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Abstract 

Sequencing of newly synthesized RNA can monitor transcriptional dynamics with great 

sensitivity and high temporal resolution, but is currently restricted to populations of 

cells. Here, we developed newly synthesized alkylation-dependent single-cell RNA 

sequencing (NASC-seq), to monitor both newly synthesized and pre-existing RNA in 

single cells. We validated the method on pre-alkylated exogenous spike-in RNA, and 

by demonstrating that more newly synthesized RNA was detected for genes with 

known high mRNA turnover. Importantly, NASC-seq reveals rapidly up- and down-

regulated genes during the T-cell activation, and RNA sequenced for induced genes 

were essentially only newly synthesized. Moreover, the newly synthesized and pre-

existing transcriptomes after T-cell activation were distinct confirming that we indeed 

could simultaneously measure gene expression corresponding to two time points in 

single cells. Altogether, NASC-seq is a powerful tool to investigate transcriptional 

dynamics and it will enable the precise monitoring of RNA synthesis at flexible time 

periods during homeostasis, perturbation responses and cellular differentiation. 
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Introduction 

Whereas RNA-seq measures cellular RNA levels, insights into the kinetics of RNA 

transcription, processing, and degradation rely on metabolic labeling and sequencing 

of newly synthesized RNA1-3. RNA labelling methods enable the detection of rapid 

transcriptional responses to cellular stimuli or perturbations4, 5. They generally rely on 

the incorporation of 4-thiouridine (4sU) into newly synthesized RNA during gene 

transcription and subsequent biochemical separation of 4sU-labeled and unlabeled 

RNA. As these methods require large amounts of total cellular RNA they have been 

limited to studies of average cellular responses across cell populations. Recent 

advances in single-cell RNA sequencing and data analysis have however revealed 

that responses to stimuli are not uniform across cells6. 

 

Thus a method is required to monitor transcriptional dynamics in single cells by 

sequencing of newly synthesized RNA. Although 4sU-labeled RNA cannot be isolated 

from single cells in quantities that allow for its sequencing, recent cell population 

experiments showed that the need to separate labeled and unlabeled RNA can be 

eliminated. The recent approaches rely on chemical modification of 4sU residues in 

total cellular RNA, which leads to apparent T-C transitions during reverse transcription 

that can be read out by sequencing7-10. Newly synthesized RNA thus can then be 

separated from pre-existing RNA in silico during computational analysis of the 

sequencing data. 
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Results 

Based on these findings we sought to combine 4sU labeling, chemical conversion of 

the 4sU residue, and single-cell RNA-seq. After several rounds of experimental and 

computational adaptations and optimization, we arrived at a procedure for the 

sequencing of newly synthesized and pre-existing RNA in single cells that we termed 

NASC-seq, for new transcriptome alkylation-dependent single-cell sequencing (Fig. 

1a). Briefly, cells are first exposed to 4sU, and then sorted and lysed individually. RNA 

is immobilized on magnetic beads with a biotinylated oligo-dT primer11 and is then 

alkylated. Single-cell RNA-seq libraries are then constructed using a modified version 

of Smart-seq212. Reverse transcription over alkylated 4sU residues triggers the 

misincorporation of guanines instead of adenosines, leading to T-C transitions that 

identify newly synthesized RNA in the sequenced libraries. 

 

We first applied NASC-seq to human K562 cells. We exposed cells for 180 minutes to 

increasing concentrations of 4sU and constructed sequencing libraries. The 

dominating type of base conversion that we observed was the T-C transition (Fig. 1b), 

demonstrating that a strong signal was present in the data (Fig. 1b). Based on the 

observed transitions, the frequency of 4sU incorporation at 50 µM 4sU was ~2% and 

thus comparable to that obtained in cell populations7 (Fig. 1b). We found that low-input 

alkylation was equally efficient as bulk alkylation (Supplemental Fig. 1a), that 4sU-

labeled control (spike-in) RNA contained high levels of T-C transitions (Supplemental 

