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Abstract 

Multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent, 

TMT in particular. Here we used a large iPSC proteomic experiment with twenty-four 10-plex 

TMT batches to evaluate the effect of integrating multiple TMT batches within a single 

analysis. We reveal a significant inflation rate of missing protein and peptide values and show 

that precision decreases as multiple batches are integrated. Additionally, we explore the effect 

of false positives using Y chromosome specific peptides as an internal control to quantify the 

effect of co-isolation interference, as well as primary and secondary reporter ion interference. 

Based on the results we suggest solutions to mitigate these effects. We show using a reference 

line can increase precision by normalising the quantification across batches and we propose 

experimental designs that minimise the effect of cross population reporter ion interference. 

 

Main text 
 

High-throughput, shotgun proteomics, using data dependent acquisition (DDA), now enables 

the comprehensive study of proteomes, allowing the identification of 10,000 or more proteins 

from cells and tissues1-3. However, to achieve such deep proteome coverage using DDA, 

extensive prefractionation of extracts prior to mass spectrometry (MS) analysis is frequently 

required1,4. To evaluate statistically the significance of the resulting data, a minimum of 3 

replicates for each sample/condition is also necessary5,6. The data acquisition time involved is 

increased still further for experiments that analyse the multi-dimensional characteristics of the 

proteome; e.g. studying differences in protein subcellular localisation, turnover rates, post-

translational modifications (PTMs) and protein-protein interactions7. 

To cope with the challenges of large-scale proteomics analyses, strategies have been developed 

to allow multiple samples to be analysed in parallel, through multiplexing isotopically tagged 
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proteins 8,9. The most widely used MS multiplexing methods, TMT10 and iTRAQ11, use 

isobaric tags for simultaneous peptide identification and quantification. TMT in particular has 

increased in popularity and is now widely used 12,13. This reflects the ability of multiplexed 

TMT to increase sample throughput in proteomics studies and reduce the “missing values” 

problem that arises from the stochastic sampling inherent in DDA proteomics 14,15. Thus, within 

a single multiplex TMT batch, the number of missing values at the protein level is low, 

frequently <2%12. Furthermore, the precision of  the quantification within a multiplex TMT 

batch is high16. However, it is less clear how well multiplex TMT performs for very large-scale 

analyses, involving many multiplex-TMT batches. 

In this manuscript, we analyse a recent data set from a proteomic study of human iPSC cells, 

involving 24 separate 10-plex TMT batches17 . We compare the quantitation of data both within 

and between separate 10-plex batches and focus our analysis on 3 main issues: (i) missing 

values, (ii) accuracy of quantification and (iii) the effect of both reporter ion interference (RII) 

and co-isolation interference (CII). 

We show an inflationary effect on missing values as data from multiple batches are integrated 

both at the protein and peptide level. We evaluated reproducibility both by studying the 

coefficient of variation (COV) within each 10-plex TMT batch, and by comparing technical 

replicates that were common to every batch. Finally, we explored the effect of co-isolation and 

reporter ion interference, which can both reduce quantitative accuracy. For this, we identified 

peptides matched uniquely to Y chromosome genes to provide an internal control, which was 

used to evaluate the presence of false positive peptide signals between samples derived from 

male and female donors. 
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Results 

Missing values in TMT 

A known advantage of using multiplex TMT analysis is the low index of missing values that 

are present within a single TMT batch. Recent studies report as low as <1% missing values at 

the protein level 16, albeit data are usually not reported at the peptide level. 

We started by analysing the iPSC 10-plex TMT data for the number of missing values at the 

protein level within each TMT batch (Fig. 1a). The preliminary results are consistent with 

previous reports, i.e. 79% of the 24 different 10-plex TMT batches show <1% missing values 

at the protein level, with only 1 outlier with missing protein values >2%. Furthermore, when 

we analyse the data at the peptide level, there is very close agreement to the protein data, with 

79% of the 24 different 10-plex TMT batches having <2.5% missing peptide values. 

 

Figure 1 – Protein and peptide missing values: (a) Percentage of missing values for each TMT batch calculated 

at the protein level. (b) Percentage of missing values for each TMT batch calculated at the peptide level.  (c) Box 
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plot showing the results for protein missing values as a function of the number of 10-plex TMT batches. (d) Box 

plot showing the results for peptide missing values as a function of the number of 10-plex TMT batches. 

