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Abstract 

Multicellular organisms interact with resident microbes in important ways, and a 

better understanding of host-microbe interactions is aided by tools such as high-

throughput 16S sequencing. However, rigorous evaluation of the veracity of these 

tools in a different context from which they were developed has often lagged 

behind. Our goal was to perform one such critical test by examining how variation 

in tissue preparation and DNA isolation could affect inferences about gut 

microbiome variation between two genetically divergent lines of threespine 

stickleback fish maintained in the same lab environment. Using careful 

experimental design and intensive sampling of individuals, we addressed 

technical and biological sources of variation in 16S-based estimates of microbial 

diversity. After employing a two-tiered bead beating approach consisting of tissue 

homogenization followed by microbial lysis in subsamples, we found an 

extremely minor effect of DNA isolation protocol relative to among-host microbial 

diversity differences. Individual abundance estimates for rare OTUs, however, 

showed much lower reproducibility. We found that the stickleback gut microbiome 

was highly variable, even among siblings housed together, but that an effect of 

host genotype (stickleback lineage) was detectable for some microbial taxa. Our 

findings demonstrate the importance of appropriately quantifying biological and 

technical variance components when attempting to understand major influences 

on high-throughput microbiome data. 
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INTRODUCTION 

From early development through senescence, animal and plant hosts interact 

with their resident microbiota through complex host-microbe relationships, 

resulting in a diversity of both positive and negative outcomes for host health and 

fitness. Beneficial microbes prime ontogenesis of immunity (Iatsenko et al. 2014; 

Sudo et al. 1997), regulate the host inflammatory response (Olszak et al. 2012), 

and aid in various digestive and metabolic processes (Hooper et al. 2001; 

Russell & Rychlik 2001). Pathogenic microbes release toxins (Simon et al. 2014), 

disrupt microbial community structure (Gillis et al. 2018), and may contribute to 

human diseases such as diabetes, obesity, and inflammatory bowel disease 

(IBD), for example (Wu et al. 2015). The complexity of host-microbe interactions, 

and significant consequences for host wellness when the relationships are 

perturbed, argue that many host-microbe relationships are, at least in part, a 

result of co-evolution. For example, the intimate symbiotic relationship between 

Hawaiian bobtail squids and the luminescent bacterium Vibrio fischeri (McFall-

Ngai et al. 2012; McFall-Ngai & Ruby 1991), presents a strong case for 

evolutionary novelty arising from co-evolution. Indeed, the recognized importance 

of host-microbe interactions has led to a recent spike in interdisciplinary research 
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efforts, complete with accelerated tool development both molecular and 

computational in nature. This rapid progress, however, has in some cases meant 

a lag in the thorough evaluation of the veracity and efficacy of these tools.   

 

Understanding host-microbe relationships from ecological, evolutionary, and 

disease perspectives hinges on quantification of microbial diversity in samples 

from various host body sites. Although quantification is increasingly being 

achieved using shotgun metagenomic approaches (Qin et al. 2012; Sharpton 

2014), marker-based techniques such as high-throughput 16S rRNA amplicon 

sequencing are still the most cost-effective, straightforward, and commonly 

applied methods for microbial community profiling. In the last decade, high-

throughput 16S sequencing has expanded from applications in environmental, 

human, and laboratory model host contexts, to uses for a variety of truly diverse 

host plant and animal sample types (Hyde et al. 2016; Nuccio et al. 2016; Torres 

et al. 2017).  

 

As researchers extend their work beyond routinely characterized environments 

such as soil and human fecal samples and into new, diverse study systems, the 

adoption and extension of previously optimized techniques should occur 

cautiously and intentionally. Methodologies for 16S amplicon sequencing should 

ideally be evaluated at multiple stages (i.e. sample collection and handling 

through analysis), compared with multiple alternative options, and evaluated with 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/497792doi: bioRxiv preprint 

https://doi.org/10.1101/497792
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

respect to the discriminatory power and precision of diversity analyses based on 

them. The Microbiome Quality Control Project (Sinha et al. 2017), for example, 

has addressed some of these issues for human stool and artificial microbial 

communities, including an effective quantification of laboratory-to-laboratory 

variation. Other diverse endeavors have evaluated effects of DNA isolation 

attributes on sequencing-based community inference in corals (Weber et al. 

2017), fleas (Lawrence et al. 2015), human saliva (Raju et al. 2018), and marine 

biofilms (Corcoll et al. 2017), for example, but the foci of these studies did not 

include quantifying reproducibility and its uncertainty using large samples of 

among-individual variation. 

 

Research aims may require the direct sampling of whole host organs in animal 

models, such as the gastrointestinal tract, to obtain an unfiltered view of internal 

host-microbe relationships. However, with these shifts in sampling strategy 

comes a slew of considerations and obstacles, in part because commercially 

available kits are designed and optimized for a narrow range of sample types 

such as soil or human stool. Potential problems with sample processing and 

library preparation based on these unrefined protocols may include poor DNA 

integrity, inadequate DNA quantity, host and reagent contamination, and low 

repeatability, all of which may vary depending on the sample type. 
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We compared the gut microbiomes of two divergent populations of threespine 

stickleback (Gasterosteus aculeatus) that have been maintained in the same lab 

environment to evaluate whether our biological conclusions could be affected by 

the use of three popular DNA isolation protocols. Threespine stickleback fish 

have repeatedly colonized a diversity of freshwater habitats from ancestral 

marine populations, resulting in exceptional degrees of within- and among-

population genetic and phenotypic variation for countless traits (Bell & Foster 

1994; Colosimo et al. 2004; Cresko et al. 2004; Cresko et al. 2007; Glazer et al. 

2015; Hohenlohe et al. 2010). Genetic diversity among stickleback populations is 

in many ways similar to variation in humans, making stickleback an excellent 

model for understanding the role of host genetic variation in determining 

phenotypes germane to host-microbe interactions, including microbial community 

structure itself (Milligan-Myhre et al. 2016; Small et al. 2017; Smith et al. 2015). 

In our initial attempts to isolate DNA from adult stickleback guts for 16S 

sequencing we found commonly used DNA isolation protocols, including one 

specifically designed for microbial samples, untenable owing to low quality and 

high variance of DNA yield, and fragmentation both within and among protocols. 

This outcome prompted us to optimize these DNA isolation protocols for adult 

stickleback guts.  

 

We employed careful experimental design and thorough sampling of laboratory-

raised hosts to address both technical and biological sources of variation in 16S-
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based estimates of microbial diversity. The relative contributions of individual 

host and DNA isolation protocol to variation in 16S-based diversity estimates 

have not been satisfactorily measured in previous studies, due to insufficient 

biological (individual-level) replication, inadequate parameter estimation, or both. 

To address this, the technical objectives of our study included a careful 

comparison of operational taxonomic unit (OTU) relative abundance and diversity 

(both alpha and beta) across libraries generated from three DNA isolation 

protocols, followed by formal quantification of reproducibility and its uncertainty. 

The biological objective of our study was to test for differences in relative OTU 

abundance and diversity arising from genetic differences between two 

stickleback laboratory lines, one descended from a freshwater lake population 

and the other from an oceanic population, but both raised and housed in a 

common environment. The factorial nature of our study design also permitted 

assessment of statistical interactions between DNA isolation protocol and host 

genotype, that is, whether any dependency of biological inferences on DNA 

isolation protocol choice might exist. We also performed a separate experiment in 

which we measured the precision of each DNA isolation protocol using replicate 

samples from the same individual.  

 

In general we found the stickleback gut microbiome to be highly variable even 

among individuals of the same sibship, and that variation due to the two host 

genetic backgrounds (population of origin) was detectable but smaller than 
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individual-level variation. Unoptimized tissue processing had a major effect on 

the yield and integrity of DNA isolated using different protocols. However, after 

employing a two-step bead beating approach consisting of initial tissue 

homogenization followed by microbial lysis in homogenate subsamples, we found 

an extremely minor effect of DNA isolation protocol on the ability to understand 

microbial diversity using 16S data. This is an important finding for those 

researchers faced with the decision of having to choose among available 

protocols, so long as they take necessary measures to reduce bias during initial 

tissue processing steps. Our protocol optimization, study design, and insights 

both technical and biological should be useful to others who seek to quantify 

microbial community structure in fish guts and other tissue types using high 

throughput 16S sequencing.   

 

 

 

MATERIALS AND METHODS 

 

Rearing of adult stickleback, evaluation of DNA quality, and experimental 

design 

 

Threespine stickleback husbandry and collection of gut samples 
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We collected guts from male adult threespine stickleback (Gasterosteus 

aculeatus) derived from wild-caught Alaskan populations, which have been 

maintained in the laboratory for at least 10 generations. All individuals were 

raised to an age of 12 to 16 months, using standard protocols described in 

previous publications (Cresko et al. 2004). Briefly, fish were raised from embryos 

fertilized in vitro, and larvae were fed twice daily with brine shrimp nauplii and 

Zeigler Larval AP100 Diet. An equal parts mixture of Golden Pearl 800-1000 

Micron Juvenile Diet, Otohime C1, Zeigler Zebrafish Diet, and Hikari Tropical 

Micro Pellets was fed twice daily to fish as juveniles and adults. Fish were 

housed in a large recirculating system with a 10% daily water change, in 20-L 

tanks at a density of 20-30 fish per tank. Tanks were randomly positioned on a 

single shelving rack roughly equidistant from the incoming water source. We 

maintained fish in an approximately 1:1 sex ratio, with a photoperiod of 8 hours 

light and 16 hours dark (including 30 min. dawn and dusk). 

