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Abstract 
 
Interactions between biological tissues and implantable biomaterials such as surgical 
sutures lead to a Foreign Body Response (FBR), which can result in fibrotic encapsulation, 
scarring and biomaterial rejection. To investigate the cell and tissue signalling events that 
underlie development of an FBR, we use live imaging of transgenic zebrafish reporter lines 
to observe how inflammation and angiogenesis differ between a healthy acute wound and 
an FBR. We see an expanding zone of inflammation extending back from suture margins; 
this correlates to an avascular zone, and subsequently to a defined fibrotic encapsulation 
zone. We observe macrophage fusion to generate foreign body giant cells adjacent to the 
suture and this together with the degree of scarring is dependent on the biocompatibility of 
the suture used: sutures that induced more inflammation resulted in increased zones of 
avascularity and fibrosis.  By genetically or pharmacologically modifying the inflammatory 
response we were able to minimise the FBR and normalise the status of the tissue 
surrounding these sutures.  This new model of FBR in adult zebrafish allows us, for the first 
time, to live image the process and to modulate it in ways that may lead us towards new 
strategies to ameliorate and circumvent FBR in humans. 
 
 
Introduction 
 
The surgical implantation of medical devices and biomaterials - from pacemakers to 
replacement hips to the sutures that close up a wound - has increased greatly over recent 
years as technologies advance and the population ages (Major et al, 2015). Once a material 
is implanted in host tissue, the interactions between the biomaterial and surrounding cells 
and matrix are critical in determining whether successful integration occurs. In ideal 
instances, biomaterial implantation results in an acute inflammatory response that drives a 
significant and necessary wound angiogenic response and subsequently limited 
fibrosis/scarring; this scenario largely recapitulates acute wound healing and leads to 
resolution of the repair response and successful biomaterial integration. Failure of 
biomaterial integration can be due to the exacerbation of the Foreign Body Response (FBR), 
where acute inflammation transitions to chronic inflammation which is generally 
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accompanied by foreign body giant cell formation and results in fibrous encapsulation 
(Anderson et al, 2008). This response limits the efficacy of implantable biomaterials, leading 
to rejection and negative health consequences that impact patient quality of life and cause a 
significant burden to the health service. 
 
Most previous studies of FBR have been performed on mammalian models such as dogs 
and mice, largely using histology on fixed samples as an endpoint (Klopfleisch, 2016; Selvig 
et al, 1998), although more recent intravital studies of implanted plastic chambers in a 
mouse skin fold model have enabled a degree of dynamic imaging of collagen deposition 
during FBR using second harmonics (Dondossola et al, 2016). However, these studies are 
not optimal for high resolution investigations of the multifaceted and dynamic molecular 
conversations that occur between tissue and biomaterial, which is needed to understand 
how some materials integrate while others fail and undergo extensive FBR.  
 
We have developed a genetically tractable and translucent model of the FBR that allows for 
transgenic fluorescent marking of various cells and tissues, enabling the real-time 
visualisation of immune cell-foreign body interaction over time in a non-invasive manner 
(Witherel et al, 2017). Aside from external fibrin clot formation, most steps of mammalian 
wound repair appear to be well conserved in zebrafish and have previously been extensively 
characterised (Gurevich et al, 2018; Mathias et al, 2009; Renshaw et al, 2006; Richardson et 
al, 2013); all the initial tissue interactions that are believed to contribute to the development 
of FBR are known to be present. By fluorescently labelling leukocytes, inflammatory markers 
and blood vessels, we are able to study the dynamic activities of cells in response to the 
implanted biomaterials, observing the interactions between these cells and the subsequent 
fibrotic encapsulation, and how these interactions can be modulated to reduce fibrosis and 
improve integration of biomaterials.  
 