Fig. 1b), and that higher concentrations of 4sU lowered the transcriptome complexity 

in libraries, observed as lowered numbers of genes detected per cell (Supplemental 

Fig. 1c). After optimizing the experimental parameters, we arrived at a robust protocol 

for NASC-seq. 
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To further investigate whether NASC-seq reveals newly synthesized RNA, we 

analyzed genes that encode mRNAs with high, intermediate, and low turnover as 

determined in previous population measurements3. We reasoned that mRNAs with 

high turnover have a larger fraction of newly synthesized RNA and this should be 

indicated by a higher number of T-C transitions in NASC-seq data. Indeed, comparing 

the numbers of reads with T-C transitions in genes with high (MYC), intermediate 

(PDLIM5) or low (GAPDH) RNA turnover revealed that the detected RNAs had high, 

intermediary, and low numbers of T-C transitions, respectively (Fig. 1c; Supplemental 

Fig. 1d).  

 

This analysis indicated that the number of reads with T-C transitions is a proxy for the 

amount of newly synthesized RNA. However, a fraction of these reads are apparently 

false positives because 5-10% of the total reads from unlabeled cells showed T-C 

transitions that are likely caused by sequencing and PCR errors (Fig. 1b). To reduce 

the number of false positive reads, we adapted a binomial mixture model from the 

recently published GRAND-SLAM statistical approach13. The approach also describes 

an estimation of true conversion probability (pc) based on the background error 

probability (pe). This approach improved the detection of newly synthesized RNA (Fig. 

1c,e) and revealed that we obtained a signal-to-noise ratio of ~10 in this experiment 

(Fig. 1d).  

 

We next sorted all genes by their mRNA turnover3 and generated groups of genes 

encoding for mRNAs with low (bottom 20%) and high turnover (top 20%). Genes with 

high mRNA turnover showed on average more reads with T-C transitions 
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(Supplemental Fig. 1e). This global trend was also consistent with NASC-seq 

detecting newly synthesized RNA. 

 

We now tested whether NASC-seq can monitor changes in newly synthesized RNA in 

single cells during a transcription response. We labeled Jurkat T-cells with 4sU, and 

induced a rapid transcriptional response by simultaneous addition of PMA and 

ionomycin for 30 minutes as described4 (Fig. 2a). NASC-seq revealed a high number 

of T-C transitions for genes that were known to be rapidly induced upon stimulation, 

such as EGR1 and FOS, but not for the non-induced genes GAPDH and ACTB, 

providing a negative control (Fig. 2b). Application of the mixture model essentially 

eliminated the number of false positive reads with T-C transitions (Fig. 2b).  

 

Overexpressed genes in stimulated Jurkat cells, compared to non-stimulated cells, 

generally show high average conversion rates, illustrating the sensitivity of NASC-seq 

to detect changes in expression kinetics (Fig. 2c). To investigate whether NASC-seq 

could generally detect transcriptionally induced genes upon T-cell stimulation, we 

selected genes that were significantly up- and down-regulated, respectively, under the 

same conditions in bulk TT-seq measurements and that were not detected by standard 

RNA-seq. Indeed, these groups of up- and down-regulated genes showed a significant 

increase and decrease, respectively, in their NASC-seq signal (Supplemental Fig. 

2b). Taken together, NASC-seq clearly detected transcriptionally active T-cell genes 

that are known to be induced under stimulating conditions14. 

 

Finally, we sought to analyze the temporal resolution of NASC-seq. We subjected T-

cell activation NASC-seq data to principal component analysis (PCA). PCA could 
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indeed separate newly synthesized RNAs in stimulated cells from those in non-

stimulated cells (Fig. 2d, principal component 1, PC1). This separation was much less 

pronounced when total RNA measurements were used (Supplemental Fig. 2a). Also, 

pre-existing RNAs did not separate in this analysis, as expected (Fig. 2d). Together 

these analyses show that NASC-seq can effectively measure the transcriptome at two 

time points per cell and it is therefore very well suited to monitor rapid changes in 

transcription activity in single cells. 