 

To reduce among-individual variation owing to sex (Bolnick et al. 2014), we 

sampled males only, as confirmed by DNA isolation from caudal fin clips and a 

PCR-based sex genotyping procedure (see Small et al. 2017). Fish were also not 

fed for 24 hours prior to sampling to reduce the amount of food in the gut. Upon 

euthanasia by lethal dose of MS222, the entire gastrointestinal tract of each fish, 

including the esophagus to just anterior of the urogenital opening, was carefully 
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removed, weighed, and quickly flash frozen in liquid nitrogen in a screw-top tube 

containing nuclease-free homogenization beads (see below). 

 

Initial assessment of DNA quality from three unmodified DNA isolation protocols 
  

We evaluated yield and quality of DNA isolated using a standard phenol-

chloroform-isoamyl alcohol protocol (“PCP”) and two commercial kit protocols 

commonly used in microbiome studies: MO BIO’s PowerFecal®  Kit (“PFP”) and 

the Qiagen’s DNeasy Blood and Tissue Kit (“DEP”). We dissected whole guts 

from 52 adult stickleback in our fish facility, randomly assigning 20 each to PCP 

and PFP, and 12 to DEP. In this initial assessment of unmodified DNA isolation 

protocols, we used the entire gut to be consistent with previous studies of 

stickleback gut microbiota (Bolnick et al. 2014; Smith et al. 2015). In the case of 

PCP and DEP, each whole gut was dissected and flash frozen (see above) in a 

tube containing five nuclease-free 3.2-mm stainless steel beads (Next Advance, 

SSB32). In the case of PFP each gut was frozen in a tube containing ~1-mm 

garnet beads, which are standard issue for the kit. Next, we removed each tube 

containing a gut and beads from -80 C and followed manufacturer 

recommendations, with a few exceptions. We added 400 µL of Qiagen Buffer 

ATL in the case of PCP and DEP, and 750 µL of Bead Solution in the case of 

PFP. We then homogenized guts in a Thermo Savant FastPrep FP120 with three 

40-second bouts of beating at intensity level 6.5. Using the entire homogenate for 

each sample, we followed instructions in the manuals of DEP and PFP kits. In the 
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case of PCP, we followed the same post-homogenization lysis instructions as for 

DEP, then combined a 650-µL aliquot of the lysate with 650 µL of 25:24:1 

equilibrated phenol-chloroform-isoamyl alcohol in a phase-lock gel tube, mixed 

by inversion, and centrifuged at 18,000 xg in a bench-top microcentrifuge for 5 

minutes. We transferred the aqueous layer to a new phase-lock gel tube, added 

500 µL of 24:1 chloroform-isoamyl alcohol, mixed by inversion, centrifuged again, 

and transferred the aqueous layer to a 1.5-mL tube. We precipitated the DNA 

using 450 µL of isopropanol and 5-minute centrifugation at 5,800 xg, washed the 

pellet once with 70% ethanol and twice with 95% ethanol, air-dried the pellets for 

10-15 minutes, and resuspended the pellet in 100 µL of Qiagen Buffer EB. We 

quantified DNA resulting from all three protocols using a Qubit 2.0 fluorometer 

(Invitrogen) and evaluated fragment length distributions using a Fragment 

Analyzer (Advanced Analytical). 

 

Design of experiments  
 

After optimizing these protocols (see below), we designed two separate 

experiments to evaluate effects of several variables on inferred microbial 

community structure. For these experiments we used two entirely different sets of 

fish sampled from our fish facility at different times, and obtained multiple 

subsamples per fish gut. For the first experiment each of 36 individual intestinal 

tracts were homogenized, then divided into three separate sub-samples to be 

analyzed using different DNA isolation protocols. This design effectively allowed 
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us to measure among-protocol technical variation based on within-host 

comparisons (reproducibility). These 36 fish were from two different lab lines, 

specifically a freshwater (FW) line derived from the natural population “Boot 

Lake,” and an oceanic (OC) line derived from the natural population “Rabbit 

Slough.” We sampled three different full-sib families from each line, and six fish 

per family. Each family was housed in a different tank but in the same 

recirculating system. Our study design therefore enabled an assessment of the 

influence of host genetic background on the microbiota, a topic of great interest 

for the field of host-microbe interactions (Hildebrand et al. 2013; Kurilshikov et al. 

2017; Rothschild et al. 2018). Fig 1A illustrates these components of the 

experimental design. Finally, using a sample of six FW males from a seventh full-

sib family, we sampled two guts for each protocol type (six guts total), but we 

repeated six measurements (six subsamples) per homogenized gut to evaluate 

the within-fish repeatability (precision) of each DNA isolation protocol. Fig 1B 

reflects the precision assessment inherent in our study design. 

 

 

Modified DNA isolation methods and Illumina 16S amplicon sequencing 

 

Standardized pre-processing with 20 mg subsampling 
 

In order to effectively compare the three DNA methods using our experimental 

design, we standardized tissue pre-processing and introduced uniform-mass 
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tissue subsampling for all gut samples. We removed each gut (in a screw-cap 

tube with five nuclease-free 3.2-mm stainless steel beads) from -80 C, added 800 

µL of pre-warmed Qiagen Buffer ATL (with 0.5 µM EDTA), and homogenized 

using the FastPrep FP120. We applied three bouts of 40-second beating at 

intensity level 6.5 to achieve a homogeneous mixture, then pipetted volumes 

from each sample to achieve 20-mg subsamples, as calculated from the original 

mass of each gut. For the reproducibility experiment (Fig 1A), three subsamples 

from each gut were taken, one for each of the 3 DNA isolation protocols 

described below. For the repeatability experiment (Fig 1B), six subsamples from 

each gut were taken, all for a single DNA isolation protocol. Subsamples were 

transferred to screw-top tubes containing 100 µL of 0.15 mm zirconium oxide 

beads (NextAdvance, ZrOB015), for future mechanical lysis of microbes, flash 

frozen in liquid nitrogen, and stored at -80 C. These aliquots then received one of 

the 3 DNA isolation treatments below. We also performed two “negative control” 

DNA isolations for each isolation protocol, in which the protocol was carried out 

starting with no gut, and with or without the addition of proteinase K (see below). 

Because our objectives did not include comparisons of accuracy among DNA 

isolation protocols, as others (Salter et al. 2014; Yuan et al. 2012) have 

evaluated this, we did not incorporate controlled assemblages of microbes 

(“mock communities”) in our experimental design.   

 

Phenol-chloroform-isoamyl alcohol protocol (PCP)  
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We removed homogenate subsamples from -80 C and added pre-warmed 

Qiagen Buffer ATL to bring the total ATL volume in the tube to 676 µL. We then 

homogenized for two 40-second bouts in the FastPrep FP120 at level 6.5, briefly 

spun tubes, added 20 µL of proteinase K (20 mg/mL), mixed by aspiration, and 

incubated at 56 C for 30 minutes. We added 4 µL of RNase A (100 mg/mL), 

mixed by aspiration, incubated at 37 C for 30 minutes, and then transferred the 

entire volume of lysate to a new 1.5 mL tube, to which 500 µL of 25:24:1 

equilibrated phenol-chloroform-isoamyl alcohol was added. At this point we 

carried out the remainder of the phenol-chloroform protocol exactly as described 

above.  

 

MoBio PowerFecal protocol (PFP)  
 

We removed homogenate subsamples from -80 C and added pre-warmed 

PowerFecal Bead Solution to bring the total volume of solution (ATL + Bead 

Solution) in the tube to 750 µL. We then added 60 µL of PowerFecal C1 solution, 

incubated at 65 C for 10 minutes, and then homogenized for two 40-second 

bouts in the FastPrep FP120 at level 6.5. We briefly spun tubes, added 20 µL of 

proteinase K (20 mg/mL), mixed by aspiration, and incubated at 56 C for 30 

minutes. Then we added 4 µL of RNase A (100 mg/mL), mixed by aspiration, 

incubated at 37 C for 30 minutes, and followed the instructions in the PowerFecal 

manual, starting with “step 7,” which is a centrifugation for 1 minute at 13000 x g 
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to pellet and remove solids from the lysate. Finally, we eluted with 50 µL Qiagen 

Buffer EB and quantified DNA concentration as above. 