 

However, these results do not address the effect of integrating data from multiple, independent 

10-plex TMT batches into a single analysis. To study the effect of data integration, we 

increased the number of batches selected, from 2 to 23 and recalculated the number of missing 

values that were present (Fig. 1c&d; see methods). At the protein level, the median number of 

missing values increases from 0.28% with one 10-plex TMT batch, to 10.53% when data from 

a second 10-plex TMT batch were integrated (Fig. 1c). When we integrate data from 12 

different 10-plex TMT batches, the median number of missing values at the protein level 

expanded to >30%. For example, even some highly expressed histones (HIST2H2AB, 86th 

percentile of abundance), are only detected in 66% of the cell lines. 

This situation was exacerbated when the analysis was performed at the peptide level (Fig. 1d). 

When integrating data from just two 10-plex TMT batches, the median number of missing 

peptide values was >24%. Even more striking, it only required integrating data from 8 different 

10-plex TMT batches to produce ~50% missing values at the peptide level.  

Based upon these results, we decided to perform a more in-depth analysis on the inflation rate 

of peptide missing values. We observed that the number of peptides identified within each 10-

plex TMT batch is relatively constant (Fig. 2a), but quite variable across different batches. 

Thus, we identified one outlier batch amongst the 24 batches showing TMT channels with 

fewer than 60,000 peptides identified, while the median number of peptides identified per batch 

was 93,140 with a standard deviation of 13,403. To further analyse these peptide level data, we 

first median-normalised the MS3 intensities for all peptides in all cell lines (see methods). The 

median values across the median-normalised log10 MS3 intensities spanned 6 orders of 

magnitude (Fig. 2b).  
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Figure 2 – Peptide identifications and intensities: (a) Number of peptides identified per TMT channel, coloured 

by TMT batch. (b) Histogram of the median, median-normalised log10 MS3 intensity for each peptide. (c) Stacked 

density plot showing quartiles of the median log10 normalised MS3 intensity and percentage of cell lines they are 

detected in. (d) Stacked density plot showing quartiles of the percentage of cell lines in which each peptide is 

detected and their corresponding median log10 normalised MS3 intensity. 

 

We next analysed the peptide dataset by quartiles, based on the normalised log10 MS3 intensity 

values (Fig. 2c). The first quartile represented the 25% least abundant peptides and the fourth 

quartile the 25% most abundant peptides. There are no peptides within the first quartile that 

are detected in all TMT channels and only 10 peptides that are seen in > 99% of the TMT 

channels. As DDA selects the n most abundant ions reaching the mass-spectrometer during a 

MS1 scan18 (where n typically is 10-30), this bias is predictable. However, when we analyse 

the results from the fourth quartile (25% most abundant peptides), we see that 44% of these 

peptides are still detected in <25% of the TMT channels and only 11% of these peptides were 

detected in all the TMT channels. There are 9,187 peptides that were detected in all TMT 
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channels, and their minimum normalised intensity, -0.33, is almost equal to the overall median 

of the distribution, -0.20. 

Next, we analysed the data by comparing the identification quartiles, organised by the 

percentage of TMT channels in which they were detected (Fig. 2d). The first quartile 

represented the 25% of peptides that were detected least frequently, i.e. in less than 11 TMT 

channels (see supplemental data). Of these peptides >29% had a median-normalised log10 MS3 

intensity higher than the distribution median (-0.20), highlighting that even relatively abundant 

peptides are not identified consistently. Overall, ~41% of all peptides are detected in <10% of 

all TMT channels, while ~50% of peptides are detected in <20% of all TMT channels.  

Variation between 10-plex TMT batches 

Multiple studies have documented TMT as a method producing precise quantitation, in some 

cases having a coefficient of variation (COV) ~3x lower than comparable label free data16. 

Most of these studies have focused on analysing quantitative precision within a single 

multiplex TMT batch, and do not explore the effect of integrating data from multiple TMT 

batches into one analysis. However, projects involving large scale proteomic analyses of 

multiple cell lines and/or conditions, need to employ multiple TMT batches in a single 

experiment8. 

