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Abstract  33 

Previous studies suggest that metabolic dysregulation precedes the onset of type 1 diabetes 34 

(T1D). However, these metabolic disturbances and their specific role in disease initiation remain 35 

poorly understood. Here we analysed polar metabolites from 415 longitudinal plasma samples in a 36 

prospective cohort of children in three study groups: those who progressed to T1D (PT1D), who 37 

seroconverted to one islet autoantibody (Ab) but not to T1D (P1Ab), and Ab-negative controls 38 

(CTR). In early infancy, PT1D associated with downregulated amino acids, sugar derivatives and 39 

fatty acids, including catabolites of microbial origin, as compared to CTR. Methionine remained 40 

persistently upregulated in PT1D as compared to CTR and P1Ab. Appearance of islet 41 

autoantibodies associated with decreased glutamic and aspartic acids. Our findings suggest that 42 

children who progress to T1D have a unique metabolic profile, which is however altered with the 43 

onset of islet autoantibodies. Our findings may assist in early prediction of T1D. 44 

 45 

46 
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Introduction  47 

Type 1 diabetes (T1D) is an autoimmune disease, which arises due to the destruction of the insulin 48 

producing pancreatic β-cells by the immune system1. The incidence of T1D is highest in children 49 

and adolescents in the developed countries2 and an increase in disease rate is expected in young 50 

children aged less than 5 years3. To reverse the increasing rate, early prediction and prevention of 51 

T1D is essential. However, the aetiology of T1D disease is complex, multifactorial, and the 52 

primary cause for initiation and disease progression is poorly understood1. Therefore, predictive 53 

and preventive measures for T1D remain unmet medical needs. 54 

Human leukocyte antigen (HLA) complex alleles constitute the most relevant and the strongest 55 

genetic risk factor for T1D susceptibility4. However, only 3-10% of the individuals with risk HLA 56 

loci develop T1D5, indicating that exogenous factors such as environmental exposure, diet and gut 57 

microbiota likely play a vital role in disease progression6. Initiation of β-cell autoimmunity is the 58 

first detectable sign of progression towards T1D. However, seroconversion to islet autoantibody 59 

positivity may not lead to overt diabetes7 and the period between the seroconversion and the 60 

appearance of clinical symptoms of T1D may vary between individuals from a few months to many 61 

years8, 9.  62 

Previous studies suggest that children who progress to T1D have dysregulated metabolic profiles 63 

already in infancy10, 11, 12, 13, prior to the seroconversion for islet autoantibodies. However, the 64 

studies in humans have so far mainly focused on lipids, and there is relatively little information 65 

on polar metabolites, such as those involved in central metabolic pathways, in relation to T1D 66 

pathogenesis. Herein we study circulating polar metabolite profiles in progression to T1D in a 67 

longitudinal study setting.  68 

Results 69 

Impact of age on circulating metabolome 70 

We performed metabolomics analysis of polar metabolites in plasma from 120 children, divided 71 

into three study groups: those who progressed to T1D (PT1D, n = 40), who seroconverted to at 72 

least one autoantibody (Ab) positivity but without clinical symptoms of T1D (P1Ab, n = 40), and 73 

matched Ab negative controls (CTR, n = 40). For each participant, plasma samples were collected 74 

corresponding to the ages of 3, 6, 12, 18, 24, and 36 months (Fig. 1). We detected metabolites from 75 

across a wide range of chemical classes including amino acids, carboxylic acids (mainly free fatty 76 

acids and other organic acids), hydroxyacids, phenolic compounds, alcohols, and sugar 77 

derivatives. 78 
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Principal components analysis (PCA)14 of the complete dataset including identified metabolites 79 

displayed an age-dependent pattern (Supplementary information (SI) Fig.1). To resolve the 80 

impact of age on plasma metabolome, we performed analysis of variance (ANOVA)-simultaneous 81 

component analysis (ASCA) 15 by incorporating three factors: age, gender, study cases (CTR, P1Ab, 82 

PT1D) and their interactions. As expected, age related variation displayed maximum effect (4.2 %, 83 

p= 0.001) in the circulating metabolome as compared to the impact of the other two factors, 84 