 

Qiagen DNeasy protocol (DEP)   
 

We removed homogenate subsamples from -80 C and added pre-warmed 

Qiagen Buffer ATL to bring the total ATL volume in the tube to 776 µL. We then 

homogenized for two 40-second bouts in the FastPrep FP120 at level 6.5, briefly 

spun tubes, added 20 µL of proteinase K (20 mg/mL), mixed by aspiration, and 

incubated at 56 C for 30 minutes. We added 4 µL of RNase A (100 mg/mL), 

mixed by aspiration, incubated at 37 C for 30 minutes. We combined the entire 

volume of lysate with 800 µL of Qiagen Buffer AL and 800 µL of 100% ethanol to 

a new 15 mL screw-cap tube to ensure adequate volume for the additional 

reagents. After briefly mixing by aspiration we transferred 600 µL of the mixture 

to a DNeasy spin column, spun at 6,000 xg in a bench top microcentrifuge for 1 

minute, discarded flow-through, and repeated four times, for the remainder of the 

mixture. Next we added 500 µL of Qiagen solution AW1, spun at 6,000 xg for 1 

minute, added 500 µL of Qiagen solution AW2, spun at 18,000 xg for 3 minutes, 

added 500 µL of 80% ethanol, and spun at 18,000 xg for 3 minutes. Finally, we 

eluted DNA with 100 µL Buffer EB and quantified DNA concentration as above. 

  

Construction of 16S rRNA gene amplicon libraries and Illumina sequencing  
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We submitted a 25 ng/µL dilution from each gut DNA sample to the University of 

Oregon Genomics and Cell Characterization Core Facility (GC3F) for library 

amplification, cleanup and sequencing. All six negative control samples were not 

diluted, as the DNA in these samples was lower than the detection limit of our 

fluorometer. The GC3F generated 16S libraries from 200 ng of DNA template per 

sample using custom primers 515F 

(5’AATGATACGGCGACCACCGAGATCTACACxxxxxxxxTATGGTAATTGTGTG

CCAGCMGCCGCGGTAA3’) and 806R 

(5’CAAGCAGAAGACGGCATACGAGATxxxxxxxxAGTCAGTCAGCCGGACTACH

VGGGTWTCTAAT3’), which are based on those described in Caporaso et al. 

(2011) and which amplify the “V4” 16S region but enable dual indexing (indexes 

represented by “x”s in the above sequences). A cocktail including 12.5 µL 

NEBNext® Q5® Hot Start HiFi PCR Master Mix, 4.5 µL of 2.79 µM primer mix, 

and 8 µL of DNA template, was used for each library PCR. The thermal profile 

was as follows: initial denaturation at 98 C for 30 seconds, followed by 22 cycles 

of 98 C for 10 seconds, 61 C for 20 seconds, and 72 C for 20 seconds, followed 

by final extension at 72 C for 2 minutes. Each library was cleaned twice using 20 

µL of Omega Mag-Bind® RxnPure Plus beads and quantified by a Qubit 

fluorometer, at which point 9.235 ng of DNA from each library (less for negative 

controls) were pooled. The GC3F quantified the library pool using qPCR, 

combined it with a complex RNA-Seq library from an unrelated project, and 

sequenced 161-nt paired-end reads in two Illumina HiSeq 2500 lanes. 
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Processing of Illumina 16S data and statistical inference 

 

Sequence filtering and OTU picking  
 

Processing of sequences and OTU picking was primarily achieved using 

accessory scripts from QIIME version 1.9.1 (Caporaso et al. 2010b) and to a 

lesser extent our own custom scripts. We overlapped ends of read pairs using 

QIIME’s join_paired_ends.py, and we demultiplexed the merged reads using 

QIIME’s extract_barcodes.py and split_libraries_fastq.py. We used default 

arguments, except that we allowed a maximum of two barcode errors when 

demultiplexing and invoked read truncation at 30 or more consecutive low quality 

base calls. This filtering process yielded 119.94 million total reads from the 144 

gut libraries, and 4957 total reads from the six negative control libraries. We 

performed open reference OTU picking using QIIME’s 

pick_open_reference_otus.py with default settings (Caporaso et al. 2010a; Edgar 

2010), which uses the Greengenes version 13.8 database as its reference 

(DeSantis et al. 2006). We then removed all OTUs of mitochondrial and 

chloroplast origin to exclude the influence of host- and food-derived DNA. The 

total number of filtered OTU-assigned reads from gut libraries was 87.109 million 

(mean = 604920.326; SEM = 26291.498). Negative control libraries produced 

exceedingly small numbers of OTU-assigned reads (PCP: 418; PCP_proK: 348; 
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PFP: 1201; PFP_proK: 1115; DEP: 644; DEP_proK: 367). Given such a small 

likely contribution of contaminating template to gut libraries, we did not exclude 

gut OTUs based on information from the negative controls.  

 

To normalize coverage we down-sampled all libraries in the OTU table (including 

those from both reproducibility and repeatability experiments) to 105,000 

sequences each, which we deemed an optimal tradeoff between sequencing 

depth and retention of samples for analysis. This lead to the exclusion of four 

libraries from the reproducibility study: all three samples from one FW fish 

(bringing the total number of fish analyzed in this experiment to 35) and the PCP 

library from a second FW fish. We then generated count summary tables for all 

taxonomy levels using QIIME’s summarize_taxa.py, but downstream analyses 

described in this report feature phylum, class, species, or individual OTU counts 

(see Results). We used QIIME’s core_diversity_analyses.py to generate 

phylogenetic diversity metrics separately for the reproducibility and precision 

studies, including Faith’s Phylogenetic Diversity (Faith 1992), unweighted 

UniFrac (Lozupone & Knight 2005), and weighted UniFrac (Lozupone et al. 

2007). To evaluate the potential influence of erroneous sequences on some 

downstream analyses, we also generated unweighted and weighted UniFrac 

dissimilarity matrices for the reproducibility study based on OTU picking with a 

sequence identity threshold of 90%. All downstream analyses were based on the 

respective down-sampled count tables and phylogenetic diversity metrics 
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described above, and were conducted using version 3.3.2 of the R statistical 

language (R Core Team 2016). 

 

Reproducibility of alpha and beta diversity metrics 
 

We evaluated relative contributions of biological (among-fish) and technical 

(within-fish) variation using a repeated measures linear model framework. In 

particular, and following Lessels and Boag (1987), we calculated “repeatability” 

(reproducibility in this case) as: 

 

 𝑟!"#$#%#& =
!!
!

(!!
! !!!

!)
 , 

 

where 𝑠!! is the among-fish variance component and 𝑠!!  is the within-fish (among- 

protocol) variance component, as calculated from mean squares in an ANOVA 

(Lessells & Boag 1987). 𝑟!"#$#%#& ranges from 0 to 1, with high values indicating 

increasingly small contributions of DNA isolation protocol relative to individual 

host contributions, which are of interest to ecologists and evolutionary biologists. 

A perfect reproducibility of 1.0, for example, would indicate zero within-fish 

variance, that is, no effect of protocol in this situation. Alternatively, a repeatability 

of 0.5 would be interpreted as equal variance contributions from individual and 

protocol. We calculated reproducibility for class richness, class evenness, 

species richness, species evenness, and Faith’s Phylogenetic Diversity using 

variance components estimated by the lmer function from the R package lme4 
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(Bates et al. 2015). For each metric we also resampled (with replacement) 35 

individual fish 500 times, and used the distribution of reproducibility values from 

the 500 bootstrap replicates to calculate 95% confidence intervals. We also 

applied this approach to multivariate measures of community dissimilarity (class- 

and species-level Bray-Curtis dissimilarity, and weighted and unweighted 

UniFrac) by extracting the above variance components using the R function 

nested.npmanova from the BiodiversityR package (Kindt 2005). Furthermore, we 

calculated population-specific reproducibilities (and confidence intervals) for all of 

the above variables to evaluate whether reproducibility differed depending on 

host population. We also estimated reproducibility for weighted and unweighted 

UniFrac based on OTU definition exactly as described above, but using a 90% 

sequence identity threshold, to evaluate potential influence of sequencing error.  

 

Testing effects of DNA isolation protocol, host population, and their interaction on 

alpha diversity, beta diversity, and relative taxon abundances 
 

For the same five alpha diversity variables mentioned above, we evaluated 

significance of the fixed effects of protocol and stickleback population using 

mixed linear models that included the random effect of individual nested within 

family. Note that family is indistinguishable from tank in our design, so family and 

tank effects cannot be separated. We fit full and reduced models using lmer from 

the R package lme4 (Bates et al. 2015) and tested null hypotheses of no 
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population, protocol, and population-by-protocol interaction effects on each 

diversity variable using likelihood ratio tests. 