We calculated protein copy numbers for 216 different iPSCs lines, and 24 technical replicates 

of a single, control iPSC line, across 24 separate 10-plex TMT batches17. We then proceeded 

to calculate Lin’s concordance correlation coefficient19 for every iPSC line within each TMT 

10-plex batch, and for all the technical replicates of the control line, channel TMT10 126, across 

all the 24 10-plex TMT batches (Fig. 3). 
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Figure 3 - Concordance correlation within 10-plex TMT batches and controls: The heatmaps show 

hierarchical clustering results for the TMT10 -126 (control bubh_3 iPSC line) on the top left, along with the within 

experiment correlation for all the 24 10-plex TMT batches. 

 

Figure 3 shows that the concordance correlation coefficient within each 10-plex TMT batch is 

very high, (median value ~ 98% concordance), highlighting the precision of the quantitation 

within each single batch. However, when the same calculation is applied to the technical 

replicates of the control iPSC line across the 24 respective batches, the median concordance 

coefficient drops to ~85%. 

To explore this situation further, we calculated the geometric COV (gCOV) for the log10 

protein copy numbers20 (see methods), both within each 10-plex TMT batch, and across all the 

24 controls (Fig. 4a). When we calculated the protein gCOV exclusively within each 10-plex 

TMT batch, the median was ~1.92%, with all 10-plex TMT batches showing a median protein 
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gCOV < 4%. Accordingly, the data show that for every batch, proteins with a gCOV >10% 

were considered outliers (Fig. 4a).  

 

 

Figure 4 – Variation and normalisation: (a) Tukey box plots showing the gCOV for all proteins detected in 

each 10-plex TMT batch as well as all proteins detected in all the technical replicates (TMT channel 126C in all 

batches). (b) Hierarchical clustering of all iPSC data using concordance correlation calculated using the log10 raw 

protein copy numbers (see methods) (c) Hierarchical clustering of all iPSC data using concordance correlation 

calculated using the log10 control normalised protein copy numbers. 

 

 

Similarly, we calculated the gCOV for all technical replicates of the control iPS cell line, 

bubh_3, which were analysed in channel TMT10 126 in every 10-plex TMT batch. The median 

gCOV of all the proteins detected in the technical replicates, was ~11.28%, i.e. 5.9-fold higher 
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than the median within-batch gCOV. Thus, >50% of all proteins in the technical replicates 

would be considered outliers in all of the within-batch 10-plex TMT analyses. One example of 

a protein which highlights this situation is the transcriptional adapter 2-alpha, whose expression 

levels in the technical replicates of bubh_3 ranged from ~100 copies in PT7428, to ~100,000 

copies in PT6374. The gCOV within batch PT6374 is 0.93, and the gCOV across the bubh_3 

technical replicates is 24.9. 

We note that while the majority of iPSC lines in this study come from healthy donors, some of 

these TMT batches, e.g. PT6390, contain mixtures of iPSC lines derived from both healthy and 

donors with rare genetic diseases, including “Usher syndrome”, “Monogenic Diabetes” and 

“Bardet-Biedl syndrome”. Nonetheless, the median protein gCOV within PT6390 is still ~10 

fold lower than the gCOV obtained from analysing the 24 technical replicates. 

Our results highlight that while multiplex TMT is a useful and precise methodology for 

quantitative proteomics, it is important to be aware also of its potential limitations, particularly 

when analysing data from multiple TMT batches. This is illustrated here by hierarchical 

clustering of the concordance correlation coefficients for all iPSC data. In this case, 83% of the 

values for the theoretically identical technical replicates do not cluster together (Fig. 4b).  