‘study groups’ (1.2 %, p = 0.001) and ‘gender’ (0.5 %, p = 0.002). Notably, the interaction factor ‘age 85 

and cases’ also showed a significant effect (2.9 %, p = 0.033), while interactions between other 86 

factors (age/gender and case/gender) remained insignificant (p = 0.508 and p = 0.221, 87 

respectively).  88 

The scores from the first principle component (PC1) of the factor ‘age’ clearly showed an age-89 

related trajectory in the circulatory metabolites (Fig. 2). The loading revealed high levels of 90 

branched chain amino acids (BCAA) in the 18, 24 and 36 month age-cohorts, whereas tryptophan, 91 

3-indole acetic acid (tryptophan derivative) and carboxylic acids (mainly free fatty acids) were 92 

elevated during early infancy (3 and 6 months). However, we did not detect any age-dependent 93 

patterns in phenolic compounds, alcohols, hydroxyacids, and sugar derivatives (SI Fig. 2). 94 

Metabolite profiles during progression to islet autoimmunity and T1D 95 

Considering the age as a major confounder in the plasma metabolome, we performed age-96 

matched comparisons between the three study groups (CTR, P1Ab, and PT1D). Univariate analysis 97 

revealed that all major metabolite classes, including amino acids, free fatty acids and sugar 98 

derivatives were altered, already in infancy, among the children who later progressed to T1D (Fig. 99 

3). Altogether 15 metabolites were different between PT1D and CTR groups at three months of age 100 

(nominal p-value < 0.05). Nine out of 15 metabolites were significantly lower in T1D progressors as 101 

compared to controls (FDR threshold of 0.1) (Fig. 3, SI Table 1). In order to assess if gender had 102 

an impact on plasma metabolite levels in children at three months of age, we carried out ASCA 103 

analysis with factor: study cases and gender, and their interaction. When evaluating the statistics 104 

from these factors, we found only study cases had significant effect (p = 0.012), while gender and 105 

their interaction remained insignificant (p = 0.081 and p = 0.73, respectively). The score of the 106 

factor ‘study cases’ showed distinct metabolic clusters between PT1D, P1Ab and CTR, suggesting 107 

that specific metabolic changes precede islet autoimmunity and T1D. The loadings disclosed that 108 

methionine, 2-ketoisocaproic acid, bisphenol A, pyruvic acid, glycerol-2-phosphate, and 109 

levoglucosan were higher in the PT1D group when compared with the P1Ab and CTR groups (SI 110 

Fig. 3).  111 

 112 
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At 6 months of age, altogether 20 metabolites differed between PT1D and CTR (nominal p-value < 113 

0.05). Fifteen of these circulating metabolites passed the FDR threshold of 0.1 (Fig. 3a-c, SI Table 114 

2), including several amino acids, sugar derivatives, free fatty acids and various other organic 115 

acids. The levels of most of these metabolites decreased in T1D progressors during the same 116 

period as compared to CTR. Only methionine was found increased in PT1D as compared to CTR 117 

at the age of 6 months. In addition, multivariate ASCA analysis revealed that only study group 118 

(CTR, P1Ab, and PT1D) had a significant effect (p = 0.004) in the plasma metabolites of 6-month-119 

old children, whereas the impact of gender (p =0.180) and its interaction with study group (p = 120 

0.269) remained insignificant.  121 

Next, we sought to examine weather children across the three study groups had altered plasma 122 

metabolite levels in the age cohorts of 12, 18, 24, and 36 months. With the exceptions of 1-123 

dodecanol and glycolic acid, no other statistically significant differences between the study groups 124 

were observed (FDR threshold of 0.1). At 36 months of age, dodecanol level was higher in PT1D as 125 

compared to CTR. Meanwhile, glycolic acid was lower in PT1D as in P1Ab at 18 months of age. 126 

However, in longitudinal series these metabolites showed inconsistent trends (Fig. 3b). 127 

We also studied whether group of metabolites at early age associated with a specific metabolic 128 

pathway. The altered metabolites (p < 0.05) between CTR and PT1D at 3 and 6 months of age were 129 

subjected to metabolic pathway analysis (MetPA) in MetaboAnalyst16. In line with findings at the 130 

individual metabolite levels, we found that four metabolic pathways, linoleic acid metabolism, 131 

arachidonic acid metabolism, alanine, aspartate and glutamate metabolism and D-glutamine and 132 