 

We also tested the influence of these factors on four measures of community 

dissimilarity (beta diversity) using two permutational analysis of variance 

(PERMANOVA) tests (Anderson 2001). First, we evaluated the effects of DNA 

isolation protocol, family (tank), and their interaction using the adonis2 function 

from the R package vegan (Oksanen 2017). Second, we evaluated the effect of 

population, accounting for non-independence of individuals within the same 

family (tank), separately for the three DNA isolation protocols using the function 

nested.npmanova from the BiodiversityR package (Kindt 2005). Finally, to test 

whether among-fish community dissimilarity was correlated between DNA 

isolation protocol pairs we performed Kendall’s 𝜏-based Mantel tests using the 

mantel function from the R package vegan (Oksanen 2017). 

 

To evaluate effects of DNA isolation and stickleback population on relative 

abundances of class-level and species-level OTU groups (“L3” and “L7,” 

respectively, from summarize_taxa.py), we fit generalized linear mixed models 

that included the random effect of individual nested within family. We considered 

only those taxonomy groups represented by at least five counts in at least nine 

libraries. Given the overdispersed nature of these count data, we fit Poisson-

lognormal models using the glmer function from the R package lme4 (Bates et al. 
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2015) by including an observation-level effect in each model and by specifying 

the “poisson” family of generalized linear model. Because 16S data provide 

information about relative, as opposed to absolute, abundances of the organisms 

in each sample, it should be acknowledged that differences in OTU and 

taxonomic group counts among samples could reflect compositional differences 

in the community as opposed to organism-specific ones. We evaluated the 

significance of each effect for each taxonomy group using False Discovery Rate-

controlled (Benjamini & Hochberg 1995) likelihood ratio tests, Akaike information 

criterion (AIC) and Bayesian information criterion (BIC).   

 

OTU rarity and reproducibility of relative OTU abundance estimates  
 

We measured the reproducibility of relative abundance estimates for 2278 

individual OTUs that were present in one or more libraries from at least 10 of the 

35 fish from our reproducibility experiment. We estimated reproducibility using 

the same general repeated measures framework above, except that we used the 

R package rptR (Stoffel et al. 2017) to calculate reproducibility and its 95% 

confidence interval for each OTU. We used the rpt function of rptR because it 

allows the flexibility of fitting an over-dispersed Poisson generalized linear model 

and implements computationally efficient CI construction by parametric 

bootstrapping. We characterized the relationship between OTU abundance 

reproducibility and average OTU abundance by fitting three logistic models: one 
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for the point estimate, one for its 95% CI upper bound, and one for its 95% CI 

lower bound. The logistic model parameterization was as follows: 

 

𝑦! =
!

!!!(!!!!)/!
 , 

 

where y is the reproducibility of abundance, its CI upper bound, or its CI lower 

bound for OTU i, x is the logarithm to base 10 of the among-library mean 

abundance of OTU i, 𝛼 is the asymptote, 𝛽 is the inflection point in units of x, and 

𝛾 is the steepness of the relationship at inflection. We fit these logistic models 

using the R package nls2 (Grothendieck 2013). 

 

Diversity metric precision 
 

We measured the precision with which each of several alpha and beta diversity 

metrics was estimated, comparing across the three DNA isolation protocols. This 

was made possible by sampling two guts for each protocol, and six technical 

replicates per gut (Fig 1B). In this case within-fish variance was attributable only 

to tissue subsampling and technical differences among the 6 libraries prepared 

identically, and not protocol differences. Because we sampled only two fish for 

each DNA isolation protocol, we could not effectively apply the repeatability 

framework used in the reproducibility study (see above), which relies on 

adequately sampling across-individual variation. Instead, we conducted Levene’s 

tests according to Sokal and Rohlf (2011) to test whether the average absolute 
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deviation from group (individual gut) medians was significantly different among 

the three DNA isolation protocols. We applied this test to class- and species-level 

richness and evenness, and Faith’s Phylogenetic Diversity. We conducted the 

same type of test for class- and species-level Bray-Curtis Dissimilarity, and 

weighted and unweighted UniFrac, but we considered distance between 

observation and group (individual gut) centroid as the response variable.    

 

 

 

RESULTS 

 

Tissue subsampling and two-tiered bead beating improve gut DNA yield 

and integrity 

 

We compared DNA yield and fragment size distribution between guts first 

homogenized with steel beads, subsampled, then treated with a second bead 

beating step aimed at microbial lysis, against guts handled without these 

modifications. By reducing tissue mass through measured, consistent 

subsampling, and by including the second bead beating step, we achieved higher 

DNA yield and integrity, and lower variance among individuals (Fig 2). 

Subsampled, double-beat DNA isolates contained more micrograms of DNA on 

average (Fig 2 A-B). For column-based DNA isolation protocols (PFP and DEP), 
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median yield increased at least 2-fold. DNA integrity also improved with the 

modifications (Fig 2 C-D), especially in the case of phenol-chloroform (PCP) 

isolations. Because whole guts were used for the unmodified protocols, within-

fish comparisons of these unmodified protocols, and testing of protocol-by-fish 

interactions, were not possible.  

 

Importantly, the among-sample variation, as estimated by the coefficient of 

variation for all three DNA isolation protocols, was also lower after subsampling 

and double bead beating (PCP: 0.557 vs 0.223; PFP: 0.610 vs. 0.509; DEP: 

0.517 vs. 0.214; single vs. double respectively). The coefficient of variation for 

DNA yield across all singly beat, whole gut samples was 1.244, compared to 

0.527 for doubly beat, subsampled guts. This difference was significant based on 

the asymptotic test described by Feltz and Miller (1996), which assumes a χ2-

distributed test statistic (D’AD = 37.376; df = 1; p = 9.742e-10). 

 

 

Bacterial phyla of the stickleback gut microbiome are similar across 

studies and rearing environments 

 

Rarefaction curves based on samples from 10 to 150,000 sequences per library 

indicated that our final down-sampling threshold of 105,000 sequences captured 

reasonable alpha diversity given the rate of increase with sampling effort (Fig 
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S1A-B). Considering all 41 experimental fish (35 from the reproducibility 

experiment and 6 from the repeatability experiment) for which our sequence 

number threshold of 105,000 was reached, we recovered a mean per-individual 

OTU richness of 4378.122 (SEM = 291.360), which reflects OTUs summed 

across all libraries (each library downsampled to 105,000 sequences) per 

individual. At the phylum level we observed a mean richness of 28.146 (SEM = 

0.786). The major constituent phyla among the fish in our experiment included 

Proteobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Cyanobacteria, but 

we observed extensive among-individual variation (Supplementary Fig S1D). 

Phylum-level membership was comparable between the lab-reared fish in our 

study and both lab-reared and wild-caught fish from Bolnick et al. (2014), with the 

exception of greater relative abundance of Phylum Chloroflexi in our study 

(Supplementary Fig S1C).  

 

 

Effects of individual hosts on microbial diversity are much larger than 

those of DNA isolation protocols 

 

We evaluated the relative contributions of individual fish and DNA isolation 

protocol to overall variance in diversity metrics by treating the libraries from the 

three different protocols as repeated measurements of each fish. The 

contribution of protocol to variation in community composition was quite small 
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relative to that of individual fish at class (Fig 3) and species (Supplementary Fig 

S2) levels, as quantified by high reproducibility estimates for all five alpha 

diversity metrics (Table 1). Similarly, the effect of protocol on beta diversity was 

weak relative to that of individual (Fig 4; Supplementary Fig S3), as 

reproducibility with respect to class and species Bray-Curtis dissimilarity and 

weighted UniFrac was high. Interestingly, reproducibility was substantially lower 

for unweighted UniFrac (Table 1; Fig 4). We also observed low reproducibility for 

unweighted, relative to weighted, UniFrac after defining OTUs based on 90% 

sequence identity (Table 1), which should absorb any effects of sequencing error.  

Confidence intervals (95% bootstrap) for reproducibility calculated separately for 

the two stickleback populations overlapped for all nine diversity metrics (Table 1), 

suggesting that reproducibility was consistent for the two different host genetic 

backgrounds.    

 

Although the overall variance in diversity metrics explained by differences in DNA 

isolation protocol was small relative to that explained by among-individual 

differences, we detected a significant effect of protocol for some measures via 

likelihood ratio tests comparing full and reduced linear mixed models (Table 2; 

Supplementary Figs 4-5). For example, total variation in class richness was 

explained significantly better by a model including DNA isolation protocol, relative 

to one excluding the term. This effect size was small, however (Supplementary 

Fig S4A). Libraries from DNA isolated using DNeasy (DEP) yielded a modest 
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increase in mean class richness from 52.663 to 54.892, with respect to 

PowerFecal (PFP), and 53.528 to 54.892 with respect to Phenol-Chloroform 

(PCP). We observed a similar trend for species richness and Faith’s Phylogenetic 

Diversity (Table 2; Supplementary Fig S5A,C).  

 

Beta diversity (as measured by class- and species-level Bray-Curtis dissimilarity, 

unweighted Unifrac, and weighted Unifrac) was significantly influenced by DNA 

isolation protocol, on average, in all cases (p < 0.001; see Supplementary Sheet 

S1A for factorial PERMANOVA hypothesis test statistics). The effect sizes were 

once again quite small in the context of among-individual variation, as reflected in 

nMDS ordinations and pairwise library dissimilarity distributions (Fig 4A,C,D,F; 

Supplementary Fig S3A,C,D,F). 