 

Discussion 

In this study, we introduce a novel method, NASC-seq, that monitors newly 

synthesized RNA in single human cells. NASC-seq is based on a combination of RNA 

labeling with 4sU, RNA modification by alkylation as in SLAM-seq7, RNA sequencing 

library preparation as in Smart-seq2, and data analysis that includes a computational 

model from GRAND-SLAM13. We validate NASC-seq by comparison with RNA labeling 

data in cell populations. We show that NASC-seq can separate newly synthesized from 

pre-existing RNA in single human cells, and that it can also monitor up- and down-

regulation of transcription during a rapid cellular response.  

 

Recent studies showed that information on RNA synthesis can be obtained from the 

detection of intronic sequence in single cells15, 16 and can inform on future cell fate15. 

NASC-seq expands on these possibilities by measuring newly synthesized RNA from 

periods of 4sU exposure without being restricted to genes for which intronic RNA reads 

are detected or limited in time by the kinetics of pre-mRNA splicing. We note that 

measuring transcriptomes at two time points per cell could provide new insights into 

transcriptional kinetics17. Thus NASC-seq is ideally suited to monitor changes in 
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transcription activity with high sensitivity and temporal resolution during cell 

differentiation, tissue engineering, and organism development. 
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Figure Legends 

 

Figure 1. Global sequencing of newly synthesized RNA in single cells. 

(a) Illustration of the NASC-seq methodology. In brief, alkylation is performed on RNAs 

immobilized on beads for the subsequent wash before proceeding with standard PCR, 

tagmentation and construction of sequencing libraries. (b) Observed conversion rates 

in K562 cells treated with 4sU (50μM, 3 hours; red, 16 cells) or untreated (blue, 14 

cells) on the positive strand within genes. T-C (tC) conversions are significantly (P= 

1.375e-08 , Mann-Whitney U-test, two-sided) increased in cells treated with 4sU. The 

line in the boxplot indicates the median value, the two hinges display the first and third 

quartiles. The whiskers range from the hinges to the highest or lowest point that is no 

further than 1.5 x the interquartile range. (c) Scatter plots showing the total number of 

sequenced reads (x-axis) against the number of reads with T-C conversions (y-axis) 

for the MYC, PDLIM5 and GAPDH genes in 4sU treated (50μM, 1 hr) and untreated 

cells. (d) Signal to noise estimated as the probability of conversion divided by the 

probability of error, for K562 cells exposed to 50uM for 1 hour (n=75) compared to 

K562 cells that were not exposed to 4sU (n=41). Median, hinges and whiskers are 

shown as in (b).(e) Scatter plots showing newly synthesized (new) RNA inferred using 

the mixture-model against total RNA (i.e. number of reads) for the same genes and 

4sU treated cells from (c) that passed the post-correction QC filter (see methods).  

 

Figure 2. Single-cell analysis of RNA dynamics during T-cell activation. 

(a) Illustration of experiment design. Jurkat T-cells stimulated with PMA and ionomycin 

where simultaneously exposed to 4sU for 30 minutes. Unstimulated cells received only 

4sU and no PMA and ionomycin. Untreated cells were collected that were neither 
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stimulated nor labeled with 4sU. (b) Scatter plots of total and new RNA for two 

response genes (EGR1 and FOS; positive controls) and two lowly turned-over genes 

(GAPDH and ACTB) for all 4sU treated cells (total n=119, PMA/ionomycin stimulated 

n = 53, unstimulated n =66). (c) Scatter plots showing differential expression of genes 

with more than 5 !" estimates (n=8966) in Jurkat cells stimulated with PMA and 

ionomycin, plotted against mean conversion rate per cell. EGR1, FOS and GAPDH are 

pointed out. Genes were colored according differential expression (stimulated vs. non-

stimulated cells using ROTS), genes in gray had uncorrected p-values below 10-15. (d) 

Two-dimensional PCA plot showing the cellular transcriptomes after separating each 

cell into newly synthesized and pre-existing RNA for PMA/ionomycin stimulated (n=53) 

and non-stimulated Jurkat cells (n=66). 
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Supplemental Figure Legends 

 

Figure S1. Detailed characterization of NASC-seq on K562 cells. 

