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ABSTRACT 

Protein complexes play a central role in many aspects of biological function. Knowledge of the 

three-dimensional (3D) structures of protein complexes is critical for gaining insights into the 

structural basis of interactions and their roles in the biomolecular pathways that orchestrate key 

cellular processes. Because of the expense and effort associated with experimental 

determination of 3D structures of protein complexes, computational docking has evolved as a 

valuable tool to predict the 3D structures of biomolecular complexes. Despite recent progress, 

reliably distinguishing near-native docking conformations from a large number of candidate 

conformations, the so-called scoring problem, remains a major challenge. Here we present 

iScore, a novel approach to scoring docked conformations that combines HADDOCK energy 

terms with a score obtained using a graph representation of the protein-protein interfaces and 

a measure of evolutionary conservation. It achieves a scoring performance competitive with, 

or superior to that of the state-of-the-art scoring functions on independent data sets consisting 

docking software-specific data sets and the CAPRI score set built from a wide variety of 

docking approaches. iScore ranks among the top scoring approaches on the CAPRI score set 

(13 targets) when compared with the 37 scoring groups in CAPRI. The results demonstrate the 

utility of combining evolutionary and topological, and physicochemical information for 

scoring docked conformations. This work represents the first successful demonstration of graph 

kernel to protein interfaces for effective discrimination of near-native and non-native 

conformations of protein complexes. It paves the way for the further development of 

computational methods for predicting the structure of protein complexes. 
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INTRODUCTION 

Protein-protein interactions (PPIs) play a crucial role in most cellular processes and activities   

such as signal transduction, immune response, enzyme catalysis, etc. Getting insight into the 

three dimensional (3D) structures of those protein-protein complexes is fundamental to 

understand their functions and mechanisms1,2. Due to the prohibitive cost and effort involved 

in experimental determination of the structure of protein complexes3, computational modelling, 

and in particular docking, has established itself as a valuable complementary approach to 

obtaining insights into structural basis of protein interactions, interfaces, and complexes4-10.  

Computational docking typically involves two steps4,7-9: Sampling, i.e., the search of the 

interaction space between two molecules to generate as many as possible near-native models; 

and scoring, i.e., the identification of near-native models out of the pool of sampled 

conformations. As shown in the community-wide Critical Assessment of PRediction of 

Interactions (CAPRI)11-14, scoring is still a major challenge in the field. There is thus still plenty 

of room to improve the scoring functions used in protein-protein docking10,15. 

Scoring functions can be classified into three types: i) physical energy term-based, ii) statistical 

potential-based and iii) machine learning-based. Physical energy-based scoring functions are 

usually a weighted linear combination of multiple energetic terms. These  are widely used in 

many docking programs such as HADDOCK16,17, SwarmDock18, pyDock19-21, ZDock22,23, and 

ATTRACT24. Taking HADDOCK as an example, its scoring function consists of 

intermolecular electrostatic and van der Waals energy terms combined with an empirical 

desolvation potential25 as well as a buried surface area (BSA)-based term depending on the 

stage of the protocol17. Statistical potential-based scoring functions such as 3D-Dock26, 

DFIRE27, and SIPPER28, typically convert distance-dependent pairwise atom-atom or residue-

residue contacts distributions into potentials through Boltzmann inversion. Unlike classical 

scoring functions that consist of linear combinations of energy terms, or simple geometric and 

physicochemical features29-31, a machine learning approach can discover complex nonlinear 

combinations of features of protein-protein interfaces to train a classifier to label a docking 

model as near-native model or not. Simple machine learning algorithms work with fixed 

dimensional feature vectors.  Because interfaces of different docking models can vary widely 

in size and shape, and in the arrangement of their interfacial residues, most machine learning 
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based scoring functions typically use global features of the entire interface, for example, the 

total interaction energy and the BSA. However, such an approach fails to effectively utilize 

details of the spatial arrangement of interfacial residues/atoms.  

Graphs, in which the nodes encode the amino acid residues or atoms and the intermolecular 

contacts between them are encoded by the edges, offer a natural and information-rich 

representation of protein-protein interfaces. Unlike the global interface feature vectors 

described above, a graph has a residue- or atom-level resolution and naturally encodes the 

topological information of interacting residues/atoms32,33. Furthermore, the size of a graph is 

not fixed and can vary depending on the size of the interface.  

Such graph-based descriptions have been used previously in several scoring functions34-36. 

Graph (or network) topology-based metrics have mostly been used. Chang et al. 200834 

exploited node degrees (measuring the number of direct contacts of a node) and clustering 

coefficients (measuring how likely a node and its neighbours tend to form a clique) to score 

docking models. Similarly, Pons et al. 201135 used closeness (measuring how far a node from 

the rest of the nodes in a network) and betweenness (measuring how important a node as a 

connector in a network) in scoring with the intuition that residues with high centralities in a 

network tend to be key functional residues. Unlike the network topology-based approaches, the 

SPIDER36 scoring function uses a graph to represent the interface at residue level with nodes 

labelled by their amino acid identity. It ranks the docking models by counting the frequency of 

native motifs in the interface graph. However, all the preceding fail to fully exploit the rich 

features of protein interfaces. 

