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Abstract 

 The etiology of pancreatic cancer remains largely unknown. Here, we report the results of a 

meta-analysis of three genome-wide association studies (GWASs) comprising 2,039 

pancreatic cancer cases and 32,592 controls, the largest sample size in the Japanese 

population. We identified 3 (13q12.2, 13q22.1, and 16p12.3) genome-wide significant loci 

(P<5.0×10-8) and 4 suggestive loci (P<1.0×10-6) for pancreatic cancer. Of these risk loci, 

16p12.3 is novel; the lead SNP maps to rs78193826 (odds ratio (OR)=1.46, 95% CI=1.29-

1.66, P=4.28×10-9), an Asian-specific, nonsynonymous glycoprotein 2 (GP2) gene variant 

predicted to be highly deleterious. Additionally, the gene-based GWAS identified a novel 
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gene, KRT8, which is linked to exocrine pancreatic and liver diseases. The identified GP2 

gene variants were pleiotropic for multiple traits, including type 2 diabetes, hemoglobin A1c 

(HbA1c) levels, and pancreatic cancer. Mendelian randomization analyses corroborated 

causality between HbA1c and pancreatic cancer. These findings suggest that GP2 gene 

variants are associated with pancreatic cancer susceptibility in the Japanese population, 

prompting further functional characterization of this locus. 

 

Introduction 

With approximately 33,000 related deaths every year, pancreatic cancer is the fourth leading 

cause of cancer deaths in Japan, after lung, colorectal, and stomach cancers1. The incidence 

and mortality rates of pancreatic cancer have increased steadily over the past decades, while 

those of other gastrointestinal cancers have shown a decreasing trend1. Despite the increasing 

burden levied by pancreatic cancer, few modifiable risk factors other than smoking and type 2 

diabetes mellitus (T2D) have been identified, and the 5-year survival rates remain the worst 

(<10%) among major malignancies.  

Genome-wide association studies (GWASs) have increasingly revealed the role of inherited 

genetic variations in pancreatic cancer susceptibility. Since the first GWAS, conducted by the 

PanScan consortium, identified common variants in the gene coding for the ABO blood group 

system in 2009,2 at least 23 genome-wide significant susceptibility loci have been linked to 

pancreatic cancer risk3. However, fewer loci have been identified for pancreatic cancer than 

for other common cancers, including breast and colorectal cancers4,5. Furthermore, the 

identified risk variants explained approximately 13% of the total heritability on the basis of 

GWAS-identified SNPs in a population of European ancestry6. These observations suggest 

that additional risk loci can be identified by increasing the sample size, as evidenced by the 

trend in the numbers of novel variants reported by PanScan. It is also important to expand the 
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GWAS to populations of non-European ancestry because of differences in minor allele 

frequencies (MAFs) and patterns of linkage disequilibrium (LD) across diverse populations7. 

In fact, previous GWASs focusing exclusively on populations of Eastern Asian ancestry led to 

the identification of new susceptibility loci for breast and colorectal cancers8, 9. 

 The majority of the risk loci for pancreatic cancer were discovered in the PanScan GWASs, 

which included populations of European ancestry. Only two GWASs have been conducted in 

East Asian populations: one in China10 and one in Japan11. A total of 8 risk loci (5 genome-

wide significant loci and 3 loci with suggestive evidence of association) have been identified 

for pancreatic cancer, but these loci were not replicated in a previous study using samples 

from European populations12. Therefore, the role of common susceptibility loci in East Asian 

populations remains uncertain and needs further exploration. To detect additional 

susceptibility loci for pancreatic cancer, we conducted another GWAS in the Japanese 

population and then performed a meta-analysis combining all published and unpublished 

GWAS data in Japan. 