Results 
 
The extent of non-resolving scar surrounding the foreign material varies according to 
suture type. 
Fibrotic encapsulation of foreign bodies, including biomaterials, is a key component of FBR, 
and is critically important in determining how well a material is integrated into the 
surrounding tissue (Mikos et al, 1998; Ward, 2008).  Previous investigations have shown 
that materials vary in their biocompatibility, with a consequent variation in degree of 
inflammatory response and the extent to which fibrosis is induced following implantation 
(Bryers et al, 2012). To investigate whether zebrafish tissue exhibits a similar, variable 
fibrotic response during FBR to that seen in mammalian tissues, we implanted either 8-0 
non-resorbable monofilament nylon or resorbable braided vicryl sutures into flank tissue 
anterior to the base of the tail fin (Figure 1A, B). Control acute wounds were generated by 
‘pulling through’ a vicryl suture at the same location (Figure 1B). It is already established 
that, unlike mammalian skin, acute wounds in adult zebrafish skin initially deposit scar 
collagen but this subsequently resolves (Richardson et al, 2013).  Our Masson’s trichrome 
histological staining indicates persistent scarring and fibrosis in FBR instances by our 
endpoint of 28 days post suture implantation (DPS), contrasting with the resolving scarring 
observed in acute wound repair (Figure 1C, D, and see (Richardson et al, 2013)).  
Importantly, the extent of the fibrotic area surrounding vicryl sutures was much larger than 
the response to nylon sutures (0.3257mm2 compared to 0.0379mm2, Figure 1D), suggesting 
that zebrafish tissues react to these materials in similar ways to mammalian tissue. 
 
All suture types drive an exaggerated and prolonged immune cell response, and the 
degree of scarring correlates with the extent of inflammatory response  
We next utilized the translucency of the fish to visualise the dynamic interactions underlying 
the establishment of the FBR, imaging the same fish and following the same FBR over 
extended time periods without the interference of a viewing chamber or other implanted 
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intrusions.  We performed high resolution live imaging following suture implantation into 
Tg(mpx:GFP); Tg(mpeg:mcherry) double transgenic zebrafish, which mark neutrophils and 
macrophages, respectively (Ellett et al, 2011; Renshaw et al, 2006). By imaging the same 
fish at specific time points across the observed 28 DPW or DPS, we were able to determine 
the differences in immune cell response to the two suture materials versus acute (pull 
through sutures) wounding, over time (Figure 2A).  Previous studies examining FBR showed 
that the first immune cells to encounter the biomaterial are neutrophils (Selders et al, 2017), 
an observation supported by our results.  In acute wounds, neutrophil and macrophage 
numbers peak at 4 DPW and 14 DPW, respectively, after which they resolve back to 
uninjured levels (Figure 2B).  We see a similar pattern for nylon sutures, although some 
persistent immune cells remain in the vicinity of the suture at 28 DPS (Figure 2B).  By 
contrast, we observe a large and persistent immune response up to 28 DPS in vicryl sutured 
fish, with many immune cells, particularly macrophages, maintaining close contact with the 
suture area (Figure 2A, B); this immune cell retention appears to correlate with the extensive 
fibrosis seen in response to this suture type (Figure 1C, D).  
 
Close observation of suture associated macrophages at timepoints beyond 14 days post 
implantation indicates that some are considerably larger than standard macrophages (Figure 
2F). This is suggestive of a phenomenon seen in models of mammalian FBR and TB 
granulomas, where macrophages converge and fuse, transforming into foreign body giant 
cells as a consequence of chronic inflammation (Davis et al, 2002; Sheikh et al, 2015; ten 
Harkel et al, 2016). To examine whether a similar response to chronic inflammation may be 
occurring in the zebrafish, we used a Tg(mpeg:mCherry); Tg(mpeg:nlsClover) double 
transgenic fish, enabling visualization of both cytoplasm and nuclei of macrophages (Figure 
2C). We observed some multinucleated macrophages in close proximity to the suture 
beginning from 14 DPS, with larger numbers around vicryl sutures than adjacent to nylon 
sutures (Figure 2D, E). Together, these results indicate that zebrafish immune cells interact 
with foreign bodies in very similar ways to those observed in mammalian models, and that 
these interactions may be a key component in directing the extent of fibrotic encapsulation in 
response to implanted biomaterials. 
 