Against this background, we represent the interface with a labelled graph, where the nodes 

encode the interface residues, edges encode residue-residue contacts, and the nodes are 

annotated with evolutionary conservation profiles. We treat the scoring problem as a binary 

classification problem. By calculating the similarity between an interface graph from a docking 

model with the positive (native) and negative (non-native) interface graphs in the training set, 

we predict the likelihood of the query interface graph belonging to the positive class or the 

negative class (Figure 1). We make use of a novel graph kernel to compute the pair-wise 

similarity between the graph representations of protein-protein interfaces. We call the resulting 

graph kernel-based scoring function GraphRank. 
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GraphRank exploits random walk graph kernel (RWGK)37 for computing the similarity of 

labeled graphs, which has previously been used for protein function prediction38 to calculate 

the similarity between two interface graphs. By simultaneously conducting random walks on 

two graphs, RWGK measures the similarity of two graphs by aggregating the similarity of the 

set of random walks on the two graphs. Unlike previous graph-based scoring functions, RWGK 

allows GraphRank to fully exploit various node labels and edge labels and to explicitly specify 

the starting and ending probability of the random walks. GraphRank has two major advantages 

over classical machine learning based scoring functions. First, GraphRank uses a more detailed 

representation of protein interfaces than that provided by the fixed dimensional feature vectors 

used by classical machine learning approaches. GraphRank exploits residue level attributes and 

network topology. Second, GraphRank uses the full profile of interface conservation as node 

labels, i.e., each node is represented as a 20 by 1 vector of conservation profile extracted from 

the Position Specific Scoring Matrix (PSSM). Residue conservation information plays an 

important role in protein-protein recognitions39-41 and hence different types of conservation 

information have been used in several existing scoring functions42-44. The PSSM is a multiple-

sequence-alignment (MSA) based conservation matrix. Its value is a log likelihood ratio 

between the observed probability of one type of amino acid appearing in a specific position in 

the MSA and the expected probability of that amino acid type appearing in a random sequence. 

Each position in a protein can be represented as a 20 by 1 PSSM profile, which captures the 

conservation characteristic of each amino acid type at a specific position.  

For GraphRank we designed a specific random walk graph kernel to compare interface graphs. 

A graph similarity matrix was calculated from a balanced dataset of native and non-native 

structures from the protein-protein docking benchmark version 4.0 (BM4), and was used to 

train a support vector machine (SVM) classifier. GraphRank, the resulting scoring function, 

uses only the residue conservation information as node labels and as the basis of starting and 

ending probabilities of random walks. We further combined the GraphRank score with 

intermolecular energies, resulting our final scoring function, iScore. We benchmarked the 

iScore and GraphRank scoring functions on two independent sets of docking models for two 

different purposes: 1) 4 sets of docking software-specific models and their respective scoring 

functions and 2) the CAPRI score set, a set of docking software-nonspecific models, in which 

models from different docking programs are mixed together. The results of our experiments on 

both benchmarks show that iScore achieves scoring performance that is competitive with or 
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superior to that of the state-of-the-art scoring functions. These results represent the first 

successful demonstration of the use of graph kernel applied to protein interfaces for effective 

discrimination of near-native and non-native conformations of protein complexes.  

METHODS 

Constructing interface graph and random walk graph kernel 

Representing protein-protein interfaces as labelled bipartite graphs. A residue is defined 

as an interface residue if any of its atoms is within 6Å of any atom of another residue in the 

partner protein. This is a commonly used interface definition45, and, for example, a similar 

cutoff (5.5Å) has been shown to work well for contacts-based binding affinity prediction46. We 

represent the interface of a native complex or a docking model as a bipartite graph (Figure 1), 

in which each node is an interface residue, and each edge consists of two nodes that are within 

6Å distance from each other (based on any atom-atom distance within 6Å between those 

residues). We further label the graph node with residue conservation profiles from Position 

Specific Scoring Matrix (PSSM). Each node is thus represented by a 20×1 vector of PSSM 

profile. Our current implementation uses a single type of nodes, namely residues, labeled with 

their PSSM profiles, and a single type of edges, namely, those that encode inter-residue 

contacts. However, our framework admits multiple types of nodes and edge labels. 

The PSSM was calculated through PSI-BLAST47 of BLAST 2.7.1+. The parameters of the 

BLAST substitution matrix, word size, gap open cost and gap extend cost were automatically 

set based on the length of protein sequence using the recommended values in the BLAST user 

guide (https://www.ncbi.nlm.nih.gov/books/NBK279684/) (see Table S1). Other parameters 

were: Number of iterations set to 3 and the e-value threshold to 0.0001. The BLAST database 

used was the nr database (the non-redundant BLAST curated protein sequence database), 

version of February 04, 2018. 

Random walk graph kernel for interface graphs. We define a random walk graph kernel 

(RWGK) to measure the similarity of two interface graphs. Given two labeled graphs, a RWGK 

first applies simultaneous random walks on the two graphs with the same walk length (the 

number of edges) and then calculates the similarity between those two random walks. The 
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RWGK score is then the weighted sum of the walk similarity varying the walk length from 0 

to infinity48. 