 

Relative abundances of individual taxon groups were in some cases affected by 

DNA isolation protocol, based on comparison of lognormal Poisson generalized 

linear models. For 20 class-level and 89 species-level OTUs, the model including 

protocol was a better fit than the model excluding it based on AIC, BIC, and the 

FDR-controlled likelihood ratio test (Supplementary Sheet S1 B-C). For instance, 

the class-level groups Actinobacteria, BD1-5 (“Gracilibacteria”), and 

Thermomicrobia tended to vary in abundance among DNA isolation protocols 

within fish consistently (Supplementary Fig S6A-C), albeit with quite small effect 

sizes. The mean downsampled read count for Actinobacteria, for example, was 
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1.317 times higher for PCP relative to PFP methods. At the species level, 

taxonomy groups including Agromyces spp., an unassigned species from Family 

Rodobacteraceae, and Tsukamurella spp. were among the most likely taxa 

affected by DNA isolation protocol (Supplementary Fig S7A-C), also to a minor 

degree.   

 

We wanted to evaluate the potential for DNA isolation protocol differences to 

influence the ability to consistently measure among-host differences in relative 

OTU abundances, and whether this ability varied as a consequence of the 

scarcity of a given OTU. We found that reproducibility was indeed positively 

associated with average log10 OTU abundance, based on a fitted logistic model 

(Fig 5). The slope at inflection (𝛾) was significantly greater than zero (𝛾 = 0.352; 

std. err. = 0.015; t = 23.977; p  < 0.0001). A similar relationship was observed for 

upper and lower 95% CI bounds on reproducibility (Fig 5). We noted a similar 

pattern when measuring OTU rarity in a different way: the number of individual 

hosts in which the OTU was detected. Again we observed that reproducibility of 

relative OTU abundance estimates was higher for common OTUs 

(Supplementary Fig S8A), and that the lower bound for reproducibility in our 

sample of hosts increased substantially when the OTU was present in at least 32 

of 35 fish (Supplementary Fig S8B). 
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Effects of stickleback population on microbial diversity estimates are 

subtle and in limited cases contingent on DNA isolation protocol 

 

We did not detect a statistically significant effect of host population (stickleback 

line) on any of the five alpha diversity metrics using likelihood ratio tests 

comparing nested full and reduced linear mixed models (Table 2), although class 

richness, class evenness, and species richness trended towards higher values in 

the oceanic relative to the freshwater population (Supplementary Figs 4-5). We 

did detect a statistically significant interaction between stickleback population and 

DNA isolation protocol for species-level and phylogenetic alpha diversity metrics 

(Table 2). This implies that the effect of isolation protocol may differ depending 

on biological context, but these effect sizes were also quite small (Supplementary 

Fig S5B-C). For example, the maximum species evenness difference between 

protocol-population combinations was 0.070 and the maximum phylogenetic 

diversity difference was 5.370. 

 

Beta diversity, as measured by class- and species-level Bray-Curtis dissimilarity, 

unweighted Unifrac, and weighted Unifrac, was not significantly influenced by 

host population after accounting for the nested nature of the data introduced by 

family structure (Fig 4B,C,E,F; see Supplementary Sheet S1A for protocol-

specific nested PERMANOVA hypothesis test statistics). Family itself was a 

significant determinant of community dissimilarity for all four metrics (Fig 
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4B,C,E,F; see Supplementary Sheet S1A for factorial PERMANOVA hypothesis 

test statistics), although it should be noted that family was confounded by tank in 

our design. We did not detect a statistically significant interaction between host 

family and DNA isolation protocol for any of the four dissimilarity metrics 

assessed (Supplementary Sheet S1A). Finally, among-fish community 

dissimilarity ranks were highly correlated between DNA isolation protocols 

(Supplementary Sheet S1D), suggesting consistency with respect to between-

individual beta diversity, especially for PFP and DEP protocols.  

 

We also evaluated whether relative abundances for taxonomic groups (class- 

and species-level) might be affected by host population, based on comparison of 

lognormal Poisson generalized linear models accounting for family nestedness. 

Although no likelihood ratio tests were statistically significant after controlling the 

FDR at 0.1, three class-level and 25 species-level groups showed evidence for a 

population effect by virtue of a delta AIC > 2, a delta BIC > 0, and an uncorrected 

LRT p-value < 0.05 (Supplementary Sheet S1B-C). Class-level groups BD-7, an 

unassigned class from Bacteroidetes, and Clostridia were all three enriched in 

abundance in the oceanic relative to the freshwater population (Supplementary 

Fig 6D-F). The effect size of population on the Clostridia group abundance, for 

example, was quite large. The mean oceanic Clostridia count was 23259.559 

(SEM = 3880.291), whereas the mean freshwater Clostridia count was 3867.704 

(SEM =  1417.775). Three species-level groups with especially strong tendencies 
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toward host population differences were the oceanic-enriched Sphingobacterium 

multivorum group, the freshwater-enriched Plesiomonas shigelloides group, and 

an oceanic-enriched, unassigned group from Family Clostridiaceae 

(Supplementary Fig S7D-F). 

 

We detected a statistically significant interaction between host population 

(accounting for family) and DNA isolation protocol for six class-level and 25 

species-level groups (Supplementary Sheet S1B-C), based on a delta AIC > 2, a 

delta BIC > 0, and a LRT FDR controlled at 0.10. However, effect sizes for this 

interaction type were again relatively small, as demonstrated by the abundance 

of a Sphingobacterium multivorum group across population-protocol 

combinations (Supplementary Fig S7D). In this case, the mean population 

difference in S. multivorum count was highest for DEP (4.497), followed by 1.688 

and 2.912 for PCP and PFP, respectively. 

 

 

Precision of gut microbiome diversity measurements is high and similar 

across three DNA isolation protocols 

 

We performed repeated measurements of individual stickleback gut microbiomes 

obtained from replicate aliquots from whole gut homogenates and using a single 

DNA isolation protocol per gut (Fig 1B). 16S data generated from the same fish 
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were extremely similar in taxonomic composition, relative to among-fish 

comparisons (Supplementary Figs S9A and S10A). We analyzed within-individual 

variation based on the six gut subsamples per fish and found no significant effect 

of protocol on precision for five alpha diversity metrics (Supplementary Sheet 

S1E), including class-level richness and evenness (Supplementary Fig S9), 

species richness and evenness (Supplementary Fig S10A-C), and phylogenetic 

diversity (Supplementary Fig S10E). Similarly, we found no evidence for a 

significant effect of protocol on precision with respect to beta diversity (See 

Supplementary Sheet S1D), including class- and species-level Bray-Curtis 

dissimilarity and weighted and unweighted UniFrac (Fig 6; Supplementary Fig 

S11). Furthermore, and consistent with our across-protocol reproducibility 

analysis, the average degree of within-fish, relative to among-fish, dispersion was 

especially low for unweighted UniFrac (Fig 6).   

 

 

 

  

DISCUSSION 

 

One surprising insight from the recent characterization of microbiomes using 

high-throughput sequencing has been the extensive diversity among individual 

hosts of the same species (Adair et al. 2018; Human Microbiome Project 2012; 
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Kueneman et al. 2014; Sullam et al. 2015). The fundamental sources of this inter-

individual variation remain an active area of research. Rather than assuming that 

individual variation is vastly larger than technical variation, and therefore 

insignificant, we and others (Knight et al. 2018; Poussin et al. 2018; Sinha et al. 

2017) argue that the relative magnitude of biological and technical variance 

components should be measured using strong experimental design. This is 

particularly relevant in the context of new and rapidly changing technologies for 

quantifying microbial diversity. Indeed, variation in microbial diversity metrics may 

be heavily influenced by technical factors in some cases, especially when 

molecular protocols are vastly different or suboptimal. For instance, extremely 

low yields of microbial DNA exacerbate the influence of contaminant species 

(Salter et al. 2014), which could negatively impact biological inference. 

Furthermore, inferences based on some diversity metrics might be more 

susceptible to technical variation, particularly those metrics more heavily 

influenced by sequences from rare species whose abundance estimates may be 

more subject to sampling error. 

 

In our experience, suspicions and intuition about the severe importance or 

unimportance of technical variation for 16S-based microbial ecology inference 

have been extensively discussed. However, these effects have not been 

precisely quantified and evaluated outside the purview of “mock communities” 

(Salter et al. 2014; Yuan et al. 2012) or differences among research groups 
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working on large-scale, collaborative efforts to understand the human 

microbiome (Sinha et al. 2017). While these studies and several others, for 

example (Kashinskaya et al. 2017; Lawrence et al. 2015; Raju et al. 2018; 

Videvall et al. 2017; Wagner Mackenzie et al. 2015), have been useful in 

identifying potential sources of technical variation that may or may not restrict or 

bias biological inferences based on among-individual variation, insufficient 

biological replication and/or inability to isolate specific technical factors have 

limited their scope of inference. For example, authors from the Microbiome 

Quality Control Project point out that their carefully designed study was “unable 

to assign significance to any specific fixed effects (i.e., individual protocol 

variables), since in the small MBQC-base these were in large part confounded 

with individual handling and bioinformatics laboratories” (Sinha et al. 2017). 