 

Results 

After imputation and quality control, we performed a meta-analysis of three Japanese 

GWASs comprising 2,039 cases and 32,592 controls as well as 7,914,378 SNPs 

(Supplementary Table 1 and Table 2). Genomic control adjustment was not applied 

because there was little evidence of genomic inflation (lambda=1.03, Supplementary Figure 

1). We observed genome-wide significant (P<5.0×10-8) association signals at 3 loci (13q12.2, 

13q22.1, and 16p12.3) (Figure 1 and Table 1), for which the genes nearest the lead SNP 

were PLUT (PDX1-AS1), KLF5, and GP2, respectively. In addition, 4 loci (1p13.2 (WNT2B), 

2p12 (CTNNA2), 3p12.3 (ROBO2), and 9q34.2 (ABO)) showed suggestive evidence of 

association (P<1.0×10-6) (Figure 1 and Table 1). The association results of each study are 
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shown in Supplementary Table 3. Among these risk loci, 16p12.3 is a novel locus, with 

genome-wide significant associations observed for 10 SNPs in this region (rs78193826, 

rs117267808, rs73541251, rs4609857, rs4544248, rs4632135, rs4420538, rs73541271, 

rs4383154, and rs4383153) (Supplementary Table 4). The ORs for these variants ranged 

from 1.43 to 1.47, indicating stronger associations in this region than the associations 

indicated by the odds ratios (ORs) for variants identified in previously published GWASs. 

The lead SNP maps to rs78193826, a nonsynonymous variant of the GP2 (Figure 2) gene. 

The risk increased by 46% per copy of the minor T allele (OR=1.46, 95% CI=1.29-1.66, 

P=4.28×10-9) (Table 1). Regional association plots for the other loci are shown in 

Supplementary Figure 2. According to the 1000 Genomes Project Phase 3 database, 

rs78193826 is polymorphic, with a MAF ranging from 3.9% to 6.6% in Asian populations, 

compared with the much lower MAF (<0.1%) in other human populations (Supplementary 

Table 4). LD maps of these 10 SNPs at 16p12.3 are shown in Supplementary Figure 3. 

Complete LD between 9 of these SNPs (all except rs4420538) was observed in the Japanese 

population. Among the 10 SNPs in this region, only rs4383153 had available association 

summary statistics in the previous PanScan publications2,13, but this SNP was not significantly 

associated with pancreatic cancer risk (Supplementary Table 5). The functional annotation 

results for the 10 SNPs at 16p12.3 are shown in Supplementary Table 4. The lead SNP 

rs78193826 was classified as “damaging” according to the Sifting Intolerant from Tolerant 

(SIFT) algorithm and as “possibly damaging” by Polymorphism Phenotyping v2 (PolyPhen-

2). Moreover, the estimated combined annotation-dependent depletion (CADD) score was 

20.3. For replication, we selected 4 SNPs (rs78193826, rs73541251, rs117267808, 

rs4632135) that met either of the following criteria: 1) exonic SNP or 2) intronic SNP with a 

score of 3 or less according to the Regulome DB database. 

Analysis of another independent replication cohort comprising 507 cases and 879 controls 
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showed that rs4632135 (an intronic variant) was nominally significantly associated with 

pancreatic cancer risk (P<0.05), whereas the other 3 SNPs did not show nominal significance 

(Table 2). However, the direction and magnitude of the effects for all 4 SNPs was consistent 

with those observed in the GWAS meta-analysis. Furthermore, the combined analysis of the 

three GWASs and the replication dataset yielded lower P values than those of the GWAS 

meta-analysis for each SNP (Table 2), suggesting that the novel risk locus at 16p12.3 

discovered in our GWAS meta-analysis was unlikely to be false positive. 