Gärtner et al.49 proposed an elegant approach for calculating all random walks within two 

graphs using direct product graphs. A graph 𝐺 consists of a set of 𝑛 nodes 𝑉 = {𝑣(, 𝑣*, … , 𝑣,} 

and a set of 𝑚 edge 𝐸 = {𝑒(, 𝑒*,… , 𝑒1} where the edge 𝑒2 is defined by two nodes. Given two 

graphs 𝐺 = {𝑉, 𝐸} and 𝐺3 = {𝑉3, 𝐸′}, the direct product graph 𝐺× is a graph defined as follows: 

	
   𝐺× 	
  = 𝐺 × 𝐺3 = 	
   {𝑉×, 𝐸×},	
   (1)	
  

	
   𝑉× = 9:𝑣2, 𝑣;3<=𝑣2 ∈ 𝑉, 𝑣;3 ∈ 𝑉′?,	
   (2)	
  

	
   𝐸× = AB:𝑣2, 𝑣;3<, (𝑣C, 𝑣D3)E F(𝑣2, 𝑣C) ∈ 𝐸, :𝑣;3, 𝑣D3< ∈ 𝐸′G,	
   (3)	
  

 
where 𝑉× is the node set and 𝐸× is the edge set. In other words, 𝐺× is a graph over pairs of 

nodes from 𝐺 and 𝐺3, and two nodes in 𝐺× are neighbors if and only if the corresponding nodes 

in  𝐺 and 𝐺3 are both neighbors37. 

The simultaneous random walks on graphs 𝐺 and 𝐺3 are equivalent to a random walk on the 

direct product graph 𝐺×. In other words, each walk on the direct product graph 𝐺× corresponds 

to two walks on the two individual graphs, allowing the calculation of a similarity score 

between them. When the walk length is 1, these similarity scores are the elements of the weight 

matrix 𝑊× of 𝐺×.𝑊K
D  consists of similarity scores of walk length of 𝑙. The similarity between 

graphs 𝐺 and 𝐺3 is thus the weighted sum of these walk similarities. 

Formally, the random walk graph kernel is originally defined by Vishwanathan et al.37 as:  

	
   𝑘(𝐺, 𝐺3) = 	
  N𝜇(𝑙)𝑞×Q𝑊×D𝑝×
S

DTU

,	
   (4)	
  

where 𝑙 is the length of random walk on 𝐺×, 𝜇(𝑙) is a factor that allows one to (de-)emphasize 

walks with different lengths, 𝑊× is the weight matrix of 𝐺×, and 𝑞× and 𝑝× are the starting and 
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stopping probabilities of random walks on 𝐺× , respectively. In our study, we limit the 

maximum walk length to 3, and 𝜇(𝑙) is set to 1 for 𝑙 = 0 to 3.  

And 𝑊×, 𝑞× and 𝑝× are designed as follows. 

𝑊×D B(𝑣2, 𝑣23), :𝑣;, 𝑣;3	
  <E

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ [𝑘,\]^

(𝑣2, 𝑣23) ∗ 𝑘,\]^:𝑣;, 𝑣;3< ∗ 𝑘^]`^(𝑒a, 𝑒b3),	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑖 = 𝑗
0,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑖 ≠ 𝑗

, 𝑙 = 0
	
  	
  	
  
	
  	
  	
  

g
𝑘,\]^(𝑣2, 𝑣23) ∗ 	
  𝑘,\]^:𝑣;, 𝑣;3< ∗ 𝑘^]`^:𝑒a, 𝑒b3<,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑖𝑓	
   B(𝑣2, 𝑣23), :𝑣;, 𝑣;3<E ∈ 𝐸×
0, 	
  	
  	
  	
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑙 = 1

,	
  
(5)	
  

where 𝑘^]`^(𝑒a, 𝑒b3)  is the kernel to measure the similarity between two edges, 𝑒a = (𝑣2, 𝑣;) 

and 𝑒b3 = (𝑣23, 𝑣;3). Since we do not use specific edge labels here, 𝑘^]`^(𝑒a, 𝑒b3) is simply set to 

1. 𝑘,\]^(𝑣2, 𝑣23) is the kernel to measure similarity between nodes defined as follows: 

	
   𝑘,\]^(𝑣2, 𝑣23) = 	
  𝑒𝑥𝑝q−
s𝑣tuuu⃑ − 𝑣t3uuu⃑ s

*

2𝜎*
x,	
   (6)	
  

where 𝑣tuuu⃑  and 𝑣t3	
  uuuu⃑  are node labels for nodes 𝑣2 and 𝑣23, respectively. As described above, we used 

PSSM residue conservation profiles as node label. 𝜎 was set to 10 by simply checking the 

distribution of some	
  s𝑣tuuu⃑ − 𝑣t3	
  uuuu⃑ s values. 

