29]. However, it is less apparent
that they may be employed to work in concert without
mutual impairment. This is important when considering
side effects of these therapies. For example, the adminis-
tration of PD-1 antibodies in mice have resulted in lung
inflammation and cardiomyopathy [9, 73, 74]. Thus, we
find that combination immunotherapy may help mini-
mize the risks associated with standalone approaches.

Another advantage of this study lies in that it specif-
ically shows how multistability may arise from standard
assumptions about cancer-immune system interactions
(saturation terms), and in that it gives precise conditions
for its emergence. Although the first extended model
with saturation (9-10) is not intended to admit multiple
steady states, these arise as a consequence of the basic
assumptions about interactions.

Intermediate-sized cancers in multi-stable regimes may
be interpreted as cancer dormancy [8, 29, 70], but the
model ((9)-(10)) does not explicitly explain how they
may escape immune control. For immune escape to arise,
additional processes must be assumed, such as stochas-
tic perturbations or immunoediting [75]. A discussion of
how tumors might rise to large numbers in models very
similar to the base model with saturation has been given
in Kuznetsov et al. [8] and by Wilkie and Hahnfeldt
[76]. In the Kuznetsov et al. model, a separatrix be-
tween the two main attraction basins passes close by the
trivial, cancer-free steady state. When a cancer arises
and starts to replicate at low numbers, it should follow a
trajectory into a dormant, stable steady state. However,
stochastic fluctuations can push the system’s state into
the other attraction basin.In the Wilkie and Hahnfeldt
model, the saddle point is the dormant state itself. An-
other of the main mechanisms hypothesized to drive the
transition from dormancy to large tumors is immunoedit-
ing [69]: The prolonged growth suppression of the tumor
by the immune response leads to the selection of can-
cer mutations that escape immune pressure, effectively
reducing the immune killing efficacy k [75]. The model
(9-10) can also offer an intuitive explanation for this pro-
cess, whereby a smaller, undetectable and stable equilib-
rium of cancer cells is maintained by a relatively weak
immune response. The further decrease of the immune
response efficacy by means of immune escape processes
leads to the establishment of a full grown tumor. This
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FIG. 3. Simulation runs of the base model without A) and with B) immunotherapeutic treatment. A) Cancer
replication begins at T (0) = 102, and the natural equilibrium of the effectors is at E(0) = 103. The cancer grows to carrying
capacity in a time frame of around 45 days. B) Combined immunotherapeutic treatment is initiated at 50 days after the the
cancer has begun to grow. It lasts for 21 days in antibody therapy, and 28 days in adoptive cell transfer. Killing efficacies are
increased to ∆k = 10−1, while a total of ∆E = 105 cells are injected in a gradual fashion. Immune cells are eliminated rapidly
by the powerful immune exhaustion effects exerted by the cancer cells. Parameters values are as in Table I. In particular,
k = 10−4.
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FIG. 4. Cancer cell numbers after combination im-
munotherapy after 120 days. Immunotherapy begins at
day 50, after the cancer has grown to full size, and lasts for a
single day. Combination immunotherapy is implemented by
increasing the killing efficacy of the effector cells and adoptive
immune transfer of effector cells. Darker colors indicate high
cancer cell numbers, implying that the cancer persists, while
lighter colors indicate low cancer cell numbers. Parameter
values are as in Table I.

is exemplified by the fact that decreasing k in Figure
?? pushes the system into a region of parameter space
where there exists a stable steady state for the tumor at
carrying capacity, that is the full grown cancer state.

Most other models of cancer-immune interaction so far
have attributed the phenomenon of dormant states to the
existence of an additional compartment: quiescent can-
cer cells [69, 77]. These cells are assumed to replicate at a
slower rate than normal cancer cells, and can revert back
to a fast growing state by means of phenotypic switch-
ing or by acquiring further mutations [69]. In line with
other work, the model (9-10) explains the existence of
dormancy by a specific balance of cancer cell growth and
killing attained in cancer-immune interactions, without
relying on any additional compartments or assumptions.
A notable example of how dormancy can emerge from
cancer-immune interactions alone is given in Kuznetsov
et al. [8]. A third mechanism for the emergence of dor-
mancy has been given by [76]. In this mechanism, dor-
mant states are represented by saddle nodes traversed by
a separatrix demarcating the adjacent attractor regions
of either growth progression or tumor clearance.

This point emphasizes a last advantage of non-spatial
ODE models: Understanding cancer growth requires an
appropriate description of cancer-immune system inter-
actions at multiple scales [1]. These scales range from
cancer microenvironments to large numbers of already
systemic cancers. ODE models offer useful tools to com-
bine the behavior of both into a single framework [2],
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accounting for the frequency-dependent growth at early
stages as well as the dominant immunosuppressive effects
achieved by cancer when approaching carrying capacity
levels.

A major caveat of the base model is that it cannot
elicit an immune response. The elicitation of an immune
response by a cancer, with a subsequent rise in effector
cells is an important aspect of cancer-immune system in-
teractions. To achieve this, the base model would have
to include a proliferation term for effectors that takes on
different values than the suppression in the T,E-plane.
The base model is thus more useful to study the aspects
of how immunotherapy can be deployed to return the
CISI system below an immunological barrier by external
perturbation.