Extent of fibrosis reflects immune cell dynamics within the suture-adjacent tissue. 
Having observed the differences in fibrosis and inflammation, we next wondered whether the 
dynamics of leukocyte behavior in response to the suture might provide insight into the 
development of the FBR. Performing timelapse photomicroscopy on Tg(mpeg:mcherry) 
transgenic zebrafish revealed that, within unwounded tissues, macrophages are relatively 
sparse and static (data not shown). Following acute wounding, neutrophils and 
macrophages rapidly migrate to the wound site and interact freely and randomly with 
damaged tissue; by one post wounding they their migration is still rapid, but their 
directionality reduced (Figure 3A-C). By contrast, suture implantation led to an increase in 
immune cell directionality at early timepoints (heatmaps reveal how clumps of cells appear 
to have synchronized directionality), but a marked reduction in speed at later timepoints, 
such that macrophages appear ‘paralysed’ in the tissue adjacent to the suture, particularly in 
the case of vicryl sutures (Figure 3B, C). This suppression of cell movement extended 
further from the vicryl suture than for nylon sutures and correlates with the increased extent 
of fibrosis associated with these sutures (Figure 1D).  These results suggest that the fibrotic 
tissue encapsulating the foreign body might influence the behaviour of local immune cells, or 
vice versa, and suggests a causal association between inflammation and localized fibrosis 
that we might test in our model.    
 
Tissue inflammation is exacerbated by FBR and induces the formation of an 
avascular region. 
An effective angiogenic response is pivotal for both wound healing (Eming et al, 2014) and 
biomaterial integration (Spiller et al, 2015).  Our previous work has indicated that pro-
inflammatory macrophages expressing tumour necrosis factor α (tnfα) are critical in driving 
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sprouting angiogenesis during tissue repair, but that macrophages must switch to an anti-
inflammatory, tnfα negative state at later stages to enable appropriate subsequent vessel 
remodelling and regression (Gurevich et al, 2018).  We have used our suture implantation 
model to observe the dynamic changes that occur with respect to both tissue inflammation 
and angiogenesis during a FBR. We combined the Tg(tnfα:GFP) transgenic line that marks 
pro-inflammatory cells with the Tg(mpeg:mCherry) macrophage marker line to reveal 
macrophages with pro-inflammatory or anti-inflammatory phenotypes. Acute (pull through 
suture) wounding of these fish reveals that wound tnfα expression is largely by macrophages 
and restricted to the close wound proximity (Figure 4A-C). This tnfα response is transient, 
peaking at 7 days and entirely resolved by 28 days post wounding (Figure 4A, B), as 
previously described for acute wounds (Gurevich et al, 2018; Hubner et al, 1996; MacLeod & 
Mansbridge, 2016).  By contrast, both nylon and vicryl sutures provoke a significant level of 
tnfα expression in stromal cells also in the vicinity of the foreign body, and this was 
maintained throughout the observed 28 days (Figure 4B).  The proportion of pro-
inflammatory macrophages present around the suture site appeared to be increased relative 
to acute wounds in vicryl sutured scenarios at all timepoints post 7 DPS (Figure 4A, C). The 
overall tnfα response induced by vicryl sutures extends out to a much larger area compared 
to the nylon suture, and the extent of tnfα expression is closely correlated with the 
subsequent extent of fibrosis zone for these two suture types. These results suggest that 
part of the FBR is due to general tissue inflammation, and that this varies with respect to the 
nature of the implanted material. 
 
To examine the angiogenic response to suture implantation, we utilised the Tg(fli:GFP) 
transgenic line that marks all blood vessels (Lawson & Weinstein, 2002).  Acute wounds 
(pull through sutures) showed a robust revascularisation response, which was largely 
completed by 14 DPW (Figure 4D, E).  By contrast, both suture types displayed a reduced 
capacity to establish blood vessels within close proximity of the implantation site, leading to 
an avascular zone around the suture (Figure 4D, E).  This avascular zone differed for the 
two suture types: while nylon sutures appeared to largely re-establish vascular supply by 28 
DPS, vicryl sutures exhibited a progressive increase in the avascular zone, extending out to 
350µm from suture at 28 DPS.  Intriguingly, the avascular area for each of the suture types 
correlated with their respective inflammatory zones (Figure 4A-C), and the subsequent 
extent of the fibrotic area encapsulating each suture type. Together, these results suggest a 
close association between the various contributors to FBR – inflammation, fibrosis and 
impaired angiogenesis – with the extent of each dependent on the type of implanted 
biomaterial. 
 