 

 No published study, to our knowledge, has sampled enough individual hosts, in 

combination with the controlled assignment of technical factor levels, to 

effectively quantify reproducibility (and its uncertainty) in a biologically relevant 

context. We wanted to fill this important void with a well-replicated comparison 

involving one potential source of technical variation - DNA isolation protocol - and 

individual-level variation in the ecological and evolutionary context of stickleback 

host genetic differences. 
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One of our significant findings is that the earliest steps in sample handling are 

critical for improving downstream results. We found the process of dual bead 

beating with tissue homogenate subsampling essential to the quantity and quality 

of DNA isolated from adult threespine stickleback guts. Without this process, both 

lower yields with higher variance and more fragmented DNA were certain. The 

PowerFecal column-based isolation protocol suffered most severely from a lack 

of double bead beating and subsampling, perhaps owing to an overloading of the 

column. These results are significant, as low DNA yields are known to amplify 

any effects of contamination (Salter et al. 2014). Decreasing among-sample 

variance in DNA attributes such as quantity, therefore, should reduce non-

biological variation among 16S-based microbial profiles. In principle this will 

increase the power of statistical analyses, thereby reducing cost in the number of 

biological samples needed. In the specific case of our study, these modifications 

were absolutely essential to establishing a reasonable comparison of DNA 

isolation protocols. Before embarking on 16S sequencing for a large study, we 

recommend similar subsampling and optimization for large sample types, or 

sample types that haven’t yet been tested with commercial kits. We also 

recommend that DNA yield and quality distributions for at least a random subset 

of samples be reported in published 16S and metagenomics studies.  

 

Our results confirm that among-individual differences in stickleback gut 

communities are extensive (Bolnick et al. 2014), consistent with work on the gut 
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microbiome of human (Human Microbiome Project 2012) and other hosts 

(Kreisinger et al. 2014; Sullam et al. 2015). Although mean relative abundances 

of phyla in our experimental fish were qualitatively similar to those of other 

stickleback populations and environments (Bolnick et al. 2014), we found 

substantial variation in community composition even among male full siblings 

housed in the same tank. This is significant, as most ecological, evolutionary, and 

biomedical studies of host-associated microbes rely on an understanding of 

among-host differences in the microbiome. However, previous studies have not 

satisfactorily quantified the extent to which observed individual differences might 

be due to technical variation introduced by factors such as DNA isolation 

protocol. We measured the reproducibility (across three DNA isolation protocols) 

for a number of commonly used microbial diversity metrics. We found that alpha 

and beta diversity measurements of the stickleback gut microbiome were very 

reproducible, despite having applied three fundamentally different DNA isolation 

protocols. As stated previously, this high reproducibility is predicated upon the 

proper initial treatment of tissue through double beating and subsampling. 

 

Interestingly, we observed an exception to high reproducibility in the case of 

unweighted UniFrac, although 95% CI lower bounds were still above zero. 

Because unweighted UniFrac does not account for differences in 16S sequence 

abundance, it magnifies the effect of rare sequences (Lozupone et al. 2007). To 

evaluate whether this property was due entirely to rare, artificial OTUs originating 
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from sequencing error (Callahan et al. 2016, Amir et al. 2018), we re-analyzed 

beta diversity reproducibility for unweighted and weighted UniFrac using more 

inclusive OTU clustering based on 90% (as opposed to 97%) sequence identity 

(see Table 1), and found a reduced but still substantial difference in 

reproducibility for these two metrics.  

 

Our data do not suggest that unweighted UniFrac-based measures of beta 

diversity are not reproducible in the general sense, but rather in the case of our 

study they were lower compared to metrics that take abundance into account. 

The interpretation of reproducibility is contingent on the level of variation 

researchers wish to understand, and our objective was to study reproducibility 

across DNA isolation protocols (and repeatability across tissue subsamples) with 

respect to among-individual variation. Unweighted UniFrac is known to be 

especially sensitive to sampling bias (Lozupone et al. 2011). One recent study 

showed that unweighted UniFrac applied to resampled sequences from the same 

HMP tongue dorsum libraries projected large within- relative to among-library 

variation, when this should be very low (Wong et al. 2016). This insight, along 

with our current study, suggests that sampling bias associated with rare 

sequences disproportionately affects the potential to explain among-individual 

variance with unweighted UniFrac as compared to other metrics, an important 

consideration that researchers should make when interpreting microbiome data, 

especially in light of differences between similar individual hosts.  
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Although reproducibility among DNA isolation methods was extremely high, we 

observed statistically significant effects of DNA isolation protocol on some 

measurements of the microbiota, including class richness, Faith’s Phylogenetic 

Diversity, and relative abundance for at least 20 classes. It should be noted, 

however, that the sizes of this effect were rather small (see Results), and our 

experimental design was well powered to detect the effects owing to within-

individual comparisons. Nevertheless, if researchers are interested in specific 

microbial lineages for a particular study, they should be aware that DNA 

protocols may indeed influence abundance estimates for individual taxa.  

 

We also examined the relationship between average OTU abundance and 

among-protocol reproducibility. Based on our stickleback data, a very clear, 

sigmoidal relationship suggested that reproducibility was indeed lowest, on 

average, for rare OTUs, and that it improved substantially up to a mean OTU 

count of 10. The nature of this function will almost certainly vary among systems, 

and among sequencing depths (recall that these data were downsampled to 

105,000 reads per library), but it provides a general reference for those interested 

in the reliable measurement of rare taxa with 16S sequencing. Even with high 

biological replication and relatively deep sampling, low repeatability for some 

organisms may be unavoidable. This pattern is fundamentally related to the 

reduced reproducibility we observed for unweighted UniFrac, in that increased 
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sampling error for rare sequences makes among-individual comparisons less 

tractable.        

 

We designed a second, small experiment to compare precision of 16S-based 

community measurements (six gut subsamples per fish) among the three DNA 

isolation protocols. We observed no significant difference in precision for 

richness, evenness, phylogenetic diversity, or beta dispersion, among DNA 

isolation protocols. It should be noted, however, that our sample of individual fish 

per protocol was limited (just two), and that among-fish variation in microbial 

community structure was extensive (Supplementary Fig S10A). As a result, our 

power to detect among-protocol differences in precision was limited.    

 

With added confidence that optimized DNA isolation protocols contribute 

minimally to among-library variation, we then explored whether several factors 

might explain individual host differences in the stickleback gut microbiome, with a 

special interest in host genetic background. Recent studies of animal hosts, 

mostly featuring mammals, have reported a stronger influence of environmental 

variables relative to host genetic variation on gut microbiome variation (Bledsoe 

et al. 2018; Hildebrand et al. 2013; Rothschild et al. 2018). In our study host 

family significantly explained beta diversity among individuals, but family effects 

were confounded by those of tank. Although all tanks in our study shared a 

common water system, the immediate tank environment is likely to influence 
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host-associated microbes. Future studies should address host genetic effects like 

those at the family level by raising individuals related to different degrees in 

replicated common garden experiments informed by traditional quantitative 

genetics principles.  

 

The population of origin was not a statistically significant factor for most of the gut 

microbiome traits we measured, however individual species-level groups such as 

those associated with Sphingobacterium multivorum and Plesiomonas 

shigelloides showed strong evidence for an association with stickleback line. 

Taxonomic groups from Phylum Firmicutes (namely the family Clostridiaceae and 

the genus Turicibacter) also differed in abundance between the two stickleback 

lines. Host-genotype influences on Firmicutes appear to be common in mammals 

(Goodrich et al. 2016), and Turicibacter has been shown to be heritable in both 

humans and mice (Benson et al. 2010; Org et al. 2015). While a subtle effect of 

host genotype on the stickleback gut microbiome is consistent with the 

aforementioned insights from animal hosts, it should be interpreted with some 

caution, as the nested nature of our design, and having sampled only three 

families per population, limited our statistical power to test population-level 

hypotheses. Future studies that experimentally control environmental effects 

carefully and sample more genetic variation at the population level (e.g. genome-

wide association studies and large-scale common garden experiments) should 

provide the power to confirm these still largely untested contributions to among-
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individual microbiome variation. Notably, we detected minimal evidence for 

statistical interaction between host population and DNA isolation protocol. Again, 

although some of these tests were statistically significant, the associated effect 

sizes were rather small (Figs S5B-C; S7D). The mechanistic causes of these 

subtle interactions are unknown, but it is possible that inorganic or organic 

compounds in the guts differing in concentration between freshwater and oceanic 

stickleback could co-purify with DNA and affect downstream steps in library 

construction such as PCR, in a manner specific to DNA from some microbial 

lineages. 

