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Evolutionary graph theory models the effects of natural selection and random drift on structured
populations of mutant and non-mutant individuals. Recent studies have shown that fixation times,
which determine the rate of evolution, often have right-skewed distributions. Little is known,
however, about how these distributions and their skew depend on mutant fitness. Here we calculate
the fitness dependence of the fixation-time distribution for the Moran Birth-death process in
populations modeled by two extreme networks: the complete graph and the one-dimensional ring
lattice, each of which admits an exact solution in the limit of large network size. We find that
with non-neutral fitness, the Moran process on the ring has normally distributed fixation times,
independent of the relative fitness of mutants and non-mutants. In contrast, on the complete graph,
the fixation-time distribution is a weighted convolution of two Gumbel distributions, with a weight
depending on the relative fitness. When fitness is neutral, however, the Moran process has a highly
skewed fixation-time distribution on both the complete graph and the ring. In this sense, the case of
neutral fitness is singular. Even on these simple network structures, the fixation-time distribution
exhibits rich fitness dependence, with discontinuities and regions of universality. Applications of
our methods to a multi-fitness Moran model, times to partial fixation, and evolution on random
networks are discussed.

Significance Statement: Evolutionary graph theory studies the interplay among natural selec-
tion, random drift, and the network structure of a population. Fitter mutants tend to reproduce
at the expense of wild-type individuals that reproduce less quickly. After a certain amount of time
their lineage can take over the entire population. We study a simple stochastic model for the spread
of an advantageous mutation and calculate the distribution of times required for the mutants to
take over. We find the distribution is often skewed, and establish analytically how the skew depends
on the relative fitness of mutants and wild-types, for large networks of individuals connected in a
one-dimensional ring or a complete graph. In both cases, the skew jumps discontinuously when
fitness is neutral.

Reproducing populations undergo evolutionary dy-
namics. Mutations can endow individuals with a fit-
ness advantage, allowing them to reproduce more quickly
and outcompete non-mutant individuals [1]. Two natu-
ral questions arise: If a single mutant individual is in-
troduced into a population, what is the probability that
the mutant lineage will spread and ultimately take over
the population (an outcome known as fixation)? And if
fixation occurs, how much time does it take?

These questions have been addressed, in part, by evo-
lutionary graph theory, which has advanced our under-
standing of evolutionary dynamics in structured popu-
lations. In particular, fixation probabilities have been
studied for various models on various networks [2–12].
The results show that the influence of a network’s struc-
ture on its fixation probability can be subtle. For in-
stance, under constant selection, a large class of networks
known as isothermal graphs have a fixation probability
identical to that of a structureless, well-mixed population
[2–5], whereas other networks either suppress or amplify
selection relative to the well-mixed case [5, 7, 10, 12–
14]. When mutations are rare, the fixation probability
determines the rate of evolution [1, 15] and can be used
to formulate a thermodynamic description of evolution
[16, 17].

Other intriguing theoretical studies have focused on
constructing optimal structural amplifiers or suppres-
sors to selection [14, 18], or on analyzing more sophisti-
cated dynamics governed by evolutionary games, where
selection is frequency dependent rather than constant
[6, 11, 19–22]. Parallel efforts have addressed evolu-
tionary dynamics in real-world systems involving cancer
growth [23] and response to treatment [24], CRISPR gene
drives, [25], and HIV drug resistance [26].

Along with the fixation probability, the fixation time
is also of interest, as it too impacts the rate of evolution
[15]. Given a model of evolutionary dynamics, one would
like to predict the mean, variance, and ideally the full
distribution of its fixation times. Of these three quan-
tities, the mean is the best understood. Numerical and
analytical results exist for mean fixation times on both
deterministic [4, 6, 11, 12, 20, 27–29] and random [28–
31] networks. The results reveal curious trade-offs be-
tween fixation probability and mean fixation time: net-
work structures that increase the likelihood of fixation
may cause the system to take longer to achieve it [12, 15].

Although mean fixation times are important to un-
derstand, the information they provide can be mislead-
ing, because fixation-time distributions tend to be broad
and skewed and hence are not well characterized by their
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means alone [11, 32–35]. Initial analytical results have
determined the asymptotic fixation-time distribution for
several simple networks, but only in the analytically con-
venient limit of infinite mutant fitness [36–38]. For other
values of the relative fitness, almost nothing is known.
Numerical evidence and preliminary theoretical results
suggest that at neutral fitness (when mutants and non-
mutants are equally fit), the fixation-time distribution
becomes particularly right-skewed [38].