These findings underline that when conducting very large-scale proteomics analyses across 

multiple separate TMT batches, it is essential to be aware of the potential for batch variation 

to affect data quality. To reduce the effect of batch variation requires the inclusion of an internal 

standard in every multi-plex batch to allow for objective data normalisation. For example, here 

we used 24 technical replicates of a control iPSC line to control for variation between batches 

(Fig. 4c) (see methods). Using this normalisation method provided a median gCOV of ~2.19% 

across all cell lines and technical replicates, making the results comparable to the metrics 

obtained for each individual within-batch analysis. Finding an internal standard that is 

representative and reproducible is thus vital for multi-batch TMT studies. 
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Channel leakage with TMT batches 

The iPSC dataset17,21 provided us with an excellent opportunity to study the widely recognised 

effect on data quality and quantitation of both co-isolation interference (CII) and reporter ion 

interference (RII) within a multi-plex TMT batch. The study utilised iPSC lines derived from 

both male and female donors within twenty-two of the twenty-four 10-plex TMT batches 

analysed here. Since only the lines from male donors should include proteins encoded by genes 

exclusively on the Y chromosome, this provided effectively a set of endogenous “spike-in” 

peptides, which we could use to monitor both RII between TMT channels, as well as CII. 

The dataset detected 13 proteins that were mapped to the Y chromosome. Correspondingly, all 

peptides derived uniquely from these proteins should only be present in the TMT channels with 

male cell lines and, in theory, should be absent in the TMT channels with female cell lines. To 

avoid mismatches arising from shared peptides, we focussed our analysis on a subset of 102 

peptides that mapped uniquely to the following Y chromosome specific genes; “DDX3Y”, 

“EIF1AY”, “KDM5D”, “NLGN4Y”, “RPS4Y1”, “RPS4Y2”, “TBL1Y”, “USP9Y”, “UTY”. 

Additionally, since two of the 10-plex TMT batches analysed (PT6384 and PT7422) had only 

female cell lines, any potential Y chromosome-specific peptides that were detected in these 

batches were treated as potential outliers and discarded from further analysis. Furthermore, 

batch PT6388 was also considered an outlier and not included for further analysis (see 

methods). As a result, we focussed on 76 unique, Y chromosome encoded peptides that were 

used as “male-specific” spike-in references for the analysis of cross-channel RII in the 21 TMT 

batches that contained mixtures of both male and female derived iPSC lines. 

Next, we evaluated how frequently the respective female TMT channels were quantifying 

signal from Y chromosome-specific peptides (Fig. 5).  
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Figure 5 – Y chromosome peptides in female channels: Scatter plot showing the gender across all 21 non-

outlier TMT batches and their reporter ion mass tags. Male cell lines are shown as a grey square, female cell lines 

are represented by a circle. The total number of Y chromosome peptides per batch was calculated and used to 

determine the percentage of these peptides that were detected within each female channel. The female lines are 

coloured by this percentage. 

 

 

Surprisingly, this showed that in all twenty-one 10-plex TMT batches considered here and in 

all reporter channels containing a female cell line, a minimum of >55% of the Y chromosome-

specific peptides identified within the batch also had signal. Remarkably, across all these 

batches, a median of ~95% of Y chromosome-specific peptides detected in each batch had 

signal in TMT channels that contained female cell lines. We infer that the appearance of signal 

for Y chromosome-specific peptides in the channels containing female cell lines likely results 

from a combination of CII and signal leakage between the TMT channels caused by RII. 
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We proceeded to evaluate the difference in median-normalised MS3 reporter intensities 

between male and female lines, across all the twenty-one 10-plex TMT batches (Fig. 6a). 

Interestingly, the data showed significant variation between batches. For example, some 

batches, such as PT6380 and PT6386, have ~32-fold difference between male and female 

peptides, simplifying the detection of false positives due to CII. However, other batches, e.g. 

PT7431 and PT6391, only show a ~2-fold difference, making the detection of the false 

positives problematic. We note both of the previously mentioned batches display low Y 

specific peptide intensities and hence low signal-to-noise ratios, making them more vulnerable 

to CII. 

 

Figure 6 – TMT channel leakage analysis: (a) Box plot showing the median normalised intensity of Y 

chromosome specific peptides detected for both female and male cell lines across all 21 TMT batches. (b) Box 

plot of ratios for Y chromosome specific peptides, stratified by the median log10 normalised intensity.  (c) Box 

plot of ratios for Y chromosome specific peptides, stratified by the median log10 normalised intensity, comparing 

leakage conditions vs channels without leaks. 
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To evaluate co-isolation ion interference (CII), we selected female channels with no primary 

or secondary RII (see methods), as likely examples of CII22. Peptides in male channels show a 

median of ~8.27-fold higher intensity compared to female channels not affected by RII. 