D-glutamate metabolism remained altered between PT1D and CTR groups at the age of three 133 

months (Fig. 4a, SI Table 3). Similarly, at 6 months of age, MetPA revealed that alanine, 134 

aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, tryptophan 135 

metabolism, arginine and proline metabolism, as well as aminoacyl-tRNA biosynthesis remained 136 

dysregulated between the controls and T1D progressors (Fig. 4b, SI Table 4). 137 

Metabolome before and after the first appearance of islet autoantibodies 138 

In order to study the effect of islet seroconversion on metabolome, we compared metabolite levels 139 

before and after the appearance of first islet autoantibody in P1Ab and PT1D groups. Pairwise 140 

comparison revealed that eleven metabolites were altered by seroconversion in P1Ab (nominal p-141 

value < 0.05, SI Table 5), with four passing the FDR threshold of 0.1 (glutamic, aspartic, malic, 142 

and 3, 4-dihydroxybutanoic acids) (Fig. 4). We detected seven metabolites altered before and 143 

after islet autoantibody appearance in PT1D (nominal p-value < 0.05), but none of these passed 144 

the FDR threshold of 0.1 (SI Table 6). Metabolic pathway analysis corroborated these findings 145 

and revealed that alanine, aspartate and glutamate metabolism were altered when comparing the 146 
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pathways before and after seroconversion within P1Ab and PT1D groups (Fig.4). However, the 147 

level of impact for these pathways varied between P1Ab and PT1D, with impact values 0.441 and 148 

0.176, respectively. Other relevant pathways and their impact are summarized in SI Table 7 and 149 

Table 8. When examining metabolite level changes in relation to the appearance of specific islet 150 

autoantibodies (islet cell antibodies (ICA), insulin autoantibodies (IAA), islet antigen 151 

2 autoantibodies (IA-2A), and GAD autoantibodies (GADA)), no specific associations were 152 

identified, which may be due to the small number of cases per individual autoantibody. 153 

Discussion  154 

Our study identified specific metabolic disturbances in children who progressed to T1D, as 155 

compared to their age matched controls including children who developed a single islet 156 

autoantibody but did not progress to T1D during the follow-up. We found that such metabolic 157 

dysregulation exists before the first signs of islet autoimmunity. In agreement with earlier 158 

studies10, 17, 18, a strong association of the metabolome was observed with age. We identified a 159 

distinct plasma amino acid profile in PT1D children, particularly at the ages of 3 and 6 months. 160 

Glutamic and aspartic acids as well as tryptophan remained downregulated during the early 161 

infancy in PT1D as compared to CTR, but not to P1Ab. In our previous study of polar metabolites 162 

in T1D progression, we found no significant difference in different age cohorts when comparing 163 

PT1D and CTR groups13, which may however be attributable to the small number of individuals in 164 

the metabolomics part of that study. Notably, in agreement with the previous study, we also 165 

observed that the appearance of islet cell autoantibodies was associated with down-regulation of 166 

aspartic and glutamic acids13, also corroborated by observed change in alanine, aspartate and 167 

glutamate metabolism in the MetPA. Our findings are consistent with previous study suggesting 168 

that amino acid dysregulation precedes the appearance of islet autoantibodies and progression to 169 

T1D 12. Several free fatty acids were also downregulated at 3 months of age. During basal metabolic 170 

processes, triglycerides (TGs) are broken down to fatty acid and glycerol19. Fatty acid act as an 171 

important fuel source for cells, which is required to maintain systematic energy homeostasis20. 172 

Usually, under conditions when the availability of carbohydrate is not enough, the fatty acids are 173 

alternative substrate for energy production21. Here, fatty acid decrease may be an indication of 174 

increased energy demand in PT1D, further substantiated by the diminishment of circulating sugar 175 

derivatives as well as altered linoleic acid metabolism and arachidonic acid metabolism. This is 176 

also in line with our previous report10 associating downregulated TGs and phospholipids in the 177 