Dampening the inflammatory response results in reduced fibrosis and improved 
revascularization. 
  
Several studies have examined the relationship between extended, ‘chronic’ inflammation in 
the context of impaired healing and how this leads to progressive fibrosis (Morais et al, 
2010).  To test whether this correlation might be causal in FBR, we next attempted to 
modulate the inflammatory response to suture implants. Our first manipulation utilized the 
csf1ra mutant that has previously been shown to suppress the normal wound inflammatory 
response (Gurevich et al, 2018) in combination with Tg(tnfα:GFP); Tg(mpeg:mCherry) 
transgenic lines. The csfr1a mutant led to a “rescue” of the chronic inflammatory state, with 
reduced expression of tnfα by stromal cells in the tissue around both nylon and vicryl sutures 
which thus more closely resembles that of acute pull through wounds at all timepoints 
(Figure 5A, B). Furthermore, combining the csf1ra mutant with Tg(fli:GFP) revealed a rescue 
of the avascular zone defect also, with vessels growing considerably closer to the implanted 
suture (Figure 5C, D).  
 
To complement this genetic approach we also suppressed inflammation in wild type fish by 
treatment with hydrocortisone (from 7 days to 28 days post suture implantation – Figure 6A), 
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similar to treatment regimes used in previous zebrafish studies (Hasegawa et al, 2017; 
Richardson et al, 2013). This inflammation dampening treatment resulted in a similar rescue 
of FBR and restoration of tissue repair and biomaterial integration to that seen in the csf1ra 
mutant scenario (Figure 6B-F).  Together, these results identify generalised chronic tissue 
inflammation as a likely candidate for driving the FBR process and leading to failure of 
biomaterial integration, and suggest that dampening of tissue inflammation might be key to 
ameliorate these problems in a clinical setting. 
 
Discussion  
 
Our new model of the foreign body response to suture implantation in zebrafish has allowed 
us to observe the dynamic interplay of inflammation on cells and tissues including the 
vasculature and stromal cells that deposit collagen at the damage site. These studies imply 
a direct relationship between the extent of the inflammatory response and the degree of 
fibrotic encapsulation of a foreign body such as a suture and have several implications for 
the clinic. 
 
A reciprocal relationship between inflammation, angiogenesis and scarring  
Our previous work, as well as that of others, has characterized a dramatic angiogenic 
response at sites of acute tissue damage resulting in a transient increase in vessel density in 
the vicinity of the damage site to fuel increased metabolic requirements as the wound heals; 
these vessels subsequently regress, remodel and normalize back to that seen in uninjured 
tissue as the repair process finishes (Gurevich et al, 2018; Johnson & Wilgus, 2014). This 
tightly regulated wound angiogenic response is presumed to be critical because failed 
angiogenesis associates with chronic, non-healing wounds (Demidova-Rice et al, 2012; 
Nunan et al, 2014). Interestingly, our current study indicates that biomaterial implantation 
leads to an avascular zone, which correlates closely with the extent of tissue inflammation, 
and subsequently also with the zone of fibrotic encapsulation that occurs as part of FBR. 
This avascular zone has also been observed in response to implantation of other 
biomaterials such as biosensors, and is known to impair the integration and function of such 
devices (Morais et al, 2010). Indeed, revascularization post implantation is considered a key 
element in determining whether a biomaterial integrates or fails (Morais et al, 2010; Yu et al, 
2009); in support of this, we observed that vicryl sutures, which trigger a more extensive 
avascular zone, were far more likely to be rejected from fish tails than nylon sutures (data 
not shown).  
 
Avascular zones are not an entirely pathological phenomenon; cartilage is avascular, as is 
the zone beneath the developing epidermis of embryonic skin. Establishment of these 
avascular territories does not involve inflammation and is believed to be due to presence of 
avascular glycosaminoglycans such as Hyaluronic Acid (Feinberg & Beebe, 1983; Martin, 
1990).  A better understanding of which signals drive the avascular zone in the context of a 
FBR, and whether they are directly or indirectly released by inflammatory cells, may guide 
us towards ways for improving vascularity and better tissue integration with implanted 
biomaterials. 
 