We bias the random walks to start and end with conserved residues by giving those higher 

starting and ending probabilities. For this, we define the starting and ending probabilities 

𝑞×:(𝑣2, 𝑣23)<	
  and 𝑝×:(𝑣2, 𝑣23)<	
  from the normalized conservation score as follows: 

	
   𝑞×:(𝑣2, 𝑣23)< = g

0, 𝑖𝑓	
  𝐼𝐶|} < 0.5	
  𝑎𝑛𝑑	
  𝐼𝐶|}� < 0.5
𝐼𝐶|} ∗ 𝐼𝐶|}�

∑ ∑ 𝐼𝐶|� ∗ 𝐼𝐶|��
,�
CT(

,
;T(

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,	
   (7)	
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   𝑝×:(𝑣2, 𝑣23)< = 	
  𝑞×:(𝑣2, 𝑣23)<	
   (8)	
  

where 𝐼𝐶|}  and 𝐼𝐶|}�  are the PSSM information content (IC) for the nodes 𝑣2  and 𝑣23 , 

respectively, and 𝑛  and 𝑛3  are the number of nodes in graph 𝐺  and 𝐺3 , respectively. IC is 

always ≥0. The higher the IC, the more conserved a residue is. 

Support vector machine (SVM) algorithm. SVM is a kernel-based learning algorithm50,51. 

We used the SVM implementation from the LIBSVM52 package to train a scoring function 

taking the 𝑁 × 𝑁	
  graph kernel matrix from the training dataset as input (𝑁 is the number of the 

training graphs). Given a test data (an interface graph of a docking model in our case), we 

calculate the kernel vector that consists of the similarities of this query graph with all the 

training graphs. The trained SVM-based scoring model uses the resulting vector of similarities 

of the query graph with all of the training graphs as well as the labels of the training graphs to 

predict the likelihood of the query graph corresponds to a near-native conformation. 

 

Figure 1. Schematic workflow of our graph kernel-based scoring method. Docking models for a protein-protein 

complex are first represented as graphs by treating the interface residues as graph nodes and the intermolecular contacts 

they form as graph edges. Interface features are added to the graph as node or edge labels (only PSSM profiles as node 

labels in this case). Then, each of the interface graphs of the docking models is compared to the interface graphs of 

both the positive (native) structure and negative (non-native) models. This graph comparison generates a similarity 

matrix for the docking models with the number of rows and columns corresponding to the number of docking models 

and the total number of positive and negative graphs, respectively. Next, the support vector machine takes the graph 

kernel matrix as input and predicts decision values that are used as the GraphRank score. The final scoring function 

iScore is a linear combination of the GraphRank score and HADDOCK energetic terms (van der Waals, electrostatic 

and desolvation energies). The weights of this linear combination are optimized using the genetic algorithm (GA) over 

the BM4 HADDOCK dataset.  
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Evaluation Metrics to compare scoring functions 

We used the success rate at cluster level to evaluate the scoring functions. We define a cluster 

as a hit if at least one of the top 4 models in that cluster is of acceptable or better quality. The 

success rate on top N clusters is defined as the number of cases (complexes) with at least one 

hit out of the N clusters divided by the total number of complexes considered. 

The quality of the docking models was evaluated using standard CAPRI criteria based on the 

interface or ligand Root Mean Squared Deviations (i-RMSDs and l-RMSDs, respectively) and 

fraction of native contacts (Fnat) (for details refer to Figure 1 of Lensink et. al.11). They were 

classified as incorrect (i-RMSD>4Å or Fnat < 0.1), acceptable (2Å<i-RMSD≤4Å  and Fnat 

≥0.1), medium (1Å<i-RMSD≤2Å and Fnat ≥0.3) or high (i-RMSD≤1Å and Fnat ≥0.5) quality11.  

Training on docking benchmark 4 docking models 

Training dataset for GraphRank. The dataset for training was based on protein-protein 

complexes from the protein-protein docking benchmark version 4.0 (BM4), considering only 

dimers, resulting in a set of 117 non-redundant protein-protein complexes. Docking models for 

those complexes had been generated previously by running HADDOCK in its ab initio mode 

using center of mass restraints53. The crystal structures of these 117 complexes (the “native” 

structures) form our positive training set. The average number of nodes and edges in the 

corresponding graphs for this native set are 68±25 and 119±55, respectively. To create a 

balanced training set, we randomly selected 117 non-native (wrong) models from the pool of 

HADDOCK models with i-RMSD≥10Å and number of graph nodes ≥5 as our negative 

training set. The average number of nodes and edges in the non-native set are 48±14 and 70±23, 

respectively. In total, we thus have 234 (=117*2) structures as our training set. 

Training dataset for iScore. For the training of iScore we selected BM4 complexes for which 

HADDOCK, running in ab-initio mode using center of mass restraints, generated at least one 

good model in the final water refinement stage. This resulted in 63 cases for which at least one 

docking model with acceptable or better quality was present in the final set of 400 water-refined 

models. This dataset is denoted in the following as the BM4 HADDOCK dataset. 
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Training the graph kernel-based scoring function (GraphRank). We applied the 

commonly-used SVM classifier C-SVC from LIBSVM52 to train our scoring function. We 

precomputed the random walk graph kernel matrix (234 × 234) for the training data and used 

it as input of the SVM classifier. The SVM outputs the predicted decision values for a test case 

(the decision values from libsvm is defined as 𝑑 × |𝑤uu⃗ |, where 𝑑 is the distance from a point to 

the hyperplane and  𝑤uu⃗ 	
  is the weight vector of SVM that defines the classification hyperplane). 