We also examined the previously published pancreatic cancer risk loci from PanScan14, 

noting that 11 of those 19 SNPs were nominally statistically significant (rs13303010 at 

1p36.33, rs3790844 at 1q32.1, rs9854771 at 3q28, rs2736098 at 5p15.33, rs401681 at 5p15.33, 

rs10094872 at 8q24.21, rs505922 at 9q34.2, rs9581943 at 13q12.2, rs7214041 at 17q24.3, and 

rs16986825 at 22q12.1) or genome-wide significant (rs9543325 at 13q22.1) in our GWAS 

meta-analysis (Supplementary Table 6). Notably, we confirmed the nominally significant 

association (P<3.84×10-5) between rs505922 of the ABO locus and pancreatic cancer risk. 

Epidemiological studies have consistently shown that longstanding T2D is associated with 

an increased risk of pancreatic cancer15. Recently, 88 genetic variants, including both novel 

and established variants, were reported in a GWAS meta-analysis of T2D in the Japanese 

population16. We found that the top 3 SNPs at 16p12.3 (rs78193826, rs117267808, and 

rs73541251) were also genome-wide significantly associated with the risk of T2D in the latest 

GWAS comprising 191,764 Japanese subjects (Supplementary Table 7). In addition, these 3 

SNPs were nominally significantly associated with hemoglobin A1c (HbA1c) (P<1×10-4) and 

blood glucose levels (P<0.01), which were included in another GWAS of quantitative traits in 

42,790 and 93,146 Japanese subjects, respectively17. In addition to the GP2 SNPs, 4 of the 82 

T2D-associated SNPs (rs838720 at 2q37.1 (DGKD), rs2233580 at 7q32.1 (PAX4), rs2290203 

at 15q26.1 (PRC1-AS1), and rs663129 at 18q21.32 (MC4R)) were nominally significant in 
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our GWAS meta-analysis (Supplementary Table 8). In addition, one of the 25 HbA1c-

associated SNPs (rs4728092 at 7q32.1 (SND1)) was nominally significant in our GWAS 

meta-analysis (Supplementary Table 9). 

To examine whether the associations of T2D and T2D-related quantitative traits with 

pancreatic cancer are consistent with a causal effect, we performed a Mendelian 

randomization (MR) analysis with the inverse variance-weighted (IVW) and MR-Egger 

methods. No significant associations were observed between SNP-modulated T2D and 

pancreatic cancer based on the IVW method (Figure 3a). Instead, genetically increased 

HbA1c levels appeared to be causally related to an increased risk of pancreatic cancer, on the 

basis of the significant results with both the IVW and MR-Egger methods (Figure 3b and 

Supplementary Figure 4b). 

To complement the SNP-based GWAS, we performed a gene-based GWAS using 

MAGMA18 (Supplementary Figure 5). We confirmed the significant associations for GP2 

and WNT2B identified by the SNP-based GWAS. Notably, a novel significant association 

(Bonferroni-corrected P < 2.84 × 10−6) for the gene KRT8 was observed (Supplementary 

Table 10 and Supplementary Figures 5 and 6), and this association was further replicated in 

the PanScan 1 and PanScan 2 datasets (P=0.024)13. 

 

Discussion 

The role of inherited common genetic variations in pancreatic cancer susceptibility remains 

incompletely understood. We identified and replicated a novel risk locus at 16p12.3 for 

pancreatic cancer through combining three GWAS datasets in the Japanese population. 

Furthermore, we provided evidence that the identification of this new locus can be attributed 

to the observed differences in the MAF of the lead SNP (rs78193826) at 16p12.3 and the LD 

structure in this region across ethnic populations. 
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 Little overlap has been observed when risk loci reported from previous Chinese or Japanese 

GWASs are compared with those reported in the PanScan GWASs2. By including more than 

twice the number of cases than were included in previous Japanese or Chinese GWASs as 

well as imputed SNP data, we replicated the majority of the significant risk loci discovered in 

the PanScan GWASs (Supplementary Table 6). Moreover, for most variants, the direction 

and magnitude of the effects in our GWAS meta-analysis of Japanese subjects were consistent 

with those in populations of European ancestry. These findings suggested that GWAS-

identified causal variants at many loci are shared across ancestral groups and that the lack of 

replication may be due to an insufficient sample size in previous Chinese or Japanese GWASs. 