While simple modeling frameworks offer greater pos-
sibilities for an in-depth understanding, this approach
also has its limitations. For instance, we have largely
neglected stochastic attributes of cancer-immune system
interactions in our mathematical analysis. These may
mostly arise from the discreteness of cell-to-cell interac-
tions, and are well captured by simulating the models
by a Gillespie algorithm [54]. In this study, we have ad-
dressed this shortcoming by adopting a stochastic sim-
ulation framework to implement immunotherapy. Other
forms of stochasticity —for example the random accrual
of malignant mutations in cancer cells— are also not
explicitly modeled. Instead, they are assumed to be
captured by model parameter values. Environmentally
based fluctuations [2, 78], or changes in the exerted im-
mune pressure due to, for example, disease [79], are also
neglected.

The models here analyzed do also not account for
spatial structure (discussed in more detail in [80–82]).
Spatial structure may change the way that effector cell
killing affects cancer growth, as well as how the presence
of cancer cells may mediate immune cell proliferation.
In particular, we did not explore the fractional cell kill
laws as introduced by de Pillis et al. [5], hypothesized to
account for some of the geometrical features of tumors
[31]. In this approach, the total killing exerted by ef-
fectors K(E, T ) is governed by the dePillis-Radunskaya-
Wiseman (PRW) law [31], where K(E, T ) = D(E, T )T

and D(E, T ) = d Eλ

sTλ+Eλ
. Structurally, how [5] imple-

ment the recruitment of NK cells differs only slightly
from our implementation in (20). However, how CTLs
are recruited differs in structure from the simpler terms
analyzed here in our models. With λ < 1 (obtained from
model fits to mouse data [31]), the behavior of the re-
cruiting is qualitatively similar to that studied here: the
recruiting of CTLs would then saturate with increasing
cancer cell numbers T , but continue growing with in-
creasing effector cell numbers E.

We thus assume that while the PRW law introduces
an advantageous new concept in the modeling in tumor-
immune system interactions, our deviating from it will
not yield marked qualitative differences. Instead of at-
tempting to capture tumor geometry behavior, the mod-

els analyzed here are rooted in the tradition of virus dy-
namics —especially HIV— which assumes well-mixed cell
types [32, 36]. Thus, the PRW law seems to mainly ad-
dress problems arising from tumor geometry, while this
study focuses mainly on systemic cancer types —cancer
types that do not manifest in single tumors only [2].

We have also not included the action of cytokines in
our analysis, which are typically accounted for with a sep-
arate, additional equation [2, 68, 83]. We have therefore
not been able to assess the effectiveness of cytokine-based
immunotherapy approaches in combination with the ones
studied here. Models with cytokines display features like
the persistence of large tumors, tumor dormancy, and
tumor clearance upon immunotherapeutic treatment, as
well as oscillations between these states [2, 68]. Includ-
ing cytokines into a more comprehensive modeling frame-
work would be an interesting topic for future work.

Our study has to be interpreted in the context of
other models of cancer-immune system interactions.
The most comprehensive mathematical analysis of two-
equation models has been put forth by d’Onofrio [28, 29].
d’Onofrio analyzed a generalized mathematical model
in two variables —x denotes cancer and y effector cell
densities—, deriving some general results on the exis-
tence of steady states and cancer eradication given some
general mathematical conditions on the interactions be-
tween these two cell types. Solutions were provided for
the generalized model, but except for the rate of adoptive
transfers θ(t) (where t is time), no specific dependence
was given on how steady states change with parameter
value modifications. Our base model corresponds to a
special case of his general model (equations (1-2) in [29]),
with φ(x) = k, f(x) = a(1− bx), β(x) = 0, q(x) = 1 and
µ(x) = (d + |m| · x). As in the models investigated in
this study, d’Onofrio has observed that his generalized
model admits a cancer-free state, and also predicted that
it may attain multiple stable equilibria, which he inter-
preted as microscopic steady states (MISS) and which we
interpret in the context of cancer dormancy. Our own
results thus confirm some of d’Onofrios, but go further
to explore how specific cancer-immune system interac-
tion models are concretely affected by changing dynam-
ical properties that may be tailored for immunotherapy.
In particular, we wanted to explore some of the proper-
ties of CISI models that underpin the mechanisms that
may give rise to bistability patterns (the aforementioned
dominance of immunosuppressive effects). In our models,
we were therefore more interested in explicit analytical
results, which would allow us to study how bistability
patterns depend on effector cell killing efficacy. We also
extended this approach to include how adoptive transfer
might function under conditions with stochasticity.

A similarly comprehensive analysis of how CISI mod-
els may give rise to successful adoptive immunotherapy
treatments has recently been put forth by Talkington and
colleagues [3]. Similarly to our own conclusions, Talking-
ton et al. identify bistability as a major prerequisite for
successful adoptive immunotherapy. Their approach is
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also to review a series of models of increasing complexity,
whereby complexity is understood to represent incorpo-
rations of additional aspects of the immune system, such
as helper cells, interleukin and näıve T cells into a base
model. The base model is Kuznetsov et al.’s early model
from 1994 [8], which, akin to our base model, assumes
only two compartments: tumor and effector cells. The
Kuznetsov model allows for bistability, with a stable state
of the tumor close to cancer eradication. For all other
models, Talkington et al. show that when they can give
rise to bistability, adoptive immunotherapy leads to suc-
cessful outcomes in simulations. Future work could ad-
dress whether the mechanism for bistability emergence
identified in this study, the dominance of immunosup-
pression by cancer over immune cell proliferation, is also
the one that gives rise to bistability in the models exam-
ined by Talkington et al.