To be consistent with energy terms which we later incorporated into iScore (the lower the 

energy the better a model), we use the negative decision value from the SVM as the final score 

of GraphRank. The resulting optimised SVM classifier is denoted as the “GraphRank” scoring 

function. 

Integrating GraphRank score with energetic terms (iScore). We combined the GraphRank 

score with three energetic terms from HADDOCK to train a simple linear scoring function 

named iScore. 

The HADDOCK energetic terms used are: 

•   Evdw, the intermolecular van der Waals energy described by a 12-6 Lennard-Jones 

potential; 

•   Eelec, the intermolecular electrostatic energy described by a Coulomb potential;  

•   Edesolv, an empirical desolvation energy term. 

The van der Waals and electrostatic energies are calculated using a 8.5Å distance cutoff using 

the OPLS united atom force field54. 

The GraphRank score and HADDOCK terms were normalised with the following equation: 

	
   𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑	
  𝑋 =
𝑋 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)

𝐼𝑄𝑅(𝑋) 	
  ,	
   (9)	
  

where the 𝑋 is a set of values for a specific term, 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) is the median value of this term, 

𝐼𝑄𝑅 is the interquartile range, which is the difference between the 75th and 25th percentiles. 

We optimised the weights of the various iScore terms (the normalised GraphRank score and 

energetic features) on the BM4 HADDOCK dataset (63 cases and 400 models/case), using a 
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genetic algorithm (GA). We used the normalised discounted cumulative gain (nDCG)55 to 

evaluate the model ranking from each combination of the GraphRank score and energetic 

terms. This is a common measure of ranking quality for evaluating web search engine 

algorithms56. Specifically, nDCG is defined as follows: 

	
   𝑛𝐷𝐶𝐺 =	
  
𝐷𝐶𝐺
𝑖𝐷𝐶𝐺	
  ,	
  

(10)	
  

	
   𝐷𝐶𝐺 = 	
  N
2�} − 1

𝑖

,

2T(

	
  ,	
   (11)	
  

	
   𝑖𝐷𝐶𝐺 =	
  N
2�� − 1

𝑗

1

;T(

	
  ,	
   (12)	
  

where 𝐷𝐶𝐺 is the discounted cumulative gain calculated over the total number of models (here 

𝑛 in Eq. 11 is 400). 𝑖𝐷𝐶𝐺 is the ideal DCG (meaning all the hits are ranked at the top 1, 2, 

…m, where 𝑚 is the total number of hits), and 𝑛𝐷𝐶𝐺 is the normalised DCG. 𝑖 is the ranking 

position of a model, 𝑤2 is the weight of a model ranked at position 𝑖. Here, we set 𝑤2 = 1 if 𝑖 

is a near-native model, and 𝑤2 = 0 otherwise. The contribution of a model to DCG becomes 

thus 0 or (
2
, where 𝑖 is the ranking of the model. 

The fitness function for the GA optimisation was defined as the average of squared 𝑛𝐷𝐶𝐺 

values for the 63 cases (one nDCG value per case). The parameters of the GA optimisation 

were: Population size = 800, maximum generations = 100, crossover rate = 0.8 and stopping 

tolerance = 0.001. The GA converged quickly, stopping at the 51th generation. The GA 

optimisation was repeated 30 times and the median values were used as final weights. 

Validation and comparison with state-of-the-art scoring functions 

I.   Validation on models from different docking programs  

We validated iScore’s performance on docking models from four different docking programs: 

HADDOCK16,57, SwarmDock18, pyDock19-21 and ZDock22,23. These models were used to 

evaluate our scoring functions and compare them with the original scoring functions in these 
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respective docking programs. The protein-protein complexes used for testing are the new 

entries from the protein-protein docking benchmark version 5.0 (BM5)58, on which none of the 

docking software listed above has been previously trained. These cases are also non-redundant 

to our training set. The HADDOCK docking models for the BM5 new cases were generated 

using predicted interface residues from CPORT59 as reported in the BM5 paper58. The docking 

models for ZDock, pyDock and SwarmDock were taken from the work of Moal et al.31. In 

total, we could use 9, 18, 14 and 10 complexes for HADDOCK, SwarmDock, pyDock and 

ZDock, respectively, with the number of models per case varying from 125 to 500, for which 

at least one near-native model was present in the set of generated models. 

Calculating HADDOCK energetic terms. We used HADDOCK to calculate the 

intermolecular energies for the docking models from other docking programs. For this, the 

missing atoms of the models were built according to the OPLS force field topology with 

standard HADDOCK scripts using CNS60. A short energy minimization (EM) was then 

performed with the following settings: 50 steps of conjugate gradient EM, van der Waals 

interactions truncated below the distance of 0.5Å, and dielectric constant set to 1.  

Removing docking models containing clashes. Docking models originating from rigid-body 

docking programs, such as ZDock and pyDock, often contain clashes that a short EM cannot 

resolve. We removed those clashing models from the test dataset following the CAPRI 

assessment procedure: A clash is defined by a pair of heavy atoms between protein partners 

with a distance below 3Å. We discarded all models with more than 0.1 clashes per Å2 of buried 

surface.   