Modulating the inflammatory cells to regulate angiogenesis and fibrosis 
 
We have previously demonstrated that pro-inflammatory macrophages that form the first 
wave of an acute inflammatory response following wounding upregulate vascular endothelial 
growth factor (VEGF) and are important in driving sprouting angiogenesis (Gurevich et al, 
2018); it is also clear that these pro-inflammatory cells induce collagen deposition and 
fibrosis at repairing wound sites (Cash et al, 2014; Cash & Martin, 2016; Wynn & Barron, 
2010). Our current study reveals that the most extensive angiogenesis and most suppressed 
fibrosis responses are present in contexts where stromal tnfα expression is inhibited while 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498444doi: bioRxiv preprint 

https://doi.org/10.1101/498444
http://creativecommons.org/licenses/by-nd/4.0/


still permitting a strong pro-inflammatory macrophage response, as occurs when sutures are 
implanted into a csf1ra mutant fish or those treated with hydrocortisone.  It appears that this 
reduction of the general inflammation ‘load’ at the site of biomaterial implantation may be a 
critical factor in determining whether the biomaterial will integrate or undergo rejection via 
FBR, given the association between implant failure, extent of angiogenesis and fibrosis.  
Recent attempts to make biomaterials more biocompatible have focused on the simplistic 
goal of reducing inflammation (Kim et al, 2017; Zhang et al, 2014); our results suggest that 
the distinction between pro-inflammatory macrophages and pro-inflammatory stromal cells is 
an important one, and should guide the development of further innovations. 
 
 
What role for giant cells in the FBR?  
 
Foreign body giant cells (FBGCs) which are presumed to be formed by macrophage fusion, 
were first described in 1974 (Mariano & Spector, 1974) and are considered a characteristic 
component of the clinical response to implanted materials as well as some parasitic 
infections  (Chambers, 1978; Davis et al, 2002).  Indeed, activation and aggregation of 
distinct, specialized macrophages in response to persistent and antagonistic stimuli such as 
mycobacterium are now thought to be the key events driving the formation of granulomas 
seen in TB (McClean & Tobin, 2016; Ramakrishnan, 2012). Our study is the first to 
dynamically image these cells aggregating in high densities prior to FBGC formation.  We 
note that FBGCs are more commonly seen in the vicinity of vicryl versus nylon sutures, 
suggesting that there may be a threshold level for both cell density and phenotypic state of 
inflammatory response before fusion will occur. Macrophages that come into direct contact 
with certain biomaterials are believed to undergo a process of ‘frustrated phagocytosis’, 
where the inability to engage with the material drives the fusion process; this leads to a 
subsequent decrease in phagocytic ability and a concomitant increase in free radical, 
enzyme and acid release to degrade implanted materials (Anderson et al, 2008). However, 
many questions remain concerning the precise triggers and mechanisms that underlie this 
fusion process, to activate FBGC formation. Our model presents a valuable opportunity for 
unraveling the dynamic nature of these fusion mechanisms, and insight into what the 
specific function of FBGCs may be.  
 
Adult zebrafish as an important new in vivo model of FBR and clinical implications 
 
This study represents the first time that the cell and tissue interactions underlying the FBR 
between biomaterial and surrounding tissue have been imaged dynamically, in vivo and non-
invasively. The numerous similarities to mammalian FBR marks the zebrafish as a valuable 
model for increasing our understanding of the cellular and molecular basis for FBR in 
response to specific biomaterials. Our approach is particularly powerful as it allows the 
examination of several key processes and cell players – inflammation, formation of FBGCs, 
and the angiogenic response – in the same animal over time, permitting the specific tracking 
and dissection of dynamic cell:cell conversations. In addition, the imaging opportunities in 
zebrafish combined with its genetic tractability and amenability for chemical/pharmacological 
intervention, have allowed us to investigate how modulating inflammation in various ways 
may impact on tissue restoration during FBR and will allow for further screening and refining 
methods for alleviating FBR and improving biomaterial integration.  
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Figure Legends 
 