Future work could address whether the mechanism for
bistability emergence identified in this study, the domi-
nance of immunosuppression by cancer over immune cell
proliferation, is also the one that gives rise to bistabil-
ity in the models examined by Talkington et al. To this
end, it will be useful to embark on a more comprehen-
sive analysis of how mathematical models as the ones put
forth here, bring about some behavior of interest, such
as bistability. One approach that could be taken in this
direction follows the axiomatic modeling framework pio-
neered by Komarova et al. [84] and d’Onofrio [28, 29].

In a departure from the work of de Pillis et al. [5],
we have concentrated on model features typically used
in HIV modeling, borrowing in particular from the study
of Conway and Perelson [36]. The reason for this choice
is that ODE-based modeling has a long tradition in HIV
and virus dynamics modeling [32, 33, 85]. A great wealth
of data have helped to validate interaction terms of dif-
ferent cell types in mixtures, and particularly, how CTLs
kill. In our view, these advantages can be fruitfully
employed in cancer modeling as well. A more inter-
disciplinary integration, in particular with respect to
CTL behavior, will benefit both fields, and allow for the
analysis of structural similarities between models that
might be harnessed for immunotherapy design.

Our models show that biologically plausible cancer-
immune system interactions may be utilized to induce
cancer-free states. Increases in the killing efficacy of im-
mune effector cells can destroy the bistability pattern in-
herent in those models, abruptly removing the basis for
cancer growth.

ACKNOWLEDGMENTS

We are indebted to Gabriel Leventhal and Elias August
for useful discussions.

FUNDING

This work was supported by the European Research
Council Advanced Grant [grant number PBDR 268540];
the Swiss National Science Foundation [grant number
P2EZP3 162257]; and SystemsX.ch – the Swiss Initiative
for Systems Biology [grant number 51FSP0 163566].

APPENDIX A: MATHEMATICAL ANALYSIS OF
THE BASE MODEL

Here, we describe the analysis of the system of equa-
tions (1 - 2) and its equilibria (termed E∗ and T ∗ in the
following). To this end, we first solve dE/dt = 0 for E∗,
and obtain an expression in T ∗. We then subsitute E∗ in
dT∗

dt , and obtain a polynomial in T ∗. We aim to find the

roots of dT
∗

dt (T ∗), which are the fixed points of the system
of equations. Removing the one obvious fixed point given
by (T ∗1 , E

∗
1 ) = (0, σ/d), we are left with a quadratic equa-

tion in T ∗. To obtain the other fixed points, we analyze
its roots:

dT ∗

dt
= F (T ∗, E∗) = abmT ∗2−a(m+bd)T ∗+(ad−kσ) = 0

(24)
The solutions of (24) are given in (3).

With this, we can derive the exact conditions for (i)
both T ∗2 and T ∗3 below zero (ii) T ∗2 and T ∗3 of different
signs (iii) both T ∗2 and T ∗3 above zero.

We go through all cases, starting with case i). For both
solutions T ∗2,3 to be negative, we have two subcases ia)
and ib) of sets of conditions. Either (ia), we require that
a(m+ bd) < 0,

√
∆s < |a(m+ bd)|,

√
∆s > 0 and abm >

0, or equivalently (ib), a(m+bd) > 0,
√

∆s < |a(m+bd)|,√
∆s > 0 and abm < 0.
We want to investigate the similarities sub-casesto sim-

plify the expressions that lead to i). Let us start by an-
alyzing the condition

√
∆s < |a(m + bd)|, which is the

same in both sub-cases. This is equivalent to stating
that 4abm(ad − kσ) > 0. In this expression, a, b, d and
σ have to be assumed to be positive for biological rea-
sons. k, the net effector cell killing of cancer cells can
theoretically become negative, which could be the conse-
quence of cancer growth stimulation by the presence of
effector cells as reported in some very recent studies [9].
The net growth stimulation from cancer cells m could
theoretically become negative also, since cancer cells are
known to evolve mechanisms that activate suppressive
T regulatory cells and thus escape effector cell action
[9]. This immunosuppressive effect could overpower the
growth stimulation of T cells induced by the presence of
cancer. Thus, for 4abm(ad − kσ) > 0 to be valid, there
exist two options: Either ad − kσ > 0 and m > 0, or
ad− kσ < 0 and m < 0.

The other condition that appears in both sub-cases
is ∆s > 0, which is required to obtain real solutions
for T ∗2,3. Depending on the sign of m, this translates
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into different conditions for k: if m > 0, then k >(
ad− (a(m+ bd))2/4abm

)
/σ, and otherwise if m < 0,

then k <
(
ad− (a(m+ bd))2/4abm

)
/σ.

These conditions on m must concord with the condi-
tions on abm derived before, since a, b > 0. And thus if
m > 0, we are in the same sub-case as a(m + bd) < 0
and abm > 0, whereas m < 0 must coincide with
a(m+ bd) > 0 and abm < 0.