Several lines of evidence indicate that rs78193826 is most likely a causal variant at 16p12.3, 

which harbors the GP2 gene. First, this variant is nonsynonymous; the nucleotide mutation 

from C to T causes an amino acid change from valine to methionine, which could affect 

protein structure and function. Second, functional annotations in several databases 

consistently indicate that this variant is highly pathogenic. Third, the observed differences in 

the MAF of rs78193826 as well as the LD structure across different ethnic populations 

provide indirect evidence supporting its role as a causal variant in the Japanese population. 

The frequency of the minor T allele of rs78193826 is 0.1% in populations of European 

ancestry but 7% in the Japanese population. Given this apparent difference in the MAF, 

rs78193826 could not have been identified in the PanScan GWASs, although the PanScan 

GWASs included a much larger sample size than our GWAS. Of the 10 SNPs in this region, 

only rs4383153 has association summary statistics available in PanScan publications; 

however, no significant associations were observed between this SNP and pancreatic cancer 

risk (Supplementary Table 5). While complete LD between rs4383153 and rs78193826 was 

evident in the Japanese population, no LD data were available for these two SNPs in the 

European ancestry populations (1000 Genomes Project Phase 3 CEU). As the frequency of 
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the minor T allele of rs78193826 ranges from 3.9% to 6.6% in other Asian populations, 

rs78193826 is likely to be a causal variant for pancreatic cancer that is specific to Asian 

populations. However, further transethnicity replicability and fine mapping are necessary to 

establish the causal role of this variant. 

Genetic variations in the GP2 gene have been linked to several phenotypes in addition to 

pancreatic cancer. The SNP rs12597579, located in the upstream region of the GP2 gene, has 

been associated with body mass index (BMI) in a GWAS including East Asians19. However, 

rs12597579 was not in LD with rs78193826 (r2=0.003, calculated from Japanese samples in 

the 1000 Genomes Project Phase 3), suggesting that rs12597579 may have functions different 

from those of rs78193826. Coincidently, the lead variant (rs117267808) in the GP2 gene 

identified in the latest GWAS meta-analysis of T2D in the Japanese population is the same 

variant that we identified in our GWAS meta-analysis of pancreatic cancer (Supplementary 

Table 7). Of the 82 T2D-related SNPs, 5 showed significant associations (P<0.05) with 

pancreatic cancer, suggesting that pancreatic cancer and T2D may share specific genetic 

susceptibility factors. Furthermore, the risk alleles of rs78193826 and rs117267808 were 

identical for pancreatic cancer and T2D. Together, these findings indicate that GP2 variants 

may exert pleiotropic effects on multiple traits. 

The newly identified lead SNP (rs78193826) encodes the GP2 protein, which is present on 

the inner surface of zymogen granules in pancreatic acinar cells20. GP2 is a glycosylated 

protein of ∼90 kDa that contains multiple sites, such as an asparagine-linked glycosylation site, 

a zona pellucida (ZP) domain, and a glycosylphosphatidylinositol (GPI) linkage to the 

membrane21. During the secretory process, GP2 is cleaved from the membrane and secreted 

into the pancreatic duct along with other digestive enzymes. The expression of GP2 is 

extremely high in normal pancreatic tissues compared to that in other tissues (Supplementary 

Figure 7)22. However, according to the GEPIA database, pancreatic tumor tissues have a 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2018. ; https://doi.org/10.1101/498659doi: bioRxiv preprint 

https://doi.org/10.1101/498659


 

12 

 

decreased level of GP2 expression compared with that in nontumor tissues (Supplementary 

Figure 8)23. The functional consequence of the lead SNP can be, in part, inferred from its 

location in the GP2 gene: the ZP domain. In addition to GP2, an increasing number of 

proteins, such as uromodulin24 and the transforming growth factor (TGF)-β receptor III25, 

have been found to contain a ZP domain, the functions of which involve extracellular matrix 

formation and polymerization26. In particular, uromodulin, the most abundant protein secreted 

by the kidney, shares 55% amino acid sequence identity with GP2 in the ZP-C subdomain24. 