Figure 1: Extent of foreign body fibrotic encapsulation is dependent on suture type. A) 
Schematic illustration of the zebrafish suture model, with scanning electron micrograph 
showing a suture in place. B) Representative images of zebrafish following suture pull 
through (white circle), nylon suture (red circle) or vicryl suture (red braided circle), 1 day post 
suturing (DPS) with insets to show suture detail.  C) Masson’s Trichrome stained transverse 
sections of pull through at 7 DPS, nylon or vicryl sutured fish at 28 DPS, to indicate extent of 
fibrosis.  Sutures indicated with black asterisk, zone of scarring and fibrotic encapsulation 
indicated by black dotted line overlay.  D) Quantification of total area of fibrotic 
encapsulation, measured from images in C).  Statistical significance, as measured by two-
tailed t-test, is P = 0.0003. Scale bars: A = 1mm, B = 1mm, C = 100µm. 
 
Figure 2: Magnitude of immune response and numbers of foreign body giant cells are 
greater for vicryl versus nylon sutures.  A) Schematic and representative images of 
Tg(mpx:GFP); Tg(mpeg:mCherry) double transgenic zebrafish immediately prior to and 
following suture pull through, nylon suture or vicryl suture, at indicated timepoints. B) 
Quantification of neutrophil and macrophage numbers in the vicinity of wound/suture, 
measured from images in A).  C) Schematic of macrophage fusion as we observe in the 
vicinity of the suture, and representative image of Tg(mpeg:mCherry) transgenic adult 
zebrafish at 28 DPS, showing larger “fused” macrophages (arrowheads) adjacent to vicryl 
suture with more typically sized macrophages distant from the suture.  D) Representative 
images of Tg(mpeg:mCherry); Tg(mpeg:nlsClover) double transgenic zebrafish at 28 DPS, 
showing that the larger macrophages adjacent to sutures are indeed multinucleated, 
compared to normal sized, single-nucleated macrophages at more distal sites (respective 
regions indicated by colour coded dotted lines). E) Quantification of images from D, showing 
average volume of macrophages adjacent to wound/suture for pull through, nylon and vicryl 
sutures. Statistical significance, as measured by one-way ANOVA, is P ≤ 0.0001. 
Significance values: *P ≤ 0.05, **P ≤ 0.001, ***P ≤ 0.0001.  Data information: error bars 
indicate mean ± SD. Scale bars: A = 200µm, D = 200µm. 
 
Figure 3: Immune cell motility and directionality within suture-adjacent tissues is 
affected by implanted material.  A) Endpoints from 90 minute long representative 
timelapse movies of Tg(mpeg:mCherry) transgenic adult zebrafish at the indicated 
timepoints post pull through or suture implant, showing the tracks of macrophages as they 
respond to the wound/suture.  Associated heatmaps report the directionality of local 
macrophages with respect to the suture.  Red indicates increased level of directionality 
towards suture.  B) Quantification of mean macrophage speed at 1 day and 28 days post 
implantation (from tracking data), indicating how motility is suppressed at later timepoints. 
Statistical significance, as measured by one-way ANOVA, is P = 0.0007. C) Quantification of 
directionality of macrophages at 1 and 28 days post implantation.  Statistical significance, as 
measured by one-way ANOVA, is P = 0.0041. Significance values: *P ≤ 0.05, **P ≤ 0.001. 
Data information: error bars indicate mean ± SD.  Scale bars: A = 200µm. 
 
Figure 4: Extent of tnfα expression and size of avascular zone are also dependent on 
suture type. A) Representative images of Tg(tnfα:GFP); Tg(mpeg:mCherry) double 
transgenic zebrafish immediately prior to and following suture pull through, or implantation of 
nylon or vicryl suture, at indicated timepoints, showing macrophages (red), pro-inflammatory 
macrophages (yellow), and stromal cells expressing tnfα in the vicinity of the wound/suture 
zone (green). B) Quantification of total inflammatory area surrounding the wound/suture, 
measured from images in A).  C) Quantification of proportion of tnfα positive, pro-
inflammatory macrophages measured from images in A).  D) Representative images of 
Tg(fli:GFP) transgenic zebrafish immediately prior to and following suture pull through, nylon 
suture or vicryl suture, to reveal angiogenic response at the indicated timepoints.  E) 
Quantification of the extent of avascular zone immediately adjacent to wound/suture, 
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measured from images in D). Data information: error bars indicate mean ± SD.  Scale bars: 
A = 200µm, D = 200µm. 
 