However, the effects vary depending on the peptide intensity thresholds. Thus, peptides where 

the median intensity across male lines was greater than or equal to the global median (-0.20), 

displayed ~12.5-fold higher intensities. Peptides where the median intensity of male lines was 

<-0.20 only displayed ~2.09-fold increased intensity, revealing higher vulnerability to CII. 

We also examined the potential effects of RII. For this analysis, we calculated a peptide specific 

ratio for each condition (i.e. “males/double RII”, “males/primary RII”, “males/secondary RII” 

& “males/no RII”) within each TMT batch and used all of these ratios to generate box plots 

(Fig 6b). Peptides with a median male intensity <-0.20 were less affected by RII, which is 

highlighted in Fig. 6b. The male lines were a median of ~2.08 fold higher than female channels 

not affected by RII, and ~1.95 fold higher than female channels subjected to “primary and 

secondary RII” (double RII). The female channels subjected to double RII show almost no 

difference to the female channels not subjected to RII, only ~8% increased intensity. This 

shows RII had minimal effect on lower intensity peptides. 

For peptides with higher intensities (i.e. >=-0.20), we see a reduced effect of CII and increased 

effect of primary and secondary RII. In this scenario, male lines showed ~12.55-fold higher 

intensity for Y chromosome-specific peptides than the female channels not subjected to RII 

and ~6.4-fold higher values than the channels subjected to double RII. In the latter case, we 

note that the false positives are within the ~8-fold increase/decrease range for bona fide 

changes in protein/peptide expression levels often detected within proteomic datasets23,24. 

To quantify the differences between primary and secondary RII, we calculated the ratio for 

each individual peptide within each 10-plex TMT batch showing either primary RII, secondary 
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RII, or double RII (Fig. 6c; see methods). This illustrates that the smallest effect was caused 

by secondary RII (-1). For high intensity Y chromosome-specific peptides it displayed only a 

~1.04-fold increase compared to the channels not affected by RII and virtually no change in 

low abundance peptides (Fig 6c). The primary RII (+1) produced a more pronounced effect, 

with a median increase of ~1.58 fold in the high intensity Y chromosome peptides. The 

combination of primary and secondary RII produced a median ~1.64-fold increase. 

These results provide important practical information that aids the design of multi-plex TMT 

batches to help minimise the potential effects on data quantification of cross 

condition/population RII. 

Optimising the experimental design  

 

 

Figure 7 –TMT experimental design from reporter ion interference (RII) analysis: (a) 5-5 grouped layout 

for a 10-plex TMT batch with 5 replicates of two conditions. In this case two channels are being affected by cross 

population primary and secondary RII. (b) optimal layout for a 10-plex TMT batch with 5 replicates of two 

conditions with no cross population/condition primary or secondary RII. (c) optimal 11-plex configuration for 3 

populations with two empty channels, no channels suffer cross population/condition RII. (d) optimal 11-plex 

configuration for 3 populations with one empty channel and one control channel. Only two channel suffers 

primary and secondary RII. 

 

Our data show that the effects of RII should be considered to optimise the experimental design 

for multi-plex TMT experiments. We advocate for all studies based on more than a single 

multi-plex TMT batch, a relevant control sample should be included in each batch and assigned 

to either the 126C, or 127N, channels. These channels avoid primary RII (+1) and are only 

affected by secondary RII (-1). Secondary RII only causes ~8% increase in intensity, providing 
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better reproducibility for the control. In contrast, placing the control at either the 131N, or 131C 

channels, increases the impact of RII by exposing the channel to primary RII and thus 

compromising data quality. 

Our results also show TMT experimental designs that can help to minimise the effects of 

primary and secondary RII between the different populations/conditions. For example, in a 10-

plex TMT study, when two conditions are being analysed, each with 5 biological replicates, a 

5-5 grouped layout would cause multiple channels to be affected by cross population/condition 

RII (Fig. 7a). The optimal design would involve alternating the two conditions across the 10 

channels (Fig. 7b).   