Thus, to obtain T ∗2,3 < 0, we have two sets of conditions
dependent on parameter m. The first set of conditions
is:

m > 0 (25)

m+ bd < 0 (26)

ad− kσ > 0 (27)

k >

(
ad− (a(m+ bd))2

4abm

)
1

σ
, (28)

whereas the second set of conditions reads:

m < 0 (29)

m+ bd > 0 (30)

ad− kσ < 0 (31)

k <

(
ad− (a(m+ bd))2

4abm

)
1

σ
. (32)

Case ii) is of greater interest, since it entails that there
will be one other positive solution to (1-2). As in case i),
there exist two situations in which T ∗2 < 0 and T ∗3 > 0 is
attained. For these conditions to be both true, it follows
that either a(m+ bd) > 0,

√
∆s > |a(m+ bd)|,

√
∆s > 0

and abm > 0, or on the other hand, a(m + bd) < 0,√
∆s > |a(m + bd)|,

√
∆s > 0 and abm < 0. Note that

compared to i), the inequality that compares |a(m+ bd)|
with

√
∆s has been inverted. Fortunately, again, the

inequalities on |a(m + bd)| are equivalent in both sub-
cases, so we can proceed analyzing it.

Following an analogous discussion as in i), it follows
that for

√
∆s > |a(m + bd)| to be true requires either

m < 0 and ad − kσ > 0, or conversely, m > 0 and
ad − kσ < 0. The conditions on m must again match
the previous conditions on abm, since a, b > 0. With an
analogous reasoning for

√
∆s > 0, we ultimately obtain:

m > 0 (33)

m+ bd > 0 (34)

ad− kσ < 0⇐⇒ k > ad/σ (35)

k >

(
ad− (a(m+ bd))2

4abm

)
1

σ
, (36)

or alternatively:

m < 0 (37)

m+ bd < 0 (38)

ad− kσ > 0⇐⇒ k < ad/σ (39)

k <

(
ad− (a(m+ bd))2

4abm

)
1

σ
. (40)

The case iii) is of particular interest, since it entails
that there could exist two non-negative cancer attractors
(stable fixed points of (1-2)), which are separated by one
unstable state. For both solutions T ∗2,3 to be positive, we

require that a(m+bd) > 0,
√

∆s < |a(m+bd)|,
√

∆s > 0
and abm > 0, or equivalently, a(m + bd) < 0,

√
∆s <

|a(m+bd)|,
√

∆s > 0 and abm < 0. Thus, this is identical
to case i), except for the fact the conditions on a(m+ bd)
are exactly inverted. We can therefore simply adopt the
conclusions from the discussions of

√
∆s < |a(m + bd)|

and
√

∆s > 0.
As in i), the m > 0 sub-case of the two possible sub-

cases in the discussion of ∆s > 0, to obtain T ∗2,3 > 0,
needs to satisfy the additional conditions a(m+ bd) > 0
and abm > 0. Following the assumptions about the val-
ues of a, b and d, this immediately entails that m+bd > 0
and that m > 0. The other sub-case (m < 0) requires
a(m + bd) < 0 and abm < 0, which by analogy entails
that m+ bd < 0.

Hence, summarizing, for all conditions for T ∗2,3 > 0 to
be satisfied at the same time, there exist two ways in
which this can be achieved, that crucially depend on the
sign of the effector cell growth stimuation paramter m.
On the one hand, we will obtain two positive solutions
to (1), if:

m > 0 (41)

m+ bd > 0 (42)

ad− kσ > 0 (43)

k >

(
ad− (a(m+ bd))2

4abm

)
1

σ
, (44)

or otherwise, if:

m < 0 (45)

m+ bd < 0 (46)

ad− kσ < 0 (47)

k <

(
ad− (a(m+ bd))2

4abm

)
1

σ
. (48)

This last set of conditions with m < 0 is of particular
interest. On the one hand, m > 0 leads to biologically
dissatisfactory scenarios: The root at T ∗1 = 0 is repulsive,
an there exists only one positive attractive root T ∗2 > 0.
This behavior signifies a departure from the concept of
an immunological barrier [2, 8], whereby a tumor has to
first surpass a threshold size, from which it is hindered by
the immune system, before being able to grow to large
numbers. On the other hand, the resulting bistability
pattern in the m < 0 case is reminiscent of key features
of cancer establishment and growth, which makes them
worth studying.

Stability analysis

To analyze the stability of the equlibria of the system
of equations (1 - 2), we perform a classical analysis based
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on the behavior of the Jacobian of the map f : (E, T )→
(dE/dt, dT/dt) at equilibrium points. To do this, we first
interpret (1 - 2) as a map:

dT

dt
= f1(T,E) = aT (1− bT )− kTE, (49)

dE

dt
= f2(T,E) = σ − dE +mET. (50)

The Jacobian, J , of the map f is thus:

J =

(
a(1− bT ))− abT − kE −kT

mE −d+mT

)
. (51)

For an equilibrium point to be stable, the trace of J ,
tr(J) needs to be negative, while the determinant of J ,
det(J), needs to positive. The trace and determinants of
J must therefore satisfy:

tr(J) = d+ (ab−m)T > 0⇐⇒ ab > m, (52)

where T > 0, d > 0,

det(J) = m+ bd > 2mbT . (53)

The second condition (53) is equivalent to m+bd
2mb > T

if m > 0, and to m+bd
2mb < T if m < 0. If m > 0, the

largest tumor fixed point is T ∗3 = a(m+bd)+
√

∆s

2abm , from (3).
Inserting T ∗3 into (53) shows that the condition cannot
be satisfied. However, the T ∗3 does satisfy det(J) < 0
if m < 0. Thus, only m < 0 scenarios can lead to the
largest of the fixed points being stable.