In this paper we investigate the full fitness dependence
of fixation times for a simple model of evolutionary dy-
namics known as the Moran process [39, 40]. In the limit
of large network size, we derive asymptotically exact re-
sults for the fixation-time distribution and its skew for
two network structures at opposite ends of the connec-
tivity spectrum: the complete graph, in which every in-
dividual interacts with every other individual; and the
one-dimensional ring lattice, in which each individual in-
teracts only with its nearest neighbors on a ring. The
resulting fixation-time distributions depend on fitness in
rich and contrasting ways.

The specific model we consider is the Moran Birth-
death (Bd) process on a network, defined as follows. On
each node of the network there is an individual, either
mutant or non-mutant. The mutants have a fitness level
r designating their relative reproduction rate compared
to non-mutants. When r > 1, the mutants have a fit-
ness advantage, whereas when r = 1 they have neutral
fitness. At each time step we choose a node at random,
with probability proportional to its fitness, and choose
one of its neighbors with uniform probability. The first
individual gives birth to an offspring of the same type.
That offspring replaces the neighbor, which dies. The
model population is updated until either the mutant lin-
eage takes over (in which case fixation occurs) or until the
mutant lineage goes extinct (a case we do not consider
here).

The quantity of interest is the fixation time, T . Given
a single initial mutant on a network of N nodes, and as-
suming that fixation occurs, how long does it take for the
mutants to replace all the non-mutants? As mentioned
above, the distribution of fixation times often turns out
to be skewed. The skew merges from the stochastic com-
petition between mutants and non-mutants through mul-
tiple mechanisms. For instance, when the mutants have
neutral fitness, the process resembles an unbiased ran-
dom walk. Successful runs to fixation will sometimes
take long recurrent excursions before the mutants finally
sweep through the entire non-mutant population, giving
rise to long takeover times and hence a skewed distribu-
tion.

Since the neighbor is chosen uniformly, the individuals
do not discriminate between mutants and non-mutants
during the replacement step of the Moran process. Thus,
on certain networks, when there are very few remaining
non-mutants, the mutants can waste time replacing each
other. This effect produces characteristic slowdowns near
the end of the Moran process. These are reminiscent of

similar slowdowns seen in a classic problem from proba-
bility theory, the coupon collector’s problem, which asks:
How long does it take to complete a collection of N dis-
tinct coupons if one coupon is received randomly (with
replacement) at each time step? The problem was first
solved by Erdős and Rényi, who proved that for large
N , the time to complete the collection has a Gumbel
distribution [41]. The intuition for the long slowdowns is
clear: When nearly all the coupons have been collected, it
can take an exasperatingly long time to collect the final
few, because one keeps acquiring coupons that one al-
ready has. In fact, an exact mapping onto coupon collec-
tion exists for evolutionary processes with infinite fitness
[37, 38]. Remarkably, while this correspondence breaks
down for finite fitness, the coupon collection heuristic still
allows us to write down correct asymptotic fixation-time
distributions for non-neutral fitness.

In the following sections we show that for N � 1,
the neutral fitness Moran process on the complete graph
and the one-dimensional ring lattice has highly skewed
fixation-time distributions, and we solve for their cumu-
lants exactly. For non-neutral fitness the fixation-time
distribution is normal on the lattice and a weighted con-
volution of Gumbel distributions on the complete graph.
We begin by developing a general framework for comput-
ing fixation-time distributions and cumulants of birth-
death Markov chains, and then apply it to the Moran
process to prove the results above. We also consider the
effects of truncation on the process and examine how long
it takes to reach partial, rather than complete, fixation.
The fixation-time distributions have rich dependence on
fitness level and the degree of truncation, with both dis-
continuities and regions of universality. To conclude, we
discuss extensions of our results to a multi-fitness Moran
model and to more complicated network topologies.

GENERAL THEORY OF BIRTH-DEATH
PROCESSES

For simplicity, we restrict attention to network topolo-
gies on which the probability of adding or removing a
mutant in a given time step depends only on the num-
ber of existing mutants, not on where the mutants are
located on the network. The state of the system can
therefore be defined in terms of the number of mutants,
m = 0, 1, . . . , N , where N is the total number of nodes
on the network. The Moran process is then a birth-death
Markov chain with N + 1 states, transition probabilities
bm and dm determined by the network structure, and ab-
sorbing boundaries at m = 0 and m = N . In this section
we review and develop general analytical results on the
fixation-time distributions for these Markov chains.