Figure 5: Genetic immunosuppression results in decreased fibrotic encapsulation and 
reduced avascular zone. A) Representative images of csf1ra -/- Tg(tnfα:GFP); 
Tg(mpeg:mCherry) double transgenic adult zebrafish immediately prior to and following 
suture pull through, or implantation of nylon or vicryl suture, at indicated timepoints. B) 
Quantification of the altered inflammatory area surrounding the wound/suture, measured 
from images in A).  C) Representative images of Tg(fli:GFP) transgenic adult zebrafish 
immediately prior to and following suture pull through, or implantation of nylon suture or 
vicryl suture, at indicated timepoints.  D) Quantification of avascular zone immediately 
adjacent to wound/suture, measured from images in C). Data information: error bars indicate 
mean ± SD.  Scale bars: A = 200µm, E = 200µm. 
 
Figure 6: Pharmacological interventions that dampen the inflammatory response 
result in decreased fibrotic encapsulation, a reduced avascular zone and fewer 
foreign body giant cells. A) Diagram showing Hydrocortisone treatment protocol used to 
dampen inflammation during FBR (7-28 DPS). B) Representative images of Tg(tnfα:GFP); 
Tg(mpeg:mCherry), Tg(fli:GFP) and Masson’s trichrome stained sections of suture tissue at 
the indicated timepoints following vicryl suture implantation and treatment with 
Hydrocortisone. C) Quantification of total inflammatory area surrounding the wound/suture, 
measured from images as in B). Statistical significance, as measured by two-tailed t-test, is 
P ≤ 0.0001. D) Quantification of proportion of tnfα positive, pro-inflammatory macrophages 
surrounding the wound/suture, measured from images as in B).  Statistical significance, as 
measured by two-tailed t-test, is P = 0.0429. E) Quantification of total area of fibrotic 
encapsulation, measured from images as in B).  Statistical significance, as measured by 
two-tailed t-test, is P ≤ 0.0001.  F) Quantification of avascular zone immediately adjacent to 
wound/suture, measured from images as in B). Statistical significance, as measured by two-
tailed t-test, is P = 0.0008.  Data information: error bars indicate mean ± SD.  Scale bars: B 
= 200µm. 
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Materials and Methods 
 
Zebrafish strains and maintenance  
All experiments were conducted with approval from the local ethical review committee at the 
University of Bristol and in accordance with the UK Home Office regulations (Guidance on 
the Operation of Animals, Scientific Procedures Act, 1986).  Wild type and transgenic lines 
Tg(fli1:eGFP) [referred to as Tg(fli:GFP)](Lawson & Weinstein, 2002), 
Tg(mpx:GFP)(Renshaw et al, 2006), Tg(mpeg1:mCherry) [referred to as 
Tg(mpeg:mCherry)](Ellett et al, 2011), TgBAC(tnfα:GFP)[referred to as 
Tg(tnfα:GFP)](Marjoram et al, 2015) were maintained on TL wild type background, and 
staging and husbandry were performed as previously described (Westerfield, 1995).  The 
mutant strain used was csf1raj4e1 (Parichy et al, 2000), maintained on AB background or 
used in combination with transgenic lines as indicated.  csf1raj4e1 mutants were genotyped 
by visual inspection for absence of mature xanthophores as previously described (Parichy et 
al, 2000).   
 