(A) Comparison of bulk and low-input alkylation. 50 pg bulk RNA from K562 cells and 

single K562 cells, both treated for 3h with 500 uM 4sU, were subjected to alkylation 

either during the NASC-seq protocol (low-input) or previously in bulk format. Shown is 

the percentage (%) of reads with conversions. Error bars indicate standard deviation. 

(B) Verification of T-C transitions in 4sU-labeld control RNA. Spike-in RNA was 

generated either with (4sU spike-in RNA) or without 4sU addition (non-4sU spike-in 

RNA). Shown are % T-C conversions. (C) Numbers of genes detected per cell for total 

single-cell RNA-seq data from K562 cells labeled with increasing doses of 4sU for 180 

minutes labeling time. At least one read has to map to a gene for it to be counted as 

detected. The colors indicate two biological replicates. (D) Representative genome 

browser tracks of the MYC gene of three 4sU-treated and three untreated K562 cells 

showing coverage from all reads (grey) and coverage from reads with at least one or 

more T-C mutations (red, darker color indicates higher number of T-C mutations, see 

legend). (E) Distribution of fraction of new RNA for genes with low (bottom 20%, n = 

2099, left) and high (top 20%, n = 2100, right) turnover rates. Turnover rate was defined 

as synthesis rate * decay rate using rates estimated from bulk TT-seq data3. Only 

genes with a total read sum over all cells of at least 100 in NASC-seq data were 

considered. The P-value (<2.2e-16) was derived by two-sided Mann–Whitney U-test. 

Box limits are the first and third quartiles, the band inside the box is the median. The 

ends of the whiskers extend the box by 1.5 times the interquartile range. 

 

Figure S2. Extended NASC-seq analysis of T-cell activation. 
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(A) Principal component analysis (PCA) for total RNA from Jurkat cells stimulated with 

PMA and ionomycin, and unstimulated cells. Axes are scaled to match axes in figure 

2D. (B) Distribution of mean fraction of new RNA for genes which are detected as 

significantly up-regulated (right, n = 116) and down-regulated (left, n = 189) upon T-

cell stimulation (for 30 min with PMA and ionomycin) in newly synthesized RNA but not 

total RNA taken from a TT-seq experiment (see Methods). P-values (lower= 5.299e-

07, upper= 2.959e-14) were derived by two-sided Mann–Whitney U-test. Box limits are 

the first and third quartiles, the band inside the box is the median. The ends of the 

whiskers extend the box by 1.5 times the interquartile range. 
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Methods 

 

Generation of poly-A RNA spike-ins 

RNA spike-ins (ERCC-00043, ERCC-00170, ERCC-00136, ERCC-00145, ERCC-

00092 and ERCC-00002) were generated as described previously3, except reverse 

transcription was done from plasmid DNA also encoding a poly-A-tail. 

 

Cell culture and stimulation 

Cells were grown in RPMI 1640 medium (Gibco) supplemented with 10% fetal bovine 

serum (Sigma) and 1% Penicillin/Streptomycin (HyClone) at 37°C under 5% CO2. 

Jurkat cells (E6.1 clone) were acquired from ATCC, K562 cells from DSMZ 

(Braunschweig, Germany). Cells were routinely tested for mycoplasma contamination 

(MycoAlert, Lonza). On the day of the experiment, Jurkat cells were seeded to a 

density of 1*106 cells/ml and stimulated with 50ng/μl phorbol-12-myristate-13-acetate 

(PMA) and 1μM ionomycin (Sigma) for 30 min at 37°C under 5% CO2. 