APPENDIX B: MATHEMATICAL ANALYSIS OF
THE FREQUENCY DEPENDENT IMMUNE

RESPONSE MODEL

To investigate the steady state solutions for the equa-
tions (9-10), we first solve for the steady state of E, which
can be found analytically:

E∗ =
σ

d− be T
κe+T

+ de
T

κd+T

. (54)

Substituting E in the expression for dT/dt with equa-
tion (54) reduces the finding of the steady states to a
one-dimensional problem in T ∗:

dT ∗

dt
= aT (1−bT )−kT σ

d− be T
κe+T

+ de
T

κd+T

= 0. (55)

T ∗ = 0 is a trivial root of dT
∗

dt = 0. After removing the
trivial root from (55), the remaining fixed points of the
system (9-10) correspond to the roots of:

a(1− bT )− k σ

d− be T
κe+T

+ de
T

κd+T

= 0. (56)

This expression can be converted into a polynomial of
third order in T ∗. Solving equation (56) is thus equiva-
lent to the problem of finding the roots of a cubic equa-
tion that is obtained from (56) by eliminating the de-
nominators:

T 3ab (be − de − d)

+T 2 (a (d− be + de)− ab(d(κe + κd)− beκd + deκe))− σk)

+T (a(d(κe + κd)− beκd + deκe)− abdκeκd − σk(κe + κd))

+ κdκe (ad− σk) = 0 (57)

In other words, (57) is equivalent to a cubic equation
of the form:

f(x) = Ax3 +Bx2 + Cx+D = 0, (58)

where T = x and

A = ab (be − de − d) , (59)

B = a (d− be + de) (60)

−ab(d(κe + κd)− beκd + deκe))− σk,
C = a(d(κe + κd)− beκd + deκe) (61)

−abdκeκd − σk(κe + κd),

D = κdκe (ad− σk) . (62)

The cubic is analytically solvable, but tedious to write
out in its standard representation. We thus employ a
non-standard representation of these roots to better an-
alyze the systems’ behavior and its biological meaning.
The properties of the roots of (59) are largely dependent
on the discriminant ∆ of the cubic equation, which is
defined by:

∆ = 18ABCD−4B3D+B2C2−4AC3−27A2D2. (63)

If ∆ > 0 all three roots are real and distinct, if ∆ = 0
one root is a multiple root, and if ∆ < 0 only one root is
real, and the other two are complex.

Appendix B1: Two positive roots of the cubic

With this information, we can make some assertions
about the conditions that (58) and ∆ must satisfy for
bistability to exist. Under bistability, two of the three
roots of (57) must be positive. Then, together with the
root T = 0, there will be three possible roots to produce a
bistability effect. The case in which all three are positive
will be dicussed next.

Two positive roots of (57) can be attained in two ways:
a) ∆ = 0, with both the double and the single root being
positive and b) ∆ > 0 and only the smallest root being
negative, with the other two roots both being positive.

The case a) is likely biologically irrelevant, since all the
coefficients in (58) would have to take values to exactly
satisfy ∆ = 0. In case b) where ∆ > 0 and all roots
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exist, we want to find conditions under which exactly
two of the three of the roots are positive. To this end,
we draw on the theory of cubic functions and on some of
its fundamental results about the nature of roots of cubic
functions.

An elegant way to represent the roots of the cubic func-
tion is by a trigonometric approach. This approach con-
sists in modifying the standard cubic equation by means
of the Tschirnhaus transformation, where x = t−B/3A,
and t is the new variable. The transformation uses the
insight that the sum of the roots xN of any n-order
polynomial anx

n + an−1x
n−1 · · · + a1x + a0 is given by

−an−1/nan. Thus, the Tschirnhaus transformation cor-
responds to a shift along the x-axis that relocates the
cubic such that the sum of the roots lies at the origin
[86]. Expressing the standard cubic representation (58)
in terms of the variable t leads to the depressed cubic:

f(t) = t3 + pt+ q, (64)

where

p =
3AC −B2

3A2
(65)

q =
2B3 − 9ABC + 27A2D

27A3
. (66)

If three real solutions exist (∆ > 0), the roots of the de-
pressed equation can be expressed by the use of trigono-
metric functions [86, 87]. Then, the real roots of the
depressed cubic equation are [88]:

tk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
, k = 0, 1, 2.