If a control is included, or for studies analysing 3 different conditions in triplicate, (e.g. three 

time points, or a control and two different perturbations, etc.), we recommend using TMT 11-

plex as all 10-plex TMT setups involve increased cross population/condition RII. An 11-plex 

TMT set up enables a design without RII between the 3 conditions/populations, but requires 

two empty channels at 129C and 130N to achieve this (Fig. 7c). If a control channel is included, 

as advocated, then it should be placed in channel 126C, while locating the empty channel to 

position TMT11 130N, between the alternating experimental conditions and the final replicates 

of the 3rd condition (Fig. 7d). All of the suggested setups aim to reduce cross 

condition/population RII as we have shown it decreases quantification accuracy and increases 

the risk of false positives being detected. 

 

Discussion 
Quantitative proteomic analysis using TMT labelling has become one of the most popular DDA 

methods currently used, thanks to its multiplexing capabilities, scalability, low missing values 

index and accuracy when a single multiplexed batch is analysed. However, when very large-
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scale studies are performed that require the use of multiple parallel TMT batches, the situation 

becomes more complicated. Here, we have used the analysis of data integrated from 24 

separate, 10-plex TMT batches to investigate accuracy, missing values, co-isolation 

interference, reporter ion interference and experimental design within very large-scale 

proteomics experiments. We have focussed on a model data set derived from the analysis of 

human iPS cell lines, derived from both male and female donors21.  

The resulting data confirm that single batches of multi-plex TMT experiments minimise the 

typical missing values issue associated in proteomics with Data Dependent Acquisition (DDA), 

both at the protein and peptide levels. However, this situation changes as data from two or more 

separate multi-plex TMT batches are integrated. When multiple batches are combined the 

missing values index inflates rapidly. This effect is particularly striking at the peptide level, 

where integrating data from only two different batches causes the missing values index to 

increase from <2% to ~25%. Even though the inflation rate at the protein level is lower, the 

integration of the second batch pushes missing protein values from <0.5% to >10%. This 

inflationary effect can decrease the accuracy of results derived from large-scale experiments 

that compare data generated from multiple TMT batches. One potential solution would be to 

utilise MS2-based TMT quantitation, as this has been reported to produce more total peptide 

identifications25, however there is no guarantee this will reduce peptide/protein missing values 

across batches and it will intensify the effect of the co-isolation interference.  

While single TMT batches can provide remarkably precise results, we found that this result is 

often not reproducible across batches. To study reproducibility, for every protein we calculated 

the geometric Coefficient of Variation (gCOV) for the technical replicates of the control line, 

analysed across 24 separate TMT batches, and the gCOV within each of the twenty-four 10-

plex TMT batches. The gCOV of the technical replicates (all derived and reprogrammed from 

the same donor of course) was ~5.9-fold higher than the median gCOV for iPSC lines derived 
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from different donors analysed within the same 10-plex TMT batch. A recent study of 

population wide variation within iPSC26 revealed the main component driving variation was 

the donor effect. However, our data suggests unnormalized batch effects can be a bigger issue. 

This underlines the importance of including a common control sample within each TMT batch 

to allow for objective data normalisation to minimise the batch effects. We showed that by 

introducing a suitable control within each TMT batch the data can be normalised effectively, 

thereby reducing the gCOV to a level that is comparable to the variation seen within a single 

TMT batch. The challenge lies in identifying a suitable control that is truly representative for 

most proteins being compared within the experiment and in creating a control that is highly 

reproducible across all the TMT batches. 

This study has also highlighted the issue of reporter ion interference (RII) and co-isolation 

interference (CII), which are parameters than can compromise data accuracy in TMT 

experiments. The dataset we selected provided an ideal set up to analyse these factors, as it 

contained iPSC lines derived from both male and female donors. Thus, by identifying a set of 

peptides uniquely mapped to the male-specific Y chromosome, these provided a convenient 

set of internal controls to monitor the expression of false positives. Furthermore, we compared 

21 different 10-plex TMT batches with different numbers of male and female derived cell lines, 

assigned in different channel combinations. We were thus able to determine how the 

arrangement of channels can be optimised to minimise the impact of RII for different 

experimental design scenarios22.  