 

Bulk RNA alkylation 

K562 cells were treated with 500µM 4-thiouridine (4sU, Sigma) at 37°C under 5% CO2 

for 3 h. Total RNA was isolated using TRIzol (Life Technologies) according to the 

manufacturer’s instructions. RNA spike-in mix was added during RNA isolation. For 

bulk alkylation, 5μg of RNA was alkylated as described in Herzog et al.7 and purified 

using isopropanol precipitation. RNA was analyzed using a Bioanalyzer 2100 system 

(Agilent). Low-input alkylation was performed as described below (NASC-seq). 

 

TT-seq 
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Two biological replicates of TT-seq reactions were performed as described previously3. 

Jurkat cells were treated for 30 min with solvent control (DMSO, Sigma) or with PMA 

and ionomycin. During the last 5 minutes of each time point cells were labelled in media 

with 500μM 4-thiouridine (4sU, Sigma) at 37°C under 5% CO2. Cells were harvested 

by centrifugation at 1400xg for 2 min. Total RNA was extracted using TRIzol (Life 

Technologies) according to the manufacturer’s instructions under the addition of spike-

ins. RNAs were sonicated using in a Bioruptor Plus instrument (Diagenode). 4sU-

labeled RNA was purified from 300μg total fragmented RNA. Separation of labeled 

RNA was achieved with streptavidin beads (Miltenyi Biotec). Prior to library 

preparation, 4sU-labeled RNA treated with DNase (Qiagen), purified (miRNeasy Micro 

Kit, Qiagen) and quantified. Strand-specific libraries were prepared with the Ovation 

Universal RNA-Seq System (NuGEN). The size-selected and pre-amplified fragments 

were analyzed on a Bioanalyzer 2100 (Agilent). Samples were sequenced on an 

Illumina NextSeq 550 instrument. Data analysis was performed essentially as in Michel 

et al.4. Briefly, paired-end 75 bp reads were mapped with STAR18 (version 2.6.0c) to 

the hg38 (GRCh38) genome assembly (Human Genome Reference Consortium). 

Gene expression fold changes upon T-cell stimulation for each time point were 

calculated using the R/Bioconductor implementation of DESeq219. Differentially 

expressed genes were identified applying a fold change cutoff of 2 and an adjusted P-

value cutoff of 0.05 comparing sample to solvent control measurements. For 

comparison of NASC-seq data with TT-seq data, we calculated the fraction of new 

RNA (Figures S1e and S2b) by taking the sum of reads from newly synthesized RNA 

divided by the sum of total reads over all cells, thereby creating an in silico bulk for 

better comparison with bulk TT-seq data. K562 TT-seq data was taken from Schwalb 

et al.3 (GSE75792). 
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NASC-seq 

Cells were labeled in medium with 4sU (Sigma), washed with cold PBS and sorted into 

lysis buffer (3ul, 166mM Sodium Phosphate pH 8.0, RNase inhibitor, spike-in RNAs) 

in wells of PCR plates. Plates were frozen at -80°C until use. Streptavidin beads 

(MyOne Dynabeads Strepavidin C1) were washed once with buffer 1 (0.1M NaOH, 

0.05M NaCl), twice with buffer 2 (0.1M NaOH), and once with 2x B&W buffer (2M NaCl, 

10mM Tris-HCl pH7.4, 1mM EDTA) before the binding reaction (1x B&W, 50uM oligo-

dT). Beads were incubated with agitation at room temperature for 15 minutes and 

washed twice with 1x B&W. Cells were lysed at 80°C for 3 minutes and beads were 

added to the cells in a volume of 2ul. RNA was bound during 20 minutes of incubation 

at room temperature on a thermoshaker (Eppendorf ThermoMixer C). 5ul of alkylation 

mix (20mM IAA in DMSO) was added for a final alkylation reaction of 50mM Sodium 

Phosphate pH 8.0, 10mM IAA, 50% DMSO. Alkylation was stopped by adding STOP 

solution (2x Superscript II buffer,0.3% Tween 20, 60mM DTT), incubating for 5 minutes 

on a magnet, and removing the supernatant from the beads containing the alkylated 

RNA. RT and the remaining library preparation was performed according to a modified 

version of Smart-seq218. The modifications included the removal of the inactivation 

step from the RT thermocycling program, performing the RT on a thermoshaker 

(Eppendorf ThermoMixer C) and the use of custom barcoded primers for the Nextera 

tagmentation. The resulting libraries were sequenced on a NextSeq500 instrument 

(Illumina) using either single-end (75-cycle) or paired-end (300-cycle) sequencing 

strategies. 