(67)

This equation is only valid if the the argument of the

arccosine of θ = 3q
2p

√
−3
p is ∈ (−1, 1). Interestingly, this

is equivalent to demanding that 4p3 + 27q2 ≤ 0. This
condition implies that p < 0, also a necessary condition
for
√
−p3 ∈ R. The solution (67) has an elegant geomet-

ric interpretation. The roots can be represented as the
projections of the vertices of an equilateral triangle with
a circle of radius 2

√
−p3 onto the x-axis. The center of

the circle is located at xN .
Thus, what is needed to ensure that one real root

is negative and two real roots are positive is to de-
mand that the back-transformation of the smallest root
mink tk−B/3A be smaller than zero, and the next largest
back-transformed root be positive. Cubic function theory
has produced useful results on how to find the smallest
solution mink tk [86, 88] as well as the position of the
other roots in relation to it. Let t0 be interpreted as a
function of p and q, that is, t0 = C(p, q). Then the three
roots can be expressed in terms of C(p, q), namely

t0 = C(p, q), t2 = −C(p,−q), t1 = −t0 − t2.
(68)

And furthermore, if the three roots are real, we have
t0 ≥ t1 ≥ t2 [86, 88]. Thus, t2 is the smallest of the
solutions, and therefore:

min
k
tk = −2

√
−p
3

cos

(
1

3
arccos

(
−3q

2p

√
−3

p

))
. (69)

With this, the conditions to obtain one negative and
two positive roots can be specified. First, ∆ > 0 for all
roots to be real-valued, second t2−B/3A < 0 to obtain a
negative minimal root, and third, t1−B/3A > 0 to ensure
that the second largest root is positive. When replacing
the values of p and q in (64) with terms of the coefficients
of the standard cubic function (58), these conditions read
as follows:

18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2 > 0 (70)

−2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(B2 − 3AC)

√
9A2

B2 − 3AC

))
− B

3A
< 0 (71)

2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(3AC −B2)

√
9A2

B2 − 3AC

)
− 2π

3

)
− B

3A
> 0. (72)

Expressing A, B, C and D in terms of the parameters
of model (9-10) gives the full solutions to the conditions
for bistability. These conditions only ensure a certain
position of the roots, but do not establish whether these
roots are ordered into stable and unstable equilibria in a
biologically reasonable way.

Appendix B2: Three positive roots of the cubic

The trigonometric interpretation of the cubic also al-
lows us to identify the conditions for all roots to be posi-
tive. Applying the same reasoning as in the two-positive-
roots case (Appendix B1 ), we impose that the sum of the
smallest root tk and the shift implied in the Tschirnhaus
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transformation, xN = −B/3A, is larger than zero. In
other words, we ask that the solution tk, which is located
the farthest from xN in negative-x direction should be
smaller than xN itself. In this case, all roots will come to
lie on the positive part of the x-axis, although the circle
of radius 2

√
−p3 around xN might reach into negative

x-values.
The condition min

k
tk − B/3A > 0 is thus the precise

condition for which all roots are positive. By virtue of
(69), and inserting the values of p and q in terms of the
coefficients of the standard cubic function (58), the con-
ditions for only positive roots become:

18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2 > 0 (73)

−2

√
B2 − 3AC

9A2
cos

(
1

3
arccos

(
B(2B2 − 9AC) + 27A2D

6A(B2 − 3AC)

√
9A2

B2 − 3AC

))
− B

3A
> 0. (74)

These are implicit inequalities in A, B, C and D, which
in turn depend on the parameters of model (9-10) by
means of the relation (59).

Expressing the coefficients A, B, C and D in terms of
the parameters of model (9-10) thus gives the exact an-
alytical conditions under which four non-negative fixed
points to (9-10) exist, out of which three are strictly pos-
itive. Writing this expression down is cumbersome and
hard to analyze further. However, numerical methods
can be employed to examine which regions in parameter
space can produce this distinctive pattern of multistabil-
ity.

Appendix B3: Analyzing parameter space for
existence of multistability

We analyzed whether the conditions (70) and (73) are
satisfied for realistic parametrizations of model (9-10).
To this end, we fixed most parameters at biologically
plausible values found in the literature (see Table II).
We then varied two of those parameters which are either
expected to have a large impact on the system’s dynam-
ics, or may be less well understood.

The standard parameter values used for the extended
model with saturation are specified in Table II.

Figure 5 shows the regions of parameter space whose
parameter values lead to bistability as well as multista-
bility in the model (9-10). The region that supports
multistability forms a band across a wide range of im-
mune cell exhaustion rate values de. This indicates that
when a waning of killing efficacies k occurs, the system
may trespass this region. A boundary is shared by a re-
gion with bistability and the parameter region that only
admits a cancer-free state. The mechanism for combina-
tion of immunotherapy may thus still be applicable along
this boundary, which is present at plausible values of de
around unity. The rest of the parameter values used for
the generation of this plot are within the range of possible
values frequently used in cancer modeling.
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FIG. 5. Number of possible non-negative steady states
of T of the model (9-10). Shown is the region of parameter
space spanned by killing efficacy k and effector cell exhaus-
tion de separated according to the non-negative fixed points
of the model (9-10). The number of roots were identified
numerically by means of the rootSolve package in R [50–52].
Numbers indicate the number of non-negative fixed points in
each parameter region. The region that supports multista-
bility is colored in violet. The region that admit bistability
(3 fixed points) is adjacent to the multistability region. The
other used paramaters are as in Table II.