Clustering. The remaining docking models for each case were clustered with the fraction of 

common contacts (FCC) method61 using a 0.6 cutoff and requiring a minimum number of 4 

members per cluster. 

II.   Validation on the CAPRI score set.  

The CAPRI score set consists of a set of models collected from CAPRI participants and used 

in the scoring experiment of CAPRI62. We tested our scoring functions on this dataset and 

compared its performance with various scoring functions used in the CAPRI challenge. 

Docking models with clashes were removed as described above. Both dimers and multimers 
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were considered here. We used 13 cases from the CAPRI score set with number of models 

ranging between 497 and 1987. Following the CAPRI assessment protocol, we considered only 

10 models for assessment. The selection was conducted with simply selecting the top 2 models 

of the top 5 clusters for each target. 

Availability 

The iScore code is freely available from Github: https://github.com/DeepRank/iScore. And the 

docking models used are available from SBGrid: https://data.sbgrid.org/dataset/XXX (the 

deposition to SBGrid will be done at revision time).  

RESULTS 

Training and optimisation 

We trained a novel scoring function called iScore based on random walk graph kernels 

(RWGK), embedding protein-protein interface conservation profiles and integrating three 

intermolecular energy terms (electrostatics, van der Waals and desolvation energies) (see 

Methods). A subset of the docking benchmark 4 (BM4)63 was used for training,  consisting of 

117 crystal structures of protein-protein complexes and docking models obtained with the ab-

initio docking mode of HADDOCK for 63 out of those 117 complexes for which near-native 

docking models were obtained in the final HADDOCK water refinement stage (referred to as 

the BM4 HADDOCK dataset). 

We first trained a graph kernel-based scoring function called GraphRank using a SVM 

classifier. GraphRank ranks docking models based on their similarity/dissimilarity to the 

native/non-native set of structures used in the training. The similarity is measured concerning 

interface topology and conservation. For this, we represent the interface of a protein-protein 

complex by a graph, using interface residues as the nodes of the graph and intermolecular 

residue-residue contacts within 6Å as graph edges. The graph nodes are labelled with values 

of interface residue conservation profiles from PSSM. A novel RWGK based on the framework 

of Vishwanathan et al.37 was designed to measure the similarity between two interface graphs. 

It was used to train a SVM model on a balanced dataset consisting of 117 native and non-native 

structures, respectively. The resulting model or scoring function named GraphRank is then 
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used to rank docking models. It takes as input the graph similarity of a docking model with the 

234 structures in the training set. The smaller the GraphRank score is, the more similar the 

docking model is to native complexes. 

We then trained iScore by integrating the GraphRank score with three intermolecular energy 

terms from HADDOCK (see Methods). iScore consists of a linear combination of those four 

features whose weights were optimized on the BM4 HADDOCK docking models. To avoid 

extreme values of energies, we independently normalised the various terms for each complex 

with their median and interquartile range values. The iScore function with its optimised weights 

is: 

	
  

𝒊𝑺𝒄𝒐𝒓𝒆 = 𝟎. 𝟗𝟒𝟏 ∗ 𝒏𝑮𝒓𝒂𝒑𝒉𝑹𝒂𝒏𝒌𝒔𝒄𝒐𝒓𝒆 +	
  
𝟎. 𝟎𝟒𝟏 ∗ 𝒏𝑬𝒗𝒅𝒘 +	
  
𝟎. 𝟐𝟏𝟕 ∗ 𝒏𝑬𝒆𝒍𝒆𝒄 +	
  
𝟎. 𝟎𝟑𝟐 ∗ 𝒏𝑬𝒅𝒆𝒔𝒐𝒍𝒗	
  

(13)	
  

where 𝑛𝐺𝑟𝑎𝑝ℎ𝑅𝑎𝑛𝑘«¬\­^, 𝑛𝐸|]� , 𝑛𝐸^D^¬ , and 𝑛𝐸]^«\D|  are the normalized GraphRank score, 

Evdw, Eelec and Edesolv energies, respectively. 

The success rates of HADDOCK score, GraphRank score and iScore on the BM4 HADDOCK 

dataset (63 complexes) are shown in Figure 2. Compared with the energy-based HADDOCK 

score, the graph- and conservation-based GraphRank score has higher success rates. It is also 

evident that adding energetic features in iScore results in an improved scoring, reaching a 

success rate of 62% on the top 5 clusters in comparison with 59% for GraphRank. 
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Figure 2. Success rate of HADDOCK score, GraphRank and iScore on the BM4 HADDOCK training dataset over top 

N clusters of models. 

Benchmarking on docking software-specific docking models and their respective scoring 

functions 

Sampling and scoring are typically not independent components. They are often interrelated 

since a specific scoring method might depend on the sampling strategy followed and the 

representation of the system. We benchmark here the performance of iScore and GraphRank 

(which are trained on HADDOCK models) on docking software-specific docking models and 

compare their performance with that of each software respective scoring function. 