 

Our current study revealed high reproducibility across the three protocols we 

tested, and minimal concern that choice of DNA isolation protocol interacts with 

biological factors of interest. In our experience the DNeasy Protocol (DEP) 

required the shortest handling time, so we have adopted it in current studies of 

the stickleback gut microbiome. Negligible influence from these technical factors 

may not be the case for other biological systems or sample types, however, so 

we strongly encourage other researchers to design their studies in ways similar 

to those presented here in order to properly measure and minimize sources of 

technical variance. The payoff in limiting technical variation is potentially large in 

terms of cost of reagents, time, and animal resources, especially when true 

biological signal is subtle. This concept is, of course, easily extended beyond 16S 

data sets to RNA-Seq and other high-throughput sequencing data. In summary, 
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the complexity of communities and the sampling process can affect 

reproducibility and repeatability, but as we show, not always to a great extent. 

The magnitude of these effects depends on the biology of the system at hand 

and the diversity metric in question. Without properly quantifying relevant 

technical and biological variance components of sequencing-based microbial 

diversity metrics, however, it is impossible for our research community to move 

forward with confidence in addressing core questions about host-microbe 

interactions and microbial ecology in general. 
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TABLES 

 
Diversity 
Variable 

Among-Fish 
Variation 

Within-Fish 
Variation 

Reproducibility 
(95% CI) 

FW 
Reproducibility 
(95% CI) 

OC 
Reproducibility 
(95% CI) 

Class 
Richness 

77.409 11.080 0.875 
(0.792, 0.917) 

0.893 
(0.778, 0.944) 

0.840 
(0.687, 0.903) 

Class 
Evenness 

0.011 0.001 0.920 
(0.885, 0.965) 

0.972 
(0.929, 0.990) 

0.890 
(0.847, 0.934) 

Species 
Richness 

6606.324 123.393 0.982 
(0.946, 0.991) 

0.988 
(0.945, 0.994) 

0.939 
(0.889, 0.967) 

Species 
Evenness 

0.009 0.001 0.923 
(0.886, 0.945) 

0.955 
(0.903, 0.983) 

0.916 
(0.866, 0.939) 

Phylogenetic 
Diversity 

287.929 18.949 0.938 
(0.870, 0.969) 

0.967 
(0.902, 0.985) 

0.890 
(0.769, 0.953) 

Class 
Bray-Curtis 

0.082 0.004 0.958 
(0.912, 0.979) 

0.984 
(0.965, 0.993) 

0.925 
(0.811, 0.970) 

Species 
Bray-Curtis 

0.112 0.004 0.966 
(0.938, 0.982) 

0.986 
(0.971, 0.993) 

0.935 
(0.860, 0.971) 

Weighted 
UniFrac 

0.070 0.003 0.955 
(0.907, 0.978) 

0.984 
(0.962, 0.992) 

0.928 
(0.819, 0.970) 

Weighted 
UniFrac 
(90% id. clust.) 

0.027 0.001 0.959 
(0.925, 0.977) 

0.978 
(0.959, 0.990) 

0.934 
(0.849, 0.969) 

Unweighted 
UniFrac 

0.056 0.158 0.263 
(0.207, 0.292) 

0.279 
(0.186, 0.312) 

0.207 
(0.139, 0.217) 

Unweighted 
UniFrac 
(90% id. clust.) 

0.054 0.074 0.423 
(0.349, 0.462) 

0.441 
(0.315, 0.481) 

0.359 
(0.271, 0.385) 

 
Table 1. Among-fish variation greatly exceeds within-fish (among-protocol) 
variation for several diversity metrics, as indicated by high reproducibility 
estimates. Shown are variance component and reproducibility estimates for all 
individuals, and separate reproducibility estimates for freshwater (FW) and 
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oceanic (OC) stickleback populations, respectively, along with bootstrap 95% 
confidence intervals.  
 
 
Diversity 
Variable 

Χ2 
df=2 

Protocol  
p-value 
Protocol 

Χ2
 df=1 

Population 
p-value 
Population 

Χ2
 df=2 

Interaction 
p-value 
Interaction 

Class 
Richness 

8.469 0.015 0.306 0.580 0.878 0.645 

Class 
Evenness 

0.051 0.975 0.043 0.835 4.324 0.115 

Species 
Richness 

5.354 0.069 0.230 0.631 5.658 0.059 

Species 
Evenness 

4.095 0.129 2.243 0.134 11.175 0.004 

Phylogenetic 
Diversity 

8.642 0.013 0.066 0.798 7.195 0.027 

 
Table 2. Likelihood Ratio Test (LRT) test statistics with degrees of freedom (df) 
and p-values for tests of effects of DNA isolation protocol, stickleback population, 
and interaction between the two. LRTs were conducted by comparing linear 
mixed models either including or excluding these fixed effects, plus random 
effects of fish and fish nested within family (see Methods). Tests with p-values < 
0.05 are in bold.	
	

FIGURES 
 
Figure 1. Experimental design to evaluate A. Technical (DNA isolation protocol) 
and biological (individual and population) variation in 16S sequencing-based 
diversity metrics, and B. Within-individual precision for these metrics. Shown are 
the stickleback lines (populations), families, and sample processing steps, and 
sample sizes used in the current study. In the first experiment (A), we assigned 
one of three homogenate subsamples from each fish gut to one of three DNA 
isolation protocols: Phenol-chloroform (PCP), PowerFecal (PFP), or DNeasy 
(DEP). In the second experiment (B), we assigned all six homogenate 
subsamples from a given fish gut to one of the DNA isolation protocols, with each 
protocol represented by two fish.    
 
Figure 2. Gut homogenate subsampling and double bead beating improves DNA 
yield and integrity. A. DNA yield boxplot for 3 protocols with single beating and no 
gut subsampling. B. DNA yield boxplot for 3 protocols with double beating and 
subsampling. C. Fragment analysis traces for 2 protocols with single beating and 
no subsampling. D. Fragment analysis traces for 3 protocols with double beating 
and subsampling. Bands at 1 and 200,000 bp in C-D are lower and upper size 
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standards. Fragment analysis data were unavailable for singly beat PFP samples 
owing to insufficient DNA quantity. PCP = Phenol-chloroform protocol, PFP = 
PowerFecal protocol, and DEP = DNeasy protocol. 
 
Figure 3. 16S-based, class-level profiles of the stickleback gut microbiome vary 
substantially more by individual host than by DNA isolation method. Class 
relative abundances demonstrate substantial variation across individuals, 
families, and populations, but little variation among DNA isolation protocols within 
individuals. Each bar triplet denotes an individual fish gut, with individual bars 
representing PCP, PFP, and DEP DNA isolation methods, in that order.  
Individuals are sorted by mean Gammaproteobacteria abundance within each 
family. One individual from Family 4 and the PCP library from a Family 6 
individual were not analyzed owing to insufficient coverage. 
 
Figure 4. Phylogenetic dissimilarity based on 16S profiles of the stickleback gut 
microbiome shows a greater effect of individual, relative to DNA isolation 
protocol. The strength of this pattern varies, depending on whether weighted (A-
C) or unweighted (D-F) UniFrac is applied. A and D. Non-metric multidimensional 
scaling (nMDS) ordinations from weighted and unweighted UniFrac, showing the 
three DNA isolation protocols from each individual connected as filled triangles. B 
and E. The same ordinations, but with individuals plotted as the centroid of each 
triplet from A and D, and with 95% confidence ellipses drawn separately for each 
family. C and F. Pairwise dissimilarity matrix heatmaps representing all libraries. 
The library order is the same as in Fig 3. Green ordination symbols represent the 
freshwater stickleback line, and blue symbols represent the oceanic line. 
Individual fish labeled by lowercase letters and corresponding arrows point to 
outliers in community space.   
 
Figure 5. Repeatability of OTU quantification across DNA isolation protocols 
increases nonlinearly with log10-transformed mean relative OTU abundance. 
Vertical gray lines represent 95% CIs for repeatability estimates of 2278 OTUs 
observed in at least 10 of 35 experimental fish. The solid line represents 
predicted repeatability values from a logistic model fit to the data. Dashed lines 
represent predicted upper and lower bound CI values for repeatability, also from 
logistic models fit to the data. 
 