APPENDIX C: MATHEMATICAL ANALYSIS OF
NK-CTL MODEL

We follow the approach taken for both the base model
and the extended base model with saturation and at-
tempt to derive a function dT

dt (T ) to analyze the roots of
(20-22), which are the fixed points of the system. The
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Parameter Description Value

a maximum replication rate of unmutated tumor cells [5] 0.514 day−1

b inverse carrying capacity of tumor [5] 1.02 · 10−9 cells−1

k killing efficiency of effector cells or CTLs [5, 41, 57, 58] 10−5 − 10−3 cells−1day−1

σ replenishment rate of effector cells or CTLs E [34, 35] 5 · 103 cells · day−1

d effector or CTL loss rate [36] 2 day−1

de effector CTL immune impairment rate 10−3 − 103 day−1

be maximum CTL proliferation rate [36, 66] 1 day−1

κe saturation coefficient of effector immune growth 5 · 102 cells

κd saturation coefficient of effector immune exhaustion 2.5 · 104 cells

TABLE II. Parameter values for the extended base model with saturation (9-10).

steady states of N and E can be found analytically:

N∗ =
σ

µ− bn T
κbn+T + dn

T
κdn+T

, (75)

whereas

E∗ =
ωNT

d− be T
κbe+T

+ de
T

κde+T

. (76)

Substituting N and E in the expression for dT
dt (T ) in

(20-22) reveals that dT
dt (T ) can be expressed as

dT

dt
(T,

dE

dt
= 0,

dN

dt
= 0) =

P (T )

Q(T )
. (77)

Here, P (T ) = F (T )T is a sixth-order polynomial in
T . Again removing the trivial solution T ∗1 = 0, leaves a
polynomial F (T ) of fifth order. Q(T ) is a fourth order
polynomial. The roots of P (T ) constitute the remain-
ing fixed points of the system. In general, an analytical
expression for the roots for such a polynomial can only
be given up to the fourth order. Thus, we first restrict
ourselves to discussing more general properties that P (T )
and Q(T ) need to satisfy in order to generate biologically
plausible situations.

For this, it is important to keep in mind that
dT
dt (T, dEdt = 0, dNdt = 0) has a narrow mathematical inter-
pretation. In the three-dimensional state space spanned
by T , E and N , it describes the behavior of dT

dt along
the intersection between the nullclines of E and N . In
a three-dimensional space, this intersection is typically
a line passing through a steady state. Imagine a point
with some T -value approaching a steady state at T ∗ on
the intersecting line. For the steady state to be stable,
dT
dt would have to be positive as the point, and with it
T < T ∗, reaches T ∗ from below. Equally, as the point
moves past the steady state into larger values T > T ∗,
dT
dt would have to grow negative. We call this a stabilizing

behavior of dT
dt at the steady state. If a steady state sat-

isfies this condition, we call it T -stabilizing. Clearly, this
behavior of dTdt around the steady state does not guaran-
tee that it is stable: instability could still be caused by

other properties of the derivatives field perpendicular to
the null cline analyzed. However, it is a pre-requisite for
the steady state to be stable.

We begin our discussion by analyzing the simpler prob-
lem dT

dt (T ) = F (T )T . Here, dTdt (T ) is a polynomial F (T )
times T . The order of the polynomial F (T ) and the sign
of the leading coefficient A of that polynomial, influences
the locations of the roots of F (T ), and thus also of dTdt (T ).
F (T ) also influences how the roots are arranged into sta-
ble fixed points.

The n-th order polynomial will maximally have n real
valued roots. If n is odd, and A < 0, the smallest and
largest fixed points of F (T ) are T -stabilizing. Conversely,
if n is odd, and A > 0, the smallest and largest fixed
points of F (T ) are unstable. If n is even, and A < 0,
the smallest fixed point of F (T ) is unstable, while the
largest is T -stabilizing. Analogously, if n is even, and
A > 0, the smallest fixed point of F (T ) is T -stabilizing,
and the largest is unstable.

These claims follow from the intermediate value the-
orem. If n is odd, the limits of the polynomial for
T → ∞ and T → −∞ will be of opposite signs. If
the leading coefficient A of the polynomial is positive,

lim
T→−∞

F (T ) = −∞, and lim
T→∞

F (T ) =∞. To attain val-

ues from −∞ to ∞, F (T ) must traverse the T -axis from
negative to positive by virtue of the intermediate value
theorem. Thus, the first root must be an unstable fixed
point. Since there exist an odd number of roots, and
the roots must alternate from T -stabilizing to unstable,
the last root must also be an unstable equilibrium. The
converse is true for A < 0, with both, the smallest and
largest fixed points being T -stabilizing. For even val-
ues of n, if A > 0, F (T ) will either be ∞ in the limit
T → ±∞ and −∞ for A < 0. Thus, following the same
logic as with n odd, the smallest fixed point must be
T -stabilizing if A > 0, while the largest will be unsta-
ble. Conversely, if A < 0, the smallest fixed point will
unstable, whereas the largest will be T -stabilizing.