Pathogenic mutations in the UMOD gene have been shown to affect the structure and 

polymerization of uromodulin, resulting in kidney disease24. Given the similarity in the amino 

acid sequence as well as the expected functionality between these two proteins, genetic 

variations in the ZP domain of GP2 might also be associated with disease risk. Specifically, 

our GWAS finding that genetic variations in the GP2 gene are associated with pancreatic 

cancer risk elucidates a possible role of bacterial infection in the pathogenesis of pancreatic 

cancer. The biological function of GP2 in the pancreas remains unclear; previous experiments 

did not show changes in exocrine secretion and morphology in GP2 knockout mice27. 

However, accumulating evidence has demonstrated the effects of GP2 on the innate immune 

response28,29. The GP2 is also expressed in the membranous (M) cells of the intestinal 

epithelium in humans and mice, where it acts as an uptake receptor for a subset of commensal 

and pathogenic bacteria30. For example, GP2 and its closest homolog, uromodulin, have been 

shown to bind to Escherichia coli (E. coli) that express type 1 fimbriae31. In particular, 

uromodulin null mice showed increased sensitivity to urinary tract infections24. These 

findings suggest that GP2 may also play a role in host defense in the pancreas, given that 

proteobacteria have been detected in pancreatic ductal adenocarcinoma samples as well as in 

the normal human pancreas32. 

Previous epidemiological studies have suggested that HbA1c levels, even in nondiabetic 
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ranges, or changes in HbA1c levels in new-onset T2D are associated with pancreatic cancer 

risk33, 34. Our MR analysis provided corroborating evidence that genetically increased HbA1c 

levels may be causally associated with pancreatic cancer risk. This result was also partially 

consistent with a previous MR analysis, in which T2D was not causally implicated but BMI 

and fasting insulin were causally associated with pancreatic cancer35. Because known HbA1c-

related genetic variants explain little of the variance in HbA1c levels, further studies are 

needed to strengthen the causal inference by incorporating more variants. The null findings on 

the causal role for T2D may reflect the phenotypic and genetic heterogeneity of T2D, but T2D 

may also be both a cause and consequence of pancreatic cancer35. 

Three genome-wide significant genes (GP2, WNT2B, and KRT8) emerged in the gene-based 

GWAS. Among these genes, WNT2B was reported in the previous PanScan GWAS as a novel 

gene at 1p13.1 with suggestive evidence of association6, and KRT8 is a novel finding. KRT8 

belongs to a group of intermediate-filament cytoskeletal proteins involved in maintaining 

epithelial structural integrity36. KRT8 is expressed in both ductal and acinar single-layer 

epithelia, and mutations in the KRT8 gene have been linked to exocrine pancreatic disorders 

and liver disease37, 38. 

In conclusion, our GWAS meta-analysis identified a novel risk locus at chromosome 

16p12.3, which harbors the GP2 gene, for pancreatic cancer in the Japanese population. 

Further fine mapping and functional characterization are required to elucidate the effects of 

common GP2 gene variants on pancreatic cancer susceptibility. Moreover, our findings 

highlight genetic susceptibility factors shared between T2D and pancreatic cancer. 

 

Methods 

Study samples. We performed a GWAS meta-analysis based on three Japanese studies: the 

Japan Pancreatic Cancer Research (JaPAN) consortium GWAS, the National Cancer Center 
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(NCC) GWAS, and the BioBank Japan (BBJ) GWAS. An overview of the characteristics of 

the study populations is provided in Supplementary Table 1. Information on the study-

specific genotyping, imputation, and analysis tools is provided in Supplementary Table 2. 