The data showed that even for 10-plex TMT batches with only two male channels (PT6380), 

the remaining 8 female channels still had signal for ~95.8% of all the Y chromosome-specific 

peptides that were detected in that batch. Moreover, low abundance peptides (i.e. normalised 

intensity lower than the median) were only ~2.09-fold higher intensity in the males than the 

females. This highlights the potential effects of CII within TMT experiments, particularly for 
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quantitating low abundance peptides. We note that the CII issue has been reduced, though not 

eliminated, with newer generation Orbitrap MS instruments, where the improved source and 

quadrupole have enhanced the signal to noise ratio22. Furthermore new isobaric tagging 

methods have been developed which claim to be CII free27, however their multiplexing 

capability is currently limited to a 6-plex.  

The data analysed here also highlighted the effects of primary and secondary RII in channels 

with high intensity peptides. Thus, reporter channels affected by both primary and secondary 

RII showed a median signal increase ~1.64-fold higher than channels not subjected to RII. To 

best avoid this situation, we have used these data to propose optimised experimental set ups 

for assigning samples to specific channels that can either minimize, or eliminate (when 

possible), the effect of primary and secondary RII between conditions/populations. 

Nonetheless, we highlight that mixing significantly different populations within a TMT batch, 

for example iPSCs and terminally differentiated somatic cells, still poses the risk of false 

positives being identified, as illustrated here by the Y chromosome-specific peptides detected 

within all female cell lines. 

In conclusion, TMT is a valuable methodology for DDA analysis and its potential to increase 

scalability and precise quantitation have made it a justifiably popular approach for high-

throughput proteomic studies. Here, we have provided an in-depth, practical evaluation of 

parameters affecting the generation of high-quality quantitative data from very large-scale 

TMT-based proteomics analyses, and we highlight some of the limitations which should be 

considered when planning these experiments. We hope the resulting information will prove 

useful for improving experimental design and resulting data quality for many future proteomics 

projects. 
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Methods 
TMT sample processing and LC-MS 

The data analysed within this study used a SPS-MS3 method for LC-MS on an Orbitrap Fusion 

Tribid mass spectrometer (Thermo Fisher). For details regarding sample preparation and LC-

MS methods see 17.  

Identification & Quantification 

The data from all 24 10-plex TMT batches were collected and analysed simultaneously, using 

Maxquant28 v. 1.6.0.13. The FDR threshold was set to 5% for each of the respective Peptide 

Spectrum Match (PSM) and Protein levels. Proteins and peptides were identified using UniProt 

(SwissProt & TrEMBL). Run parameters are accessible at ProteomeXchange29 via the PRIDE 

repository 30, along with the full MaxQuant28 quantification output (PDX010557). 

Copy number generation 

Protein copy numbers were calculated following the proteomic ruler approach31 and using the 

MS3 intensity for each protein group identified. These uncorrected copy numbers were used to 

study the geometric coefficient of variation (gCOV), which will be referred to here as “raw 

copy numbers”. 

To control for technical variation between the 24 different 10-plex batches, a correction factor 

was applied to adjust the protein copy numbers. This correction factor was derived from 

analysing the protein levels in the reference iPSC line, which was present in channel 126C on 

every batch. Specifically, for every protein, a median copy number was calculated using values 

from all 24 technical replicates. Thus, the protein copy number derived from the control cell 

line within each TMT batch was divided by the median copy number for that protein, based 

upon values from all 24 controls. This ratio was then used as a correction factor to normalise 

the expression values for all proteins detected within each respective 10-plex TMT batch. The 

corrected values are referred to here as “normalised copy numbers”. 
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Missing value calculations 

First, to estimate missing values within this DDA analysis, a list of unique proteins/peptides 

that were detected with at least 1 reporter intensity greater than zero were calculated for each 

batch. To determine the number of missing values within each 10-plex TMT batch, the number 

of unique proteins per reporter channel was compared to the number of unique 

proteins/peptides identified within the batch. This approach was applied to generate the missing 

value calculations for each of the 24 individual 10-plex TMT batches. To assess the effect of 

integrating multiple TMT batches, random sampling was performed to estimate how missing 

values are affected by a progressive increase in the number of 10-plex TMT batches analysed. 