For this, models from the new protein-protein complexes of Docking Benchmark 558 generated 

using four widely used docking programs: HADDOCK16,57, SwarmDock18, pyDock19-21 and 

ZDock22,23. The number of available complexes with near-native docking models for those four 

widely-used docking programs are 9, 18, 14 and 10, respectively, with the number of docking 

models per complex varying from 125 to 500. The scoring performance was assessed with 

clustering of the docking models using our cluster procedure descried in Methods. 

iScore outperforms HADDOCK, ZDOCK and pyDock scoring functions and competes with 

that of SwarmDock on their respective docking program-specific models (Figure 3). On the 

HADDOCK models (Figure 3A), iScore shows the same performance as GraphRank, both 

outperforming HADDOCK on the top2 to top4, reaching 33% success rate for top 5 clusters. 

For all the other model sets, iScore outperforms GraphRank. It shows a better scoring 
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performance than the original scoring functions of pyDock (Figure 3C) and ZDock (Figure 

3D), while the original SwarmDock scoring function remains the best in terms of scoring 

performance (Figure 3B). iScore reaches a success rate of 36% and 60% (top 5 clusters) on 

pyDock and ZDock models, respectively, which is clearly a great improvement. 

 

Figure 3. Success rates measured at cluster level on four sets of docking program-specific models for BM5 protein-

protein complexes. GraphRank and iScore are compared with scoring functions from HADDOCK (A), SwarmDock (B), 

pyDock (C) and ZDock (D) on the docking models of the corresponding docking program, respectively. 

 

iScore ranks among the top scorers on the CARPI score set 
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The scoring set from the CAPRI scoring experiments62 is a valuable resource for evaluating 

scoring functions. CAPRI is a community-wide experiment for evaluating docking programs 

(started in 2001)64 and scoring functions (from 2005 on). The CAPRI score set consists of 15 

targets, 13 of which have near-native docking models. Each target has a mixture of 500-2000 

models from the various docking programs used in the CAPRI prediction challenges (Table 

1).  This represents an ideal set for evaluating scoring functions independently of docking 

programs. 

We benchmarked iScore and GraphRank on the models from the CAPRI score set and 

compared their performance with the reported performance of the various scoring 

functions/groups which participated to the CAPRI scoring experiments. Following the CAPRI 

assessment protocol, we selected only the top 10 ranked models for assessing the performance 

of iScore and GraphRank. This was done by selecting the top 2 models from each of the top 5 

clusters for each target. 

The scoring performance of iScore and GraphRank on the 13 CAPRI targets containing near-

native models is summarised in Table 1, together with the performance of the best scoring 

function/group in CAPRI for each target. Details of the performance of the various scoring 

functions compared for these targets are available in Table S2. Again, iScore outperforms 

GraphRank (Table 1) demonstrating the synergistic effects of conservation information and 

the interacting energies in differentiating near-native models from docking artifacts. Further, 

iScore selected near-native models on the top10 for 9 out of 13 targets, with 2 targets having 

high-quality models and 5 having medium-quality models. As a comparison, selecting for each 

target the best CARPI scoring function/group resulted in 10 out of 13 correctly predicted 

targets, with 4 and 3 targets having at least one high-quality and medium-quality models, 

respectively. 

Overall, iScore ranks among the top scorers on these 13 CAPRI scoring targets (Table 2). In 

total 37 scoring functions/groups were assessed (Table S2), but only those that participated to 

at least 5 targets are shown in Table 2. When considering the common submitted targets (Table 

S2), iScore still competes with the Weng group (8/2***/4** vs. 8/3***/2**), the Bonvin group 

(8/2***/4** vs. 8/2***/3**) and the Bates group (8/2***/4** vs. 8/1***/4**). It should be 

noted that the CAPRI scoring groups, e.g. Weng and Bonvin groups, selected the 10 models 
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with help of human expertise, while our selections were only generated from iScore and 

GraphRank without manual selection. Furthermore, considering that GraphRank only uses 

interface residue conservation profile as feature, it is rather impressive that GraphRank was 

ranked in the top 4. 

Table 1. Comparison of GraphRank and iScore with CAPRI best performing group per target on the CAPRI score set. 

10 models are selected and evaluated. The values are labelled in green/red when the performance of our scoring functions is 

better/worse than the CAPRI best scoring group. The scoring performance for each target is reported as the number of 

acceptable or better models (hits), followed by the number of high (indicated with ***) or medium quality models (**). For 

example, 8/2** means that there are totally 8 hits among the top 10 models, 2 models out of which are medium-quality models. 

The overall performance of each method on all 13 targets (the last row) is reported in a similar way. For example, 9/2***/5** 

means that a scoring function is successful in 9 targets, 2 targets out of 9 have at least a *** model, and 5 out of 9 have at least 

a ** model in the top 10. Note that the CAPRI best column consists of results from 37 different groups (refer to Table 2 for a 

comparison of the performance per group and Table S2 per target).  