 

Computational pipeline 
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After sequencing the resulting bcl files were demultiplexed to fastq files with bcl2fastq 

(Illumina). Then we trimmed the nextera adapters with TrimGalore20 (v 0.4.5). The 

trimmed fastq files were then aligned to the hg38 human genome using STAR18 (v 2.5). 

We removed duplicates using the MarkDuplicates command in Picard (v 2.17.6). We 

then annotated the gene each reads maps to using FeatureCounts21 (v 1.6.2). We 

further annotated all mismatches to the reference genome within each read with the 

location of the mismatch for the T-C or A-G mismatches depending on the strand of 

the annotated gene (plus and negative respectively). We then considered mismatches 

in positions which appear in a high frequency over many cells and marked those 

positions as single nucleotide variants (SNV) to be ignored. We then re-annotated the 

mismatches for each read with the SNV positions ignored and avoided double counting 

in overlapping paired end reads. Low quality cells were filtered out depending 

according to the following requirements; for Jurkat cell experiments, each cell was 

required to have 1,000,000 reads, with at least 50% mapping to features. For K562 

experiments, each cell was required to have 800,000 reads, and a minimal of 500,000 

and 30% mapping to features. 

 

We then estimated the probability of a given position being converted in a new read 

(#$) based on the background probability of a mismatch due to error (#%) for each cell. 

We estimated #% by calculating the mean fraction of C-T and G-A mismatches in the 

given cell, since we concluded that these mismatches follow agree with the T-C and 

A-G mismatches in untreated cells. To estimate #$ we implemented the Expectation-

Maximization algorithm described in Jürges et al13. For each gene in each cell, we 

estimated the proportion of new reads, !" using the binomial mixture model described 

in GRAND-SLAM13 (see below). We only ran the estimation if the gene had a minimum 
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of 16 reads mapped to ensure reliable estimates. If the gene had more than 1000 

mapped reads, we subsampled down to 1000 reads to shorten runtime. 

 

Estimating the proportion of reads originating from newly transcribed transcripts 

To estimate the proportion of new reads for each gene, !", we implemented the 

binomial mixture model described in Jürges et al13. In the mixture model, each 

mismatch is either due to a conversion with probability #$ or an error with probability 

#%. The probability of ' positions having mismatches in a read containing ( positions 

which may be converted is  

 

)*'; #%, #$, (, !"- = *1 −	!"-2(4, (, #%) + !"2(4, (, #$) 

 

where 2(4, (, #) is the binomial probability mass function.  

 

We estimated !" by building a generative model in the STAN modelling language. 

We use a beta prior for !" with hyperparameters 6 and 7  

!"	~	29:;(6, 7) 

and estimate !" by maximizing the log-likelihood 

 

<ln	()*'?; #%, #$, (?, !"-)
?

 

 

where each index @ indicates a read for that gene. The hyperparameters were log-

transformed and both initialized at 0, while !" was initialized at 0.5. We will then 
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estimate the mean of the beta distribution, which cannot be 0 or 1 by definition. The 

mode is therefore more appropriate, which we can calculate by  

!"	ABC% = 	
6 − 1

6 + 7 − 2 

for 6, 7 > 1. The mode is 1 if 6 > 1, 7 < 1 and 0 if 6 < 1, 7 > 1. The other possible 

cases do not occur in our estimation procedure. 

Cells with an average standard deviation of the !"	ABC%	that was higher than 0.1 were 

filtered out and not used for downstream analysis. 
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