PT1D group, supporting the view that altered energy metabolism is involved in the initiation of 178 

the autoimmune process and T1D.  179 

Accumulating evidence suggests that perturbations in the gut microbial structure are associated 180 

with, and contribute to the pathogenesis of β-cell autoimmunity and to overt T1D22, 23, 24. Here we 181 
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found that 4-hydroxyphenyllactic acid25, 26, 11-eicosenoic acid27, and succinic acid28, the 182 

metabolites of potential microbial origin (catabolites), are significantly downregulated at early 183 

age (3 and 6 months) in PT1D. The tryptophan derived microbial catabolite 3-indoleacetic tended 184 

to be also downregulated in PT1D (SI Fig. 4). Catabolites generated by the gut microbes are vital 185 

to the intestinal homeostasis26, 29, thus it is likely that scarcity of substrates for microbial 186 

catabolism contribute to the dysbiosis associated with progression to T1D.  187 

While most of the amino acids were downregulated in PT1D as compared to CTR and P1Ab, 188 

methionine remained persistently upregulated in T1D progressors. This appears to be in 189 

disagreement with previous studies in BABYDIAB and MIDIA cohorts, which showed decreased 190 

level of methionine in autoantibody positive individuals and T1D progressors, respectively18, 30. 191 

This discrepancy may however be explained: (1) BABYDIAB study compared children 192 

seroconverting early in life (≤2 years) to those who developed autoantibodies at older age, while 193 

(2) MIDIA study highlighted differences, which were mainly linked to the age of the children and 194 

the duration of breastfeeding30. We performed similar comparison to that of BABYDIAB in the 195 

current study setting but found no significant differences between the groups compared. The 196 

observed differences suggest disrupted methionine metabolism in PT1D. Methionine can be 197 

salvaged endogenously by protein/homocysteine degradation, polyamine synthesis, or by 198 

transsulfuration pathway31, and the disturbances in these pathways could modulate the neonatal 199 

epigenetic processes including the DNA methylation and chromatin remodelling and 200 

consequently influence various immunologic responses32. 201 

The ASCA multivariate analysis revealed that plasma BPA was upregulated in PT1D group, 202 

although univariate analysis across different age cohorts did not reveal significant changes 203 

between the groups. Studies in experimental model of autoimmune diabetes suggest that 204 

increased BPA exposure is associated with accelerated development of autoimmune diabetes33, 34. 205 

However, we consider that at the present stage our findings on the association of BPA and T1D are 206 

still inconclusive, because (1) in our study setting we could not control for the effect of sample 207 

storage on the plasma BPA levels and (2) the levels of BPA were not quantified. Clearly further 208 

studies in clinical settings are merited in order to establish the effect of exposure to BPA and 209 

other environmental toxicants on the progression of T1D or other autoimmune diseases. 210 

Taken together, while confirming several earlier findings, the present study highlights the 211 

importance of core metabolic pathways such as amino and fatty acid metabolism in early 212 

pathogenesis of T1D. Metabolites of microbial origin were also found associated with T1D 213 

progression. We also observed that appearance of islet autoantibodies does have an effect on the 214 

amino acid levels, specifically on glutamic and aspartic acids. However, these changes do not 215 

seem to be specifically associated with T1D but are instead a general feature of islet autoimmunity 216 
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– suggesting that amino acid imbalance may be a contributing factor in the initiation of 217 

autoimmunity13. Our study also indicates that the largest metabolic changes associated with T1D 218 

progression occur already in early infancy, then these early metabolic signatures become less 219 

pronounced or even disappear with age, particularly after the initiation of islet autoimmunity. 220 

This may have important implications in the search of early metabolic markers of T1D and for 221 

understanding the disease pathogenesis. 222 

Methods 223 

These methods are expanded versions of descriptions in our related work10. 224 

Study setting 225 

The plasma samples were from the Finnish Type 1 Diabetes Prevention and Prediction Study 226 

(DIPP) 35. The DIPP study has screened more than 220,000 newborn infants for HLA-conferred 227 

susceptibility to T1D in three university hospitals (Turku, Tampere, and Oulu) in Finland 36. The 228 

subjects in the current study were from the subset of DIPP children from the Tampere study 229 

centre. The ethics and research committee of the participating university hospital approved the 230 

study protocol and the study fallowed the guidelines of the Declaration of Helsinki. Parent for all 231 

participants signed written informed consent at the beginning of the study.  We collected five 232 

longitudinal samples per child, corresponding to either of the ages of 3, 6, 12, 18, 24, and 36. This 233 