On more complicated networks, the probability of
adding or removing a mutant depends on the configu-
ration of existing mutants. For some of these networks,
however, the transition probabilities can be estimated us-
ing a mean-field approximation [31, 37, 38]. Then, to a
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good approximation, the results below apply to such net-
works as well.

Eigen-decomposition of the birth-death process

Assuming a continuous-time process, the state of the
Markov chain described above evolves according to the
master equation. If p(t) is the probability of occupying
each state of the system at time t, then p evolves accord-
ing to

ṗ(t) = Ω · p(t), (1)

where Ω is the transition rate matrix, with columns sum-
ming to zero. In terms of the transition probabilities bm
and dm, the entries of Ω can be written as

Ωmn = bnδm,n+1 + dnδm,n−1 − (bn + dn)δm,n, (2)

where m and n run from 0 to N , δm,n is the Kronecker
delta, and b0 = d0 = bN = dN = 0. The final con-
dition guarantees the system has absorbing boundaries
with stationary states pm = δm,0 and pm = δm,N when
the population is homogeneous. Thus we can decom-
pose the transition matrix into stationary and transient
parts, defining the transient part Ωtr as in Eq. 2, but
with m, n = 1, . . . , N − 1. The eigenvalues of Ωtr are
real and strictly negative, since probability flows away
from these states toward the absorbing boundaries. To
ease notation in the following discussion and later appli-
cations, we shall refer to the positive eigenvalues of −Ωtr

as the eigenvalues of the transition matrix, denoted λm,
where m = 1, . . . , N − 1.

From the perspective of Markov chains, the fixation
time T is the time required for first passage to state
m = N , given i initial mutants, pm(0) = δm,i. At time
t, the probability that state N has been reached (i.e.,
the cumulative distribution function for the first passage
times) is simply ϕ−1

i pN (t), where ϕi is the fixation prob-
ability given i initial mutants. The distribution of first
passage times is therefore ϕ−1

i ṗN (t) = ϕ−1
i bN−1pN−1(t).

Since the columns of Ω sum to zero, the right hand side
of this equation can be written as −ϕ−1

i 1Ωtr p(t), where
1 is the row vector containing all ones.

The solutions to the transient master equation are
given by the matrix exponential p(t) = exp(Ωtrt) · p(0),
yielding a fixation-time distribution −ϕ−1

i 1Ωtr exp(Ωtrt)·
p(0). If we assume one initial mutant, pm(0) = δm,1, then

this can be written as ϕ−1
1 bN−1[exp(Ωtrt)]N−1,1. Since

we normalize by the fixation probability, this is exactly
the fixation-time distribution conditioned on reaching N .
The matrix exponential can be evaluated in terms of the
eigenvalues λm by taking a Fourier (or Laplace) trans-
form [for details, see Ref. [34]]. For a single initial mu-
tant, the result is that the fixation time T has a distri-
bution fT (t) given by

fT (t) =
N−1∑
j=1

 N−1∏
k=1,k 6=j

λk
λk − λj

λje
−λjt. (3)

Generalizations of this result for arbitrarily many ini-
tial mutants have also recently been derived, in terms
of eigenvalues of the transition matrix and certain sub-
matrices [34].

The distribution in Eq. 3 is exactly that correspond-
ing to a sum of exponential random variables with rate
parameters λm. The corresponding cumulants equal

(n − 1)!
∑N−1
m=1(λm)−n. As our primary interest is the

asymptotic shape of the distribution, we normalize T to
zero mean and unit variance and study (T−µ)/σ, where µ
and σ denote the mean and standard deviation of T . The
standardized distribution is then given by σfT (σt + µ).
The rescaled fixation time has cumulants

κn(N) = (n− 1)!

(
N−1∑
m=1

1

λnm

)/(
N−1∑
m=1

1

λ2
m

)n/2
, (4)

which, for many systems including those considered be-
low, are finite as N →∞. When the limit exists, we de-
fine the asymptotic cumulants by κn = limN→∞ κn(N).
In particular, because we have standardized our distribu-
tion, the third cumulant κ3 is the skew. Since λm > 0,
it is clear from this expression that, for finite N , the
skew and all higher order cumulants must be positive,
in agreement with analysis on random walks with non-
uniform bias [42]. As N →∞ this is not necessarily true;
in some cases the cumulants vanish.

This analytical theory gives the fixation-time distribu-
tion and cumulants in terms of the non-zero eigenvalues
of the transition matrix. In general the eigenvalues must
be found numerically, but in cases where they have a
closed form expression the asymptotic form of the cumu-
lants and distribution can often be obtained exactly.