All studies were imputed based on the 1000 Genomes Project reference panel (Phase 3). 

JaPAN consortium GWAS. Participants in this GWAS were drawn from the JaPAN 

consortium39. Two case-control datasets were combined, resulting in a total of 945 pancreatic 

cancer cases and 3134 controls. The vast majority of cases were diagnosed as primary 

adenocarcinoma of the exocrine pancreas (ICD-O-3 codes C250–C259). The first dataset 

included 622 pancreatic cancer patients who were recruited from January 2010 to July 2014 at 

five participating hospitals in the Central Japan, Kanto, and Hokkaido regions. This multi-

institutional case-control study collected questionnaire data on demographic and lifestyle 

factors, as well as 7-ml blood samples, from the study participants. The second dataset 

included 323 patients with newly diagnosed pancreatic cancer and 3134 control subjects 

recruited to an epidemiological research program at Aichi Cancer Center (HERPACC) 

between 2005 and 2012. All new outpatients on their first visit to Aichi Cancer Center were 

invited to participate in HERPACC. Those who agreed to participate filled out a self-

administered questionnaire and provided a 7-ml blood sample. After quality control, 943 

cases and 3057 controls remained for the subsequent analysis (Supplementary Table 2). 

None of the control subjects had a diagnosis of cancer at the time of recruitment. Written 

informed consent was obtained from all study participants, and the study protocol was 

approved by the Ethical Review Board of Aichi Medical University, the Institutional Ethics 

Committee of Aichi Cancer Center, the Human Genome and Gene Analysis Research Ethics 

Committee of Nagoya University, and the ethics committees of all participating hospitals. 

BBJ GWAS. Pancreatic cancer cases were obtained from the BBJ GWAS, which was 

launched in 2003 and collected DNA and clinical information from approximately 200,000 
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patients, including those with pancreatic cancer40. Overall, 422 pancreatic cancer cases with 

available genotype data were recruited from 2003 to 2008. Clinical information was collected 

using a standardized questionnaire. This study was approved by the ethics committees of the 

RIKEN Center for Integrative Medical Sciences. The controls were drawn from the 

participants in four population-based cohort studies in Japan: the Japan Multi-Institutional 

Collaborative Cohort Study (J-MICC), the Japan Public Health Center-based Prospective 

Study (JPHC), the Tohoku Medical Megabank Project Organization (ToMMo), and the Iwate 

Tohoku Medical Megabank Organization (IMM). A total of 28,870 controls who passed 

genotype data quality control assessments were included in the study. In all participating 

cohort studies, informed consent was obtained from the participants by following the 

protocols approved by the corresponding institutional ethics committees. The detailed 

descriptions of the BBJ and each cohort study are provided in the Supplementary Note. 

NCC GWAS. The case and control samples were derived from a previous pancreatic cancer 

GWAS11. The cases were 677 patients diagnosed with invasive pancreatic ductal 

adenocarcinoma at the NCC Hospital, Tokyo, Japan. The control population consisted of 677 

Japanese volunteers who participated in a health checkup program in Tokyo. After 

preimputation quality control, 674 cases and 674 controls remained for the subsequent 

analysis (Supplementary Table 2). This project was approved by the ethics committee of the 

NCC. 

Quality control after genotype imputation 

After genotype imputation, quality control was applied to each study. SNPs with an 

imputation quality of r2 < 0.5 or a MAF of <0.01 were excluded. SNPs that passed quality 

control in at least two cohorts were included in the meta-analysis.  

Association analysis for SNPs and pancreatic cancer 

The association of pancreatic cancer with SNP allele dose was tested using logistic 
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regression analysis with adjustment for the top 2 principal components. Other known 

covariates, such as age, sex, and cigarette smoking, were not included in the analysis because 

the inclusion of covariates has been shown to substantially reduce the power for the 

identification of disease-associated variants when the disease prevalence is less than 2%41. 