longitudinal cohort comprises of samples from 120 children: 40 progressors to T1D (PT1D), 40 who 234 

tested positive for at least one Ab in a minimum of two consecutive samples but did not progress 235 

to clinical T1D during the follow-up (P1Ab), and 40 controls (CTR) subjects who remained islet 236 

autoantibody negative during the follow-up until the age of 15. We matched the participants in 237 

the three study group for HLA-associated diabetes risk, gender and period of birth. In total, we 238 

collected 415 non-fasting, blood samples. We separated plasma within 30 minutes after the blood 239 

collection by centrifugation at 1600g for 20 minutes at room temperature. The plasma samples 240 

were stored at -80°C until analysed.  241 

HLA genotyping  242 

HLA-conferred susceptibility to T1D was analysed using cord blood samples as described by 243 

Nejentsev et al. 37. Briefly, the HLA-genotyping was performed with time-resolved fluorometry 244 

based assay for four alleles using lanthanide chelate labelled sequence specific oligonucleotide 245 

probes detecting DQB1*02, DQB1*03:01, DQB1*03:02, and DQB1*06:02/3 alleles38. The carriers of 246 

the genotype DQB1*02/DQB1*03:02 or DQB1*03:02/x genotypes (here x≠ DQB1*02, DQB1*03:01, 247 

DQB1*06:02, or DQB1*06:03 alleles) were categorized into the T1D risk group and recruited for 248 

the DIPP follow-up program. 249 
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Detection of islet autoantibodies  250 

The participants with HLA-conferred genetic susceptibility were prospectively observed for the 251 

appearance of T1D associated autoantibodies (islet cell antibodies (ICA), insulin autoantibodies 252 

(IAA), islet antigen 2 autoantibodies (IA-2A), and GAD autoantibodies (GADA). These 253 

autoantibodies were analysed in the Diabetes Research Laboratory, University of Oulu from the 254 

plasma samples taken at each follow-up visit as described 39. ICA antibodies were detected with 255 

the use of indirect immunofluorescence, whereas the other three autoantibodies were quantified 256 

with the use of specific radiobinding assays40. We used cut-off limits for positivity of 2.5 Juvenile 257 

Diabetes Foundation (JDF) units for ICA, 3.48 relative units (RU) for IAA, 5.36 RU for GADA, and 258 

0.43 RU for IA-2A. The disease sensitivity and specificity of the assay for ICA were 100% and 98%, 259 

respectively, in the fourth round of the international workshops on standardization of the ICA 260 

assay. According to the Diabetes Autoantibody Standardization Program (DASP) and Islet 261 

Autoantibody Standardization Program (IASP) workshop results in 2010–2015, disease sensitivities 262 

for the IAA, GADA and IA-2A radio binding assays were 36–62%, 64–88% and 62–72%, 263 

respectively. The corresponding disease specificities were 94–98%, 94–99% and 93–100%, 264 

respectively. 265 

Analysis of polar metabolites 266 

After randomization and blinding, 415 plasma samples were used for extraction. Plasma was 267 

thawed on ice and aliquoted. 30 μl of aliquot was used for analysis of polar metabolites. Extraction 268 

was performed with 400 μl of methanol as previously described 41. For quality control and 269 

normalization purpose 10 μl of following group-specific internal standard mix was added into 270 

extraction solvent. Internal standard mix was composed of: heptadecanoic acid-d33 (175.36 mg/l), 271 

valine-d8 (35.72 mg/l), succinic acid-d4 (58.54 mg/l) and glutamic acid-d5 (110.43 mg/l). Internal 272 

standards were purchased from Sigma-Aldrich (Steinheim, Germany) and methanol from 273 

Honeywell Riedel de Haën (Seezle, Germany). Samples were vortexed and left to precipitate for 30 274 

min on ice. After protein precipitation, extracts were centrifuged (Eppendorf; 5427R) for 3 min on 275 

10000 rpm. 180 μl of supernatant was transferred into GC vials and stored for further use. Same 276 

procedure was applied for clinic-pooled plasma which was used for quality control and batch 277 

correction. Calibration curves were made from the following standards: Fumaric acid, Aspartic 278 

acid, Succinic acid, Malic acid, Methionine, Tyrosine, Glutamic acid, Phenylalanine, Arachidonic 279 

acid, Isoleucine, 3-Hydroxybutyric acid, Glycine, Threonine, Leucine, Proline, Serine, Valine, 280 