CAPRI targets GraphRank iScore CAPRI best # Total models #Near-native 
T29 4 4 9/5** 1979 166 
T30 0 0 0 1148 2 
T32 4/1** 4/1** 2 599 15 
T35 0 0 1 497 3 
T37 2/1** 4/2** 6/1*** 1364 97 
T39 0 0 0 1295 4 
T40 4/3** 4/1*** 10/10*** 1987 535 
T41 8 10/2** 10/2*** 1101 347 
T46 3 4 4 1570 24 
T47 8/5***/3** 10/6***/4** 10/10*** 1015 608 
T50 0 4/3** 7/6** 1447 133 
T53 5/1** 5/1** 8/3** 1360 122 
T54 0 0 0 1304 19 

Total 8/1***/4** 9/2***/5** 10/4***/3**   
 
Table 2. Rankings of GraphRank and iScore in comparison with the scorer groups on the CAPRI score set. In total 37 
scorer groups were assessed (Table S2), but only scorer groups that have submitted predictions for at least 5 out of the 13 
CAPRI targets are shown here. The scoring functions/groups are ordered based on their performance. GraphRank and iScore 
are highlighted in green. Number of targets with submitted predictions are shown for each function/group. 

 
 Performance # Submitted targets 

iScore 9/2***/5** 13 
Weng 8/3***/2** 9 

Bonvin 8/2***/3** 9 
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Bates 8/1***/4** 10 
GraphRank 8/1***/4** 13 

Zou 7/4***/1** 9 
Wang 6/2***/3** 6 

Fernandez-Recio 5/2***/3** 8 
Elber 5/1***/1** 5 

Wolfson 4/1*** 5 
Camacho 3/2***/1** 5 

 
 
DISCUSSION 

We have developed a novel graph-kernel based scoring function, iScore, for scoring and 

ranking docking models of protein-protein complexes. By benchmarking on docking models 

from four different docking programs, iScore shows competitive or better success rate than the 

original scoring functions of those docking programs. Further, validation on CAPRI targets 

and comparison with CAPRI scorer groups highlights the high performance of iScore, which 

achieves the top success rate with acceptable or better models selected for 9 out of 13 CAPRI 

targets. This is quite remarkable considering that a rather small dataset was used for training 

and that only a single feature was used by GraphRank and 4 features in total by iScore. We can 

expect to further improve the performance of iScore, by increasing the size of the training set 

and enriching the node and edge labels of interface graphs. 

The usage of graph kernel on labelled graphs in iScore provides a novel way to score docking 

models. SPIDER36 is also a graph-based scoring function but is drastically different from our 

GraphRank hence also iScore. SPIDER identifies common interface residue patterns (i.e. 

interfacial graph motifs) in native complexes and rank a docking model by counting the 

frequency of the interfacial graph motifs. First of all, GraphRank is based on graph kernel 

functions to calculate the interface similarities between a docking model and the training 

complexes while SPIDER is based on the frequent graph mining technique to identify 

interfacial graph motifs.  Second, and importantly, the graphs used in SPDIER has only node 

labels with amino acid identity, while our GraphRank framework can potentially explore not 

only the properties of individual interface residues with node labels, but also the features of 

contacts between residues with edge labels. While we have only used node labels in this work 

(residue conservation profiles), the concept can easily be extended to add labels to the graph 
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edges, for example in the form of residue-residue interaction energies. Third, iScore uses multi-

scale representations of docked interfaces by combining atom-level energy terms with residue-

level graph similarities, which allows to account for both subtle differences in 3D space, 

interaction topology and residue conservations at the same time.   

Both conservation profiles and intermolecular energies are important features for scoring of 

PPIs. Our scoring function GraphRank, using only conservation profiles of the interface 

residues as features, already shows a promising scoring performance. Physical energies have 

been widely used and identified as important features in state-of-the-art scoring functions and 

are complementary to evolutionary information. Considering the successful applications of 

intermolecular energies in existing scoring functions, in this work we simply combined three 

intermolecular energetic terms from HADDOCK with the conservation profiles-based 

GraphRank score. The resulting scoring function iScore outperforms GraphRank, indicating 

the significance of considering both evolutionary and energetic information in characterizing 

PPIs.  

When comparing the performance of iScore on models from different docking programs on 

BM5 new data, we do observe iScore is able to improve the ranking over the original scoring 

functions for the rigid-body docking programs (pyDock and ZDock), while iScore does not 

really outperform the flexible docking programs like HADDOCK and SwarmDock which 

generate more optimised interfaces (Figure 3). This might be related to the structure quality of 

the docking models. For docking models from flexible docking, their structures are already 

optimised to release steric clashes, while the rigid-body programs usually do not have such an 

optimisation step, leading to unnatural interactions (clashes) within structures. To improve the 

structure quality of the docking models, we did apply a short energy minimization to optimise 

the structures before calculating intermolecular energies. With higher structure quality, like 

those coming out of SwarmDock and HADDOCK, the impact of this short minimisation is 

smaller, and the resulting improvement of iScore versus the original scoring functions is less.  

By introducing the labelled graphs and graph kernel in our scoring function iScore, we pave 

the way for exploring more detailed features in the graph presentation of protein-protein 

complexes. Natural extensions of this work will be to include edge labels, for example residue-

residue interaction energies and co-evolution. Considering graphs are natural representations 
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of biomolecules, this general framework should be useful for other important macromolecular 

interaction related topics, such as binding affinity predictions, hot-spot predictions, and rational 

design of protein interfaces.  
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