The effect sizes and standard errors were used in the subsequent meta-analysis. 

Meta-analysis 

We performed a meta-analysis of three pancreatic cancer GWASs (JaPAN, BBJ and NCC). 

The association results for each SNP across the studies were combined with METAL software 

in a fixed effects inverse variance-weighted meta-analysis. Heterogeneity in allelic effects 

was assessed using the I2 index. The meta-analysis included 7,914,378 SNPs with genotype 

data available from at least two cohorts. A P value threshold of 5 × 10-8 was used to 

determine genome-wide significance. We assessed the inflation of test statistics using the 

genomic control lambda. 

Replication analysis 

The replication cohort comprised 507 cases and 879 controls who were recruited under the 

same framework as the multi-institutional case-control study of the JaPAN consortium 

(Supplementary Table 1). The cases and controls were recruited from August 2014 to March 

2018 at five participating hospitals in the Central Japan, Kanto, and Hokkaido regions. The 

control subjects included outpatients as well as screening participants with no diagnosis of 

cancer. SNP genotyping was performed using a Fluidigm SNP assay at the Aichi Cancer 

Center Research Institute, with the laboratory staff blinded to the case-control status. The 

association of pancreatic cancer with SNP allele dose was tested using unadjusted logistic 

regression analysis. 

Functional annotations 

To prioritize the associated SNPs at the novel loci, we adopted a series of bioinformatic 
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approaches to collate functional annotations. We first used ANNOVAR42 to obtain an 

aggregate set of functional annotations—including the gene location and the impact of the 

amino acid substitution based on prediction tools such as SIFT, PolyPhen-2, and CADD—for 

SNPs with a P value of <5 × 10–8 for pancreatic cancer. We also explored potential effects on 

gene regulation by annotating these SNPs using the RegulomeDB database43. 

MR analysis 

We performed MR analyses using independent, genome-wide significant T2D-associated or 

HbA1c-associated SNPs, which were available from two published GWAS meta-analyses in 

Japanese subjects, as instrumental variables16,17. For the two-sample MR analysis of T2D and 

pancreatic cancer, we did not exclude the overlapping samples (15.5% found only in the 

controls) because retaining these samples was unlikely to introduce substantial bias44. A total 

of 106 pancreatic cancer cases were excluded in the HbA1c GWAS, and the effect sizes for 

the HbA1c-associated SNPs were reestimated. After the exclusion of 6 SNPs on the X 

chromosome (5 SNPs for T2D and 1 SNP for HbA1c) and an SNP for T2D (rs35678078) 

without genotype data, the summary data for 82 T2D-related SNPs and 25 HbA1c-related 

SNPs and the associations of these SNPs with pancreatic cancer risk were analyzed using 

IVW and MR-Egger regression methods. MR analysis was performed with the 

MendelianRandomization package45. 

Gene-based analysis 

SNP-based P values were combined into gene-based P values using MAGMA software 

version 1.0618. SNP summary statistics (P values) from the meta-analysis were used as input 

for MAGMA. In gene-based association tests, LD between SNPs was accounted for, and the 

P value threshold for genome-wide significant associations was set at 2.84×10−6. The 1000 

Genomes reference panel (Phase 3, East Asian) was used to control for LD. We did not 

include any upstream/downstream regions around the genes in this analysis; only variants 
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located between the first exon and the last exon of a gene were used to calculate the gene-

based P values. The NCBI Gene database was used to define genomic intervals for protein-

coding genes. To replicate the association between KRT8 and pancreatic cancer, we applied 

SNP summary statistics from PanScan 1 and PanScan 2 (pha002889.1)13 to MAGMA. The 

MAF of the Haplotype Map (HapMap) project Phase 2 CEU samples for each SNP was added 

to the summary statistics because the pha002889.1 data did not include the MAFs. We 

excluded variants with a call rate (CR) of > 95% in the cases, a CR of > 95% in the controls, a 

Hardy-Weinberg equilibrium test P value of <1 × 10−6 in the controls, and/or a MAF of <0.01. 