Figure 6. Precision of beta diversity measurements is consistently high among 
DNA isolation methods, but the relative magnitude of within- and among-fish 
community dissimilarity depends on the dissimilarity metric. Pairwise dissimilarity 
matrix heatmaps for the precision experiment, including class- and species-level 
Bray-Curtis (A-B), and weighted and unweighted UniFrac (C-D), illustrate low 
within-fish dissimilarity and higher among-fish dissimilarity. This pattern, 
however, is less extreme for unweighted UniFrac. 
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SUPPLEMENTAL INFORMATION 
 

Highly reproducible 16S sequencing facilitates measurement of host 
genetic influences on the stickleback gut microbiome 
Clayton M. Small, Mark Currey, Emily A. Beck, Susan Bassham, and William A. 
Cresko 

 
Supplementary Figure Legends S1-S11: 
Supplementary Figure S1. Alpha diversity rate of increase with sequencing effort 
decreases before the 105,000 read depth threshold. A-B. Library-wise rarefaction 
curves for OTU richness and phylogenetic diversity, respectively. The dashed 
lines indicate the 105,000 threshold used for all downstream analyses. Blue lines 
indicate libraries from the reproducibility experiment, whereas red lines indicate 
libraries from the repeatability experiment. On average, alpha diversity was 
higher for the six fish from the reproducibility experiment relative to the 36 fish 
from the repeatability experiment. 
Microbial community diversity at the phylum level in the adult threespine 
stickleback gut is similar across studies and rearing environments. C. Across-
individual mean relative phylum abundances for perch, wild-caught stickleback, 
and lab stickleback from Bolnick et al. (2014), and lab stickleback from our 
current study. D. Individual fish phylum abundances (averaged across DNA 
isolation protocols) for the 41 stickleback analyzed in both experiments from the 
current study. 
 
Supplementary Figure S2. 16S-based, species-level profiles of the stickleback 
gut microbiome vary substantially more by individual host than by DNA isolation 
method. Species relative abundances demonstrate substantial variation across 
individuals, families, and populations, but little variation among DNA isolation 
protocols within individuals. Adjacent bars of three denote individual fish guts, 
with individual bars representing PCP, PFP, and DEP DNA isolation methods, in 
that order.  Individuals are sorted by mean Rheinheimera spp. abundance within 
each family. One individual from Family 4 and the PCP library from a Family 6 
individual were not analyzed owing to insufficient coverage. 
 
Supplementary Figure S3. Bray-Curtis dissimilarity based on 16S profiles of the 
stickleback gut microbiome shows a greater effect of individual, relative to DNA 
isolation protocol. A-C. Bray-Curtis dissimilarity based on class abundances. D-
F. Bray-Curtis dissimilarity based on species abundances. A and D. Non-metric 
multidimensional scaling (nMDS) ordinations from Bray-Curtis dissimilarity, 
showing the three DNA isolation protocols from each individual connected as 
filled triangles. B and E. The same ordinations, but with individuals plotted as the 
centroid of each triplet from A and D, and with 95% confidence ellipses drawn 
separately for each family. C and F. Pairwise dissimilarity matrix heatmaps 
representing all libraries. The library order is the same as in Fig 3. Green 
ordination symbols represent the freshwater stickleback line, and blue symbols 
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represent the oceanic line. Individual fish labeled by lowercase letters and 
corresponding arrows point to outliers in community space. 
 
Supplementary Figure S4. DNA isolation protocol and host population do not 
strongly influence class richness (A) or evenness (B). Boxplots expressing class 
and evenness distributions for the six population-protocol combinations are 
overplotted with points representing individual libraries, which are coded by 
stickleback family. Family 1 = square; Family 2 =  circle, Family 3 = “X”; Family 4 
= triangle; Family 5 = “+”; Family 6 = diamond. 
 
Supplementary Figure S5. DNA isolation protocol and host population do not 
strongly influence species richness (A), species evenness (B), or Faith’s 
Phylogenetic Diversity (C). Boxplots expressing class and evenness distributions 
for the six population-protocol combinations are overplotted with points 
representing individual libraries, which are coded by stickleback family. Family 1 
= square; Family 2 = circle, Family 3 = “X”; Family 4 = triangle; Family 5 = “+”; 
Family 6 = diamond.  
 
Supplementary Figure S6. Abundance of individual bacterial classes most likely 
influenced by DNA isolation protocol (A-C) and stickleback population (D-F). 
Boxplots expressing class abundance distributions for the six population-protocol 
combinations are overplotted with points representing individual libraries, which 
are coded by stickleback family. Family 1 = square; Family 2 = circle, Family 3 = 
“X”; Family 4 = triangle; Family 5 = “+”; Family 6 = diamond.  
 
Supplementary Figure S7. Abundance of individual bacterial species most likely 
influenced by DNA isolation protocol (A-C) and stickleback population (D-F). 
Boxplots expressing species abundance distributions for the six population-
protocol combinations are overplotted with points representing individual libraries, 
which are coded by stickleback family. Family 1 = square; Family 2 = circle, 
Family 3 = “X”; Family 4 = triangle; Family 5 = “+”; Family 6 = diamond. 
 
Supplementary Figure S8. Repeatability of OTU quantification across DNA 
isolation protocols increases with the number of individuals in which the OTU is 
detected. A. 2278 OTU repeatability estimates plotted against the number of 
individual stickleback in which present, with x-axis jitter for clarity. B. 2278 OTU 
repeatability lower bound CI estimates plotted against the number of individual 
stickleback in which present, with x-axis jitter for clarity. A significant, positive 
shift in repeatability coincided with sampling more than 30 fish in our data set.  
 
Supplementary Figure S9. 16S sequencing measures class-level microbiota 
composition and alpha diversity of the stickleback gut with high precision 
consistently across DNA isolation methods. A. Class relative abundances are 
very similar among technical replicates from the same fish, relative to among-fish 
differences. Technical replicates with each fish are sorted by mean 
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Gammaproteobacteria abundance. Class richness (B) and evenness (C) vary 
substantially among fish, but within-fish (technical) variance is low and similar 
across the three DNA isolation protocols. Black, vertical bars next to plotted 
points in B and C represent mean +/- SEM. 
 
Supplementary Figure S10. 16S sequencing measures species-level microbiota 
composition and alpha diversity of the stickleback gut with high precision 
consistently across DNA isolation methods. A. Species relative abundances are 
very similar among technical replicates from the same fish, relative to among-fish 
differences. Technical replicates with each fish are sorted by mean 
Gammaproteobacteria abundance. Species richness (B) and evenness (C) vary 
substantially among fish, but within-fish (technical) variance is low and similar 
across the three DNA isolation protocols. Black, vertical bars next to plotted 
points in B and C represent mean +/- SEM. 
 
Supplementary Figure S11. Precision of beta diversity measurements differs 
among individual hosts, but not consistently among DNA isolation methods. 
Plotted are multivariate distances between each library and the centroid of its 
group (fish), which quantify multivariate spread among technical replicates from 
each fish.  Higher y-axis values reflect more spread (lower precision). Black, 
vertical bars next to plotted points represent mean +/- SEM. Library-centroid 
distances were calculated based on class- and species-level Bray-Curtis (A-B), 
and weighted and unweighted UniFrac (C-D) dissimilarity (see Methods). 
 
Supplementary Sheet Legends S1A-S1E: 
Supplementary Sheet S1A: Excel spreadsheet with Permutational Multivariate 
Analysis of Variance (PERMANOVA) results for protocol, population, family, and 
family-by-protocol interaction effects on beta diversity, as measured using class- 
and species-level Bray-Curtis dissimilarity, and weighted and unweighted 
UniFrac. Shown are results from factorial analyses involving family, protocol, and 
their interaction, and analysis in which family is nested within population.  
 
Supplementary Sheet S1B: Excel spreadsheet with results from full and reduced 
lognormal Poisson generalized linear models fit to test effects of Population-by-
Protocol Interaction, Population, and Protocol on downsampled counts of 
individual microbial classes. For each effect tested, reported are the difference in 
AIC, the difference in BIC, the likelihood ratio test statistic and degrees of 
freedom, and both uncorrected and FDR-corrected p-values. Tests highlighted in 
pink were associated with a dAIC > 2, a dBIC > 0, and a FDR-corrected p-value 
< 0.1. Population effect tests highlighted in orange were associated with a dAIC > 
2, a dBIC > 0, and an uncorrected p-value < 0.05. 
 
Supplementary Sheet S1C: Excel spreadsheet with results from full and reduced 
lognormal Poisson generalized linear models fit to test effects of Population-by-
Protocol Interaction, Population, and Protocol on downsampled counts of 
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individual microbial species. For each effect tested, reported are the difference in 
AIC, the difference in BIC, the likelihood ratio test statistic and degrees of 
freedom, and both uncorrected and FDR-corrected p-values. Tests highlighted in 
pink were associated with a dAIC > 2, a dBIC > 0, and a FDR-corrected p-value 
< 0.1. Population effect tests highlighted in orange were associated with a dAIC > 
2, a dBIC > 0, and an uncorrected p-value < 0.05. 
 
Supplementary Sheet S1D: Excel spreadsheet with results (Mantel test r 
statistics and permutation-based p-values) from pairwise Mantel tests based on 
DNA isolation protocol-specific dissimilarity matrices from the reproducibility 
experiment. Three tests (one for each DNA isolation protocol pair) were 
performed for each of the four dissimilarity metrics used in this study. 
  
Supplementary Sheet S1E: Excel spreadsheet with results (F-values and p-
values) from Levene’s Tests comparing variance (univariate) and dispersion 
(multivariate) among the three different DNA isolation protocols.  
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