Exact computation of skew via visit statistics

In this section we develop machinery to compute the
cumulants of the fixation time analytically without re-
lying on matrix eigenvalues. For this analysis, we spe-
cialize to cases where bm/dm = r for all m, relevant for
the Moran processes considered below. These processes
can be thought of as biased random walks overlaid with
non-constant waiting times at each state.

It is helpful to consider the Markov chain conditioned
on hittingN , with new transition probabilities b̃m and d̃m
so that the fixation probability ϕi = 1. If Xt is the state
of the system at time t, then b̃m = P(Xt = m→ Xt+1 =

m+ 1|X∞ = N) with d̃m defined analogously. We derive

explicit expressions for b̃m and d̃m in SI Abstract, S1.
Conditioning is equivalent to a similarity transformation
on the transient part of the transition matrix: Ω̃tr =
S Ωtr S

−1, where S is diagonal with Smm = 1 − 1/rm.
Furthermore, since bm/dm = r, we can decompose Ωtr =
ΩRWD, where D is a diagonal matrix, Dmm = bm + dm,
that encodes the time spent in each state and ΩRW is the
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transition matrix for a random walk with uniform bias,

[ΩRW]nm =
r

1 + r
δm,n+1 +

1

1 + r
δm,n−1 − δm,n. (5)

Applying the results of the previous section, the fixation-
time distribution of the conditioned Markov chain is
fT (t) = −1Ω̃tr exp(Ω̃trt)p(0). The corresponding char-
acteristic function is

E[exp(iωT )] = 1Ω̃tr(iω + Ω̃tr)
−1p(0). (6)

Taking derivatives of this expression gives the moments
of T ,

E[Tn] = (−1)nn!1Ω̃−ntr p(0), (7)

in terms of Ω̃−1
tr = D−1SΩ−1

RWS
−1. This inverse has a

nice analytical form because S and D are diagonal and
ΩRW is tridiagonal Toeplitz. We call this approach visit
statistics because the elements Vij of V = −SΩ−1

RWS
−1

encode the average number of visits to state i starting
from state j.

Each power of Ω̃tr in Eq. 7 produces products of
(bi + di) that arise in linear combinations determined by
the visit numbers Vij . Therefore, the cumulants of the
fixation time have the general form

κn(N) =

N−1∑
i1,i2,...,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)N−1∑
i,j=1

w2
ij(r,N)

(bi + di)(bj + dj)

n/2
,

(8)
where wni1i2···in(r,N) are weighting factors based on the
visit statistics of the biased random walk. In SI Abstract,
S2, we give a detailed derivation of Eq. 8 and compute
explicit expressions for w2

ij(r,N) and w3
ijk(r,N). This ex-

pression for the cumulants is easier to handle asymptoti-
cally than the closed form recursive solution for fixation-
time moments [33], and can be useful even without ex-
plicit expressions for wni1i2···in(r,N). Estimating these
sums allows us to compute the asymptotic fixation time
cumulants exactly.

Recurrence relation for distribution moments

Evaluation of the eigenvalues of the transition matrix
for large systems can be computationally expensive, with
the best algorithms having run times quadratic in matrix
size. Numerical evaluation of the cumulants κn(N) given
by Eq. 8 is even worse, as it requires summing O(Nn)
elements. If only a finite number of fixation time cu-
mulants (and not the full distribution) are desired, there
are better numerical approaches. Using an approach well
known in the probability theory literature [43], we derive
a recurrence relation which allows for numerical moment
computation with run time linear in system size N . For
completeness we provide the full derivation of the rec-
curence for the fixation-time skew in SI Abstract, S3.

ONE-DIMENSIONAL LATTICE

We now specialize to Moran Birth-death (Bd) pro-
cesses, starting with the one-dimensional (1D) lattice.
We assume periodic boundary conditions, so that the N
nodes form a ring. The mutants have relative fitness r,
meaning they give birth r times faster, on average, than
non-mutant individuals do.

Starting from one mutant, suppose that at some later
time m of the N nodes are mutants. On the 1D lattice,
the population of mutants always forms a connected arc,
with two mutants at the endpoints of the arc. Therefore,
the probability bm of increasing the mutant population
by one in the next time step is the probability of choos-
ing a mutant node at an endpoint to give birth, namely
2r/(rm + N − m), times the probability 1/2 that the
neighboring node to be replaced is not itself a mutant.
(The latter probability equals 1/2 because there are two
neighbors to choose for replacement: a mutant neighbor
on the interior of the arc and a non-mutant neighbor on
the exterior. Only the second of these choices produces
an increase in the number of mutants.) By multiplying
these probabilities together we obtain

bm =
r

rm+N −m
, dm =

1

rm+N −m
, (9)

where the probability dm of decreasing the mutant popu-
lation by one is found by similar reasoning. These quan-
tities play the role of transition probabilities in a Markov
transition matrix. The next step is to find the eigenvalues
of that matrix.