Alanine, Stearic acid, Linoleic acid, Palmitic acid and Oleic acid. Standards were purchased from 281 

Sigma-Aldrich (Steinheim, Germany) and dissolved in methanol. Calibration curves included at 282 

least six concentration points in the range from 1 ng/sample up to 3000 ng/sample, depending on 283 

the abundance in plasma. R2 was from 97.1% up to 99.9%. 284 
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Derivatization was performed instrumentally using MPS2 (Gerstel; Mülheim an der Ruhr, 285 

Germany) with two robotic hands guided by Maestro software. Samples were evaporated to 286 

dryness before two-step extractions. In the first step 25 μl of methoxyamine hydrochloride (TS-287 

45950; Thermo Scientific: USA) was added to the sample. While mixing, the solution was 288 

incubated for one hour at 45 °C. In the second step, 25μl of N-methyl-N-289 

trimethylsilyltrifluoroacetamide (Sigma-Aldrich; Steinheim, Germany) was added. Incubation was 290 

again performed for one hour at 45 °C. Before injection 50 μl of hexane was added to increase the 291 

volatility of the solvent. Additional standards here added during derivatization. n-alkanes (c = 8 292 

mg/l in MSTFA) were used for calculation of retention indexes and 4,4′-293 

dibromooctafluorobiphenyl (c = 9.8 mg/l in hexane) were used as syringe standard to control the 294 

quality of injection. 1 μl of derivatized sample was injected after derivatization program was 295 

completed. 296 

Derivatised compounds were analysed using Pegasus 4D system (LECO; Saint Joseph; USA). 297 

Method used is based on two-dimensions gas chromatography followed by high speed time of 298 

flight acquisition of EI fragmented mass spectra. Primary column was 10 m × 0.18 mm I.D. Rxi-5 299 

ms (Restek Corp., Bellefonte, PA, USA) and secondary column 1.5 m × 0.1 mm I.D. BPX-50 (SGE 300 

Analytical Science, Austin, TX, USA). System was guarded by retention gap column from 301 

deactivated silica (1.7m, 0.53 mm ID, FS deactivated, Agilent technologies, USA). Modulator used 302 

nitrogen gas which was cryogenically cooled. Second dimension cycle was 4s. Temperature 303 

program started with 50 °C (2 min) then a gradient of 7°C up to 240°C was applied and finally 304 

25°/min to 300 °C where it was held stable for 3 min. Temperature program of secondary column 305 

was maintained 20 °C higher than the primary column. Acquisition rate was kept on 100 Hz. 306 

Instrument was guided by ChromaTOF software (version 4.32; LECO Corporation, St. Joseph, 307 

USA) which was also used calculating area under the peaks with SN>100 and potential 308 

identification of peaks using NIST14 and in-house library. Processing method included calculation 309 

of retention indexes. Selected compounds were quantified against external calibration curves. 310 

Results were exported as text files for further processing with Guineu42 software. 311 

Data analysis  312 

All statistical analyses were performed on log-transformed intensity data. The transformed data 313 

were mean cantered and auto scaled prior to multivariate analysis. The multivariate analysis was 314 

done using the PLS Toolbox 8.2.1 (Eigenvector Research Inc., Manson, WA, USA) in MATLAB 315 

2017b (Mathworks, Inc., Natick, MA, USA). PCA was initially performed to highlight trend and to 316 

get an overview of variation in the dataset. ANOVA-simultaneous component analysis (ASCA) a 317 

multivariate extension of ANOVA analysis was performed to allow interpretation of the variation 318 

induced by the different factors including age, sex, case, and their interaction15.  319 
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Wilcoxon rank-sum test was performed for comparing the two study groups of samples (e.g. PT1D 320 

vs. P1Ab) in a specific age cohort. For comparison, one sample per subject, closest to the age 321 

within the time window, has been used in each test. Paired t-test was performed for the matched 322 

groups of samples (e.g. before vs. after seroconversion). The resulting nominal p-values were 323 

corrected for multiple comparisons using Benjamin and Hochberg approach43. The adjusted p-324 

values < 0.1 (q-values) were considered significantly different among the group of hypotheses 325 

tested in a specific age cohort. All of the univariate statistical analyses were computed in 326 