The 1000 Genomes reference panel (Phase 3, European) was used to control for LD. The 

significance level was set at α=0.05. 
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Figure legends 

Figure 1. Manhattan plot for the meta-analysis. The horizontal red line represents the 

genome-wide significance level (α = 5 × 10−8). The horizontal blue line represents the 

suggestive significance level (α = 1 × 10−6). 

 

Figure 2. Regional association plot for the 16p12.3 locus identified in the meta-analysis. The 

vertical axis indicates the –log10(P value) for the assessment of the association of each SNP 

with pancreatic cancer. The colors indicate the LD (r2) between each sentinel SNP and 

neighboring SNPs based on the JPT population in the 1000 Genomes Project Phase 3. 

 

Figure 3. MR analysis with the IVW method for the relationship between T2D and pancreatic 

cancer in the Japanese population. (a) The results from 82 T2D-associated SNPs (b) 25 

HbA1c-associated SNPs. 
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Table 1. Genomic region and lead SNPs associated with pancreatic cancer susceptibility in the meta-analysis of three Japanese GWASs 

SNP Locus Chr Position Gene 
Alleles 

OR (95% CI) P value I2 HetP value 
Risk Non-risk 

Genome-wide significant loci 
     

 
  

rs147905965 13q12.2 13 28474234 PLUT AT A 1.29 (1.18-1.41) 1.66×10-8 28.3 0.248  

rs9543325 13q22.1 13 73916628 KLF5, LINC00392 C T 1.24 (1.15-1.33) 1.38×10-8 24.9 0.264  

rs78193826 16p12.3 16 20328666 GP2 T C 1.46 (1.29-1.66) 4.28×10-9 14.5 0.310  

        
 

  
Suggestive loci 

     
 

  
rs3737136 1p13.2 1 113060432 WNT2B G A 1.24 (1.14-1.34) 1.35×10-7 74.3 0.020  

rs35067842 2p12 2 79568318 REG3A, LOC101927987 C A 1.24 (1.14-1.34) 3.28×10-7 0 0.883  

rs6809193 3p12.3 3 76479914 ZNF717, ROBO2 G A 1.23 (1.14-1.33) 4.33×10-7 34.2 0.219  

rs7855466 9q34.2 9 136121303 OBP2B, ABO T C 1.22 (1.13-1.31) 2.38×10-7 56.7 0.100  

OR values represent the increased risk of pancreatic cancer per risk allele copy for each SNP. Chr, chromosome. RAF, risk allele frequency. 
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Table 2. Associations between selected SNPs at 16p12.3 and pancreatic cancer risk in the replication and combined analyses 

SNP Chr Position 

Alleles  Replication analysis  Combined analysis 

Risk Non-risk  
RAF 

OR (95% CI) P value  OR (95% CI) P value I2 
HetP 

value 
 Case Control  

rs78193826 16 20328666 T C 
 

0.091 0.075 1.26 (0.94-1.68) 0.12 
 

1.43 (1.27-1.60) 1.98×10-9 7.7  0.355  

rs117267808 16 20323168 A G 
 

0.091 0.075 1.25 (0.93-1.66) 0.134 
 

1.43 (1.27-1.60) 3.26×10-9 11.3  0.337  

rs73541251 16 20331737 G C 
 

0.091 0.071 1.34 (1.00-1.79) 0.05 
 

1.44 (1.28-1.62) 1.20×10-9 3.8  0.374  

rs4632135 16 20337884 C T  0.092 0.071 1.34 (1.00-1.79) 0.046  1.42 (1.26-1.60) 6.17×10-9 14.7  0.319  

OR values represent the increased risk of pancreatic cancer per risk allele copy for each SNP. Chr, chromosome. RAF, risk allele frequency. 
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