Multiplying F (T ) with T does not alter the position of
F (T )’s roots. However, it will have the effect of adding
a new root T = 0 to dT

dt (T ) = F (T )T , and to switch
T -stabilizing into unstable (and vice versa) fixed points
if they are negative.
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With this in mind, we can now turn our attention to

the full expression, dT
dt (T ) = P (T )

Q(T ) . Division by Q(T )

does not alter the position of the roots (unless the roots
of Q(T ) are identical with the roots of P (T ), in which
case they would cancel out). However, it can modify the
T -stabilizing properties of the roots. Roots will be T -
stabilizing if the T -derivative of dT

dt (T ) is negative. Let
us assume that F (T ) has n roots Ti (i ∈ {1, . . . , n}).
Then,

d

dT

dT

dt
(T ) =

F (T )(Q(T )− T d
dTQ(T )) + TQ(T ) d

dT F (T )

Q2(T )
.

(78)
If we evaluate this expression at a stable root of F (T ),
Ti, where d

dT F (T ) < 0, we obtain that:

d

dT

dT

dt
(Ti) =

TiQ(Ti)
d
dT F (Ti)

Q2(Ti)
. (79)

This entails that the a root Ti > 0 (the only biologically
plausible solution) will only be stable if Q(Ti) > 0. Thus,
for the roots of F (T ) to retain their T -stabilizing proper-
ties, they will need to come to lie in intervals of T where
Q(T ) is positive.

Since the fixed points of (20-22) can be described as
F (T )T , the above reasoning is valid, and we can draw
conclusions about what conditions the leading coefficient
A must satisfy to ensure biologically plausible equilibria.
Analyzing the structure of dTdt (T ) with Mathematica [49],
reveals that the coefficient A = a5 of the polynomial
F (T ) = a5T

5 + a4T
4 + a3T

3 + a2T
2 + a1T

1 + a0 reads as
follows:

a5 = −ab ((be − de − d) (bn − µ− dn))− kσω. (80)

Given that the order of the polynomial F (T ) in NK-
CTL model (20-22) is odd, the leading coefficient a5 of
the polynomial must be negative and the value of Q(T )
at the largest fixed point positive in order for F (T ) to
have a T -stabilizing largest positive fixed point. Thus,
analogously to the situation in the extended base model
with saturation, the biological plausibility of the posi-
tioning of the fixed points is compatible with a5 < 0.
Again, a5 expresses the balance between proliferative and
suppressive forces acting on NK as well as CTL cells,
and is independent from the saturation coefficients. As
in the previous models, we assume that a, b, d, σ, k > 0
and it is biologically reasonable also to assume ω > 0.
Thus, interestingly, a5 < 0 can be satisfied by increasing
kσω. But if kσω is negligible, a5 will only be negative
if (be − de − d) and (bn − µ− dn) are both negative or
both positive. Thus, the NK-CTL model allows for more
flexibility to attain biologically plausible scenarios than
the two previous models: if the the balance between pro-
liferative and suppressive forces in both NK and CTLs
is tipped in favor of exhaustion of the immune cells, bi-
ologically interpretable dynamics can emerge. This is
analogous behavior to an m < 0 situation in the base

model. Similarly, if the balance is tipped towards prolif-
eration in both cell types, the arising scenarios are again
biologically sound. However, the behavior between both
immune cell types must be similar to attain this.

Unfortunately, the above analysis does not reveal
whether bi- or multistability can be guaranteed to arise
for special combinations of parameters. To show this, we
must fall back to numerical methods. In the following,
we prove that the system (20) can generate at least bista-
bility patterns of the kind displayed by the base model.
We only analyzed the effects of changing c, the killing
efficacy of NKs rather than CTLs, on the system. We
chose c because NK have been estimated to have faster
cancer suppressing effects than CTLs in [5]. Figure 6
shows the emergence of the bistability pattern for bio-
logically sound parameter choices in the model (20-22).
The parameter values are specified in Table III.
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FIG. 6. Bistability of cancer cell fixed points induced by immune control of tumor growth in model (20-22).
Panels A) to C) show the function dT/dt(T ) (blue lines) for different parameter values of c. c is varied from 10−7 (A) to 10−3

(B) 100 (C). The blue points indicate the roots of dT/dt(T ). Bistability emerges at c = 10−3. The parameter values were as
specified in Table III.

Parameter Description Value

a maximum replication rate of unmutated tumor cells [5] 0.514 day−1

b inverse carrying capacity of tumor [5] 1.02 · 10−9 cells−1

c killing efficacy natural killer cells 10−7 − 100 cells−1day−1

k killing efficiency of effector cells or CTLs [41, 57, 58] 10−5 − 10 cells−1day−1

σ replenishment rate of effector cells or CTLs E [34, 35] 10 − 103 cells · day−1

bn proliferation rate of natural killer cells N 1.5 cells−1day−1

dn exhaustion rate of natural killer cells N 1 cells−1day−1

µ death rate of natural killer cells N 1 day−1

d effector loss rate [36] 2 day−1

de CTL immune impairment rate [36, 67] 2 day−1

be maximum CTL proliferation rate [36, 66] 1 day−1

ω growth stimulation rate of cytotoxic T lymphocytes E by
natural killer cells [5]

1.1 · 10−7 cells−1day−1

κbe saturation coefficient of CTL immune growth 5 · 102 cells

κde saturation coefficient of CTL immune exhaustion 2.5 · 104 cells

κbn saturation coefficient of NK immune growth 104 cells

κdn saturation coefficient of NK immune exhaustion 103 cells

TABLE III. Parameter values for the extended model with saturation in NK and CTL (20-22).
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