MATLAB 2017b using the statistical toolbox. The fold difference was calculated by dividing the 327 

mean concentration of a lipid species in one group by another, for instance mean concentration 328 

in the PT1D by the mean concentration in P1Ab, and then illustrated by heat maps. The locally 329 

weighted regression plot was made using smoothing interpolation function loess (with span = 1) 330 

available from ggplot244 package in R45. The individual lipids levels were visualized as box plot 331 

using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). 332 

Pathway analysis of the significant metabolites (nominal p-values < 0.05) was performed using 333 

metabolomics pathway analysis (MetPA) tool in MetaboAnalyst 4.016. The compounds unmatched 334 

during compound name matching were excluded from the subsequently pathway analysis. We 335 

implemented Globaltest hypergeometric testing method for the functional enrichment analysis. 336 

The pathway topological analysis was based on the relative betweenness measures of a metabolite 337 

in a given metabolic network and for calculating the pathway impact score. Based on the impact 338 

values from the pathway topology analysis the impact value threshold was set to > 0.10.  339 

  340 
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Data availability 341 

The metabolomics data and the associated meta-data are deposited at the MetaboLights database 342 
46 with the acquisition number (MTBLS802). All the data supporting the findings of this study 343 

are available from MetaboLights database or from the corresponding authors on reasonable 344 

request.  345 
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Figure captions 519 

Figure 1. An overview of the study design. The study cohort comprises the samples from children, 520 

who progressed to T1D (PT1D), who seroconverted to one islet autoantibody but did not progress 521 

to T1D during the follow-up (P1Ab), and control (CTR) subjects who remained islet autoantibody 522 

negative during the follow-up until the age of 15 years. For each child, longitudinal plasma 523 

samples were drawn, corresponding to the ages of 3, 6, 12, 18, 24, and 36 months. In each age 524 

cohort and study group, number of autoantibody positive children is marked and represented 525 

with Y-shape. 526 

Figure 2. PCA score plots of the factor age, based on ASCA. These scores represent the 527 

metabolomics dataset arranged according to the age in the PCA score plot. Each sample is 528 

represented by a point and coloured according to the age. The ages of the participants are marked 529 

on the x-axis while y-axis represents the sample score. Samples with similar score cluster 530 

together. 531 

Figure 3. Comparison of metabolomes in three study groups in different age cohorts. (a) Heat 532 

map showing 43 metabolites representative of different metabolic classes that change between 533 

PT1D, P1Ab and CTR. Differences in metabolite concentrations were calculated by dividing mean 534 

concentration in PT1D by the mean concentrations in P1Ab and CTR. (b) The loess curve plot of 535 

methionine concentration in time for the three study groups. (c) Concentration of 4-536 

hydroxyphenyllactic acid at 6 months of age. (d) Concentration of Glutamic acid at 6 months of 537 

age. ✘ represents the adjusted p-values < 0.1. 538 

Figure 4. Pathway analysis of significantly different metabolites between CTR and PT1D at (a) 3 539 

and (b) 6 months of age. The pathways are shown according to the p values from the pathway 540 

enrichment analysis and pathway impact values from the pathway topology analysis. The 541 

metabolic pathways with impact value > 0.1 were considered the most relevant pathways involved. 542 

Pathway impact values were calculated from pathway topology analysis using MetaboAnalyst.  543 

Figure 5. The effect of islet autoantibody positivity on metabolite profiles. (a) The most 544 

discriminating metabolites between the last available samples obtained before the first islet 545 

autoantibody appeared and the first available samples after the emergence of the first islet 546 

autoantibody, in P1Ab and PT1D groups. The pairwise scatter plot of (b) aspartic and (c) glutamic 547 

acid before and after the first appearance of islet autoantibodies. Pathway analysis of differentially 548 

expressed metabolites between (d) B-P1Ab & A-P1Ab, and (e) B-PT1D & A-PT1D. Top pathways 549 

identified include Alanine, aspartate and glutamate metabolism. Abbreviations: Before 550 
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seroconversion in P1Ab (B-P1Ab), after seroconversion in P1Ab (A-P1Ab), before seroconversion in 551 

progressors (B-PT1D), after seroconversion in progressors (A-PT1D). 552 
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