Neutral fitness

First we work out the eigenvalues for the case of neu-
tral fitness, r = 1. In this case, the transition probabil-
ities are equal, bm = dm = 1/N , and independent of m.
Therefore, the Moran process is simply a random walk,
with events occurring at a rate of 2/N per time step.
The associated transition matrix is tridiagonal Toeplitz,
which has known eigenvalues given by

λm =
1

N
− 1

N
cos

(
mπ

N

)
, m = 1, 2, . . . , N − 1. (10)

Applying Eq. 4 and computing the leading asymptotic

form of the sums Sn =
∑N−1
m=1(λm)−n (see SI Abstract,

S4), we find that as N → ∞, the fixation-time distribu-
tion has cumulants

κn = (n− 1)!
ζ(2n)

ζ(4)n/2
, (11)

where ζ denotes the Riemann zeta function. In partic-
ular, the skew κ3 = 4

√
10/7 ≈ 1.807, as calculated by

Ottino-Löffler et al. [38] via martingale methods. The
largeness of the skew stems from the recurrent property
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FIG. 1. Fixation-time distributions on the 1D lattice obtained from 106 simulation runs. All distributions are standardized
to zero mean and unit variance. Solid curves are the theoretical predictions. Shown are the fixation-time distributions for (a)
a 1D lattice of N = 100 nodes with neutral fitness r = 1 and (b) a 1D lattice of N = 5000 nodes with mutant fitnesses r = 1.1
and r = 2.0. For the neutral fitness case, the theoretical distribution was generated by numerical inverse Fourier transform of
the characteristic function (Eq. 12). The r = 1.1 distribution is slightly but visibly skewed due to finite network size.

of the random walk. As N → ∞, long walks with large
fixation times become common and the system revisits
each state infinitely often [44].

Knowledge of the cumulants allows us to obtain the
exact characteristic function of the fixation-time distri-
bution:

φ(ω) = e−
√

5
2ω Γ

(
1− 901/4

√
ω

π

)
Γ

(
1 +

901/4
√
ω

π

)
.

(12)
Although we cannot find a simple expression for the dis-
tribution itself, we can efficiently evaluate it by taking
the inverse Fourier transform of the characteristic func-
tion numerically. Figure 1(a) shows that the predicted
fixation-time distribution agrees well with numerical ex-
periments.

Non-neutral fitness

Next, consider r 6= 1 with the transition probabilities
given by Eq. 9. Then the eigenvalues of the transition
matrix are no longer expressible in closed form. If r is
not too large, however, the probabilities bm and dm do
not vary dramatically with m, the number of mutants. In
particular, bm ∼ 1/N for all m when N is large. There-
fore, as a first approximation we treat the Bd process on
a 1D lattice as a biased random walk with bm = r/(1+r)
and dm = 1/(1+r). The eigenvalues of the corresponding
transition matrix are

λm = 1− 2
√
r

1 + r
cos

(
mπ

N

)
, m = 1, 2, . . . , N − 1. (13)

The cumulants again involve sums Sn =
∑N−1
m=1(λm)−n,

which can be approximated in the limit N → ∞ by an
integral,

Sn ≈
N

π

∫ π

0

1

(1− 2
√
r/(1 + r) cosx)n

dx. (14)

Since the integral is independent of N and converges for
r 6= 1, each of the sums scales linearly: Sn ∼ N . Thus,
using Eq. 4, we see that all cumulants past second order
approach 0,

κn ∼
1

N (n−2)/2

N→∞−−−−→ 0, n ≥ 3. (15)

Hence the fixation-time distribution is asymptotically
normal, independent of fitness level.

By evaluating the integrals in Eq. 14, we can more
precisely compute the scaling of the cumulants. For the
skew we find

κ3 ≈
2 + 2r(r + 4)

(r + 1)
√

(r2 − 1)

1√
N
. (16)

This integral approximation becomes accurate when the
first term in the sums Sn for n = 2 and 3 becomes close to
the value of the integrand evaluated at the lower bound
(x = 0). The fractional difference between these quanti-
ties is

∆ =

∣∣∣∣ (1− 2
√