Suture implantation into adult zebrafish 
Adult zebrafish suturing was performed as previously described (Witherel et al, 2017).  
Briefly, zebrafish were anesthetized in tank system water with 0.1mg/mL tricaine (ethyl 3-
aminobenzoate methanesulfonate, Sigma Aldrich, Hamburg, Germany) and subsequently 
placed onto a foam surgical stand for surgery. Single interrupted sutures were implanted by 
placing a single loop through the tail, approx. 3mm anterior to the tailfin, using either nylon 
non-absorbable sutures (Polyamide, 8-0 monofilament, 3/8 tapered needle, S&T, 
Neuhausen, Switzerland) or vicryl, absorbable sutures (Polyglactin, 8-0 braided, 3/8 needle, 
Ethicon, Somerville, NJ, USA). Pull through control wounds were generated by implantation 
of a suture at the exact same anatomical location, which was immediately ‘pulled through’ 
and removed.  
 
Imaging of adult zebrafish 
For all imaging experiments, fish were initially anaesthetized in 0.3% Danieau’s solution with 
0.1mg/mL tricaine, and subsequently imbedded in a 10cm petri dish, using 1.5% w/v 
agarose added over the tail.  Care was taken to keep agarose away from the gills.  For 
timelapse imaging, fish were maintained in a lightly anaesthetized state at 0.05mg/mL 
tricaine throughout to allow continued breathing; fish that were no longer breathing by the 
end of movie acquisition were excluded from analysis. Gross anatomical images were 
generated on a Leica M205 FA system (Leica Microsystems). Confocal images and 
timelapse movies were generated on a Leica SP8 MP/CLSM system (Leica Microsystems). 
 
Hydrocortisone treatment  
For drug treatments, fish were treated with 275µM Hydrocortisone (Sigma Aldrich) dissolved 
in ethanol, as previously described (Richardson et al, 2013). 0.1% absolute ethanol was 
used for all treatments as well as vehicle control.  
 
Masson’s Trichrome staining  
Harvested fish tails were immediately fixed in 4% PFA overnight at 4°C on a rocker, washed 
with PBS and then decalcified in 0.5M ethylenediaminetetraacetic acid (EDTA) (Sigma 
Aldrich, Hamburg, Germany) for seven days at 4°C on a rocker, replacing the EDTA solution 
on the third day. Samples were then stained for Masson’s Trichrome, as previously 
described (Witherel et al, 2017).  
 
Transmission Electron Microscopy 
Tails were harvested at 28 DPS, fixed and processed as previously described (Nunan et al, 
2015).  Ultrathin (0.02 µm) sections were images on a Tecnai 12-FEI 120 kV BioTwin Spirit 
transmission electron microscope. 
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Image analysis and statistics 
All image analysis was performed in ImageJ. Detection, tracking and spatial analysis of 
immune cells used the Modular Image Analysis automated workflow plugin for Fiji (Cross, 
2018; Rueden et al, 2017; Schindelin et al, 2012).  Sample motion due to tissue growth was 
corrected using translation-based registration via the SIFT Align plugin for Fiji (Lowe, 2004; 
Saalfeld, 2008) followed by B-spline unwarping using the BUnwarpJ plugin (Arganda-
Carreras et al, 2006). Noise was removed using a 3D median filter and immune cells 
isolated from background using the Otsu threshold method with a constant user-defined 
offset (Otsu, 1979).  The binarised image was refined using 2D hole filling and a 3D 
intensity-based watershed transform (Legland et al, 2016).  Immune cells were identified in 
3D as contiguous regions of pixels labelled as foreground using the MorphoLibJ plugin [8].  
Immune cells were tracked between frames using the Munkres algorithm with scores based 
on object centroid separation (Munkres, 1957). Track spatial coordinates were used to 
calculate instantaneous velocity and track orientation in the XY-plane.  A static reference 
point corresponding to the suture was manually-identified in each video.  The angle between 
the instantaneous track orientation and this point was also measured (i.e. an angle of 0° 
corresponds to a cell moving directly towards the suture). 
 
All statistical analysis was performed using Graphpad Prism.  Data was confirmed to be 
normally distributed via d’Agostino-Pearson test or Shapiro-Wilk test prior to further 
comparisons.  Student’s t-test were used except in the case of comparisons involving more 
than two groups; in these instances, one-way ANOVA was performed for all comparisons, 
and a Bonferroni multiple comparison test was subsequently performed. 
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