This was performed in an incremental fashion starting from 2 and finishing with 23 batches, 

with 500 iterations per level.  

At each level a new a list of proteins/peptides detected with at least 1 reporter ion intensity 

greater than zero within any of the integrated TMT batches was calculated, and the number of 

proteins/peptides with intensity greater than 0 per reporter channel was evaluated against the 

new list. 

Coefficient of variation 

 

The geometric coefficient of variation (gCOV) in protein abundance levels was calculated 

using log10 transformed protein copy numbers. These data showed a log normal distribution, 

therefore the COV was calculated using the geometric method20 via the R package “PKNCA”32 

version 0.8.5. 

The protein gCOV within each 10-plex TMT batch was calculated for all 10 cell lines within 

the same batch, using all proteins detected in every reporter channel. The control gCOV was 

calculated using proteins that were detected in the TMT10 -126C (control) channel across all of 

the 24 10-plex TMT batches.  
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Correlation Clustering 

 

For each 10-plex TMT batch, a concordance correlation value was calculated for all cell lines 

within the same batch. The calculations were performed using “correlation()” function from 

the R package “agricolae” version 1.2.8. The heatmaps were generated using “heatmap.2” from 

the R package “gplots” version 3.0.1 and using hierarchical clustering with “ward.D2” to 

calculate distances.  

The same process was applied to calculate the concordance correlation values for the controls, 

i.e. using reporter channel 126C in all TMT batches. 

 

Peptide intensity normalisation 

 

Peptide intensities were median normalised. For this, after filtering out peptides with zero MS3 

intensity, a median intensity value was calculated for all reporter channels in each of the 24 10-

plex TMT batches. Every reporter intensity greater than zero was divided by the median value 

for the reporter ion intensity of its specific channel, this data was then log10 transformed. For 

the intensity histogram, a median across all reporter channels and batches was used. 

 

Reporter ion interference classification 

 

The reporter ion interference (RII) targets are based on a typical product data sheet for 10-plex 

TMT Label Reagents from ThermoFisher Scientific, as summarised in the table below: 

 

Mass Tag Reporter channel -1 (secondary RII) +1 (primary RII) 

TMT10 -126 0 -- 127C 

TMT10 -127N 1 -- 128N 

TMT10 -127C 2 126 128C 

TMT10 -128N 3 127N 129N 

TMT10 -128C 4 127C 129C 

TMT10 -129N 5 128N 130N 

TMT10 -129C 6 128C 130C 

TMT10 -130N 7 129N 131 

TMT10 -130C 8 129C -- 

TMT10 -131 9 130N -- 
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Analysis of Channel Leakage  

 

To study the effect of leakage across different channels, we selected a subset of 102 peptides 

that were specific to the following list of protein coding genes uniquely located on the Y 

chromosome; “DDX3Y”, “EIF1AY”, “KDM5D”, “NLGN4Y”, “RPS4Y1”, “RPS4Y2”, 

“TBL1Y”, “USP9Y” & “UTY”.  

This approach of using peptide values from Y chromosome specific genes depends upon there 

being a diverse mixture of male and female donor-derived iPSC lines in each 10-plex TMT 

batch. However, two of the 24 TMT batches comprised exclusively female donor-derived 

iPSCs, which had been shown not to have Y chromosome derived DNA in QC analyses21. For 

these female donor-specific batches, any peptide assigned to Y chromosome specific genes 

was excluded from the analysis. An additional batch, PT6388, identified only 1 Y 

chromosome-specific peptide which displayed an irregular behaviour, and was hence also 

discarded from the analysis. A final subset of 76 Y chromosome-specific peptides were used 

for this analysis (see supplemental data for list). 

Peptide ratios 

 

The peptide ratios across multiple reporter ion interference conditions (“primary” or “+1 leak”, 

“secondary” or “-1 leak”, “primary and secondary” or “double leak” and “no leak”) were 

calculated within each 10-plex TMT batch, utilising the median-normalised log10 MS3 reporter 

intensities. The ratios were calculated for each individual peptide within each 10-plex TMT 

batch. The box plot showing peptide ratios utilised all these calculated ratios, plotted using 

“ggplot2” version 3.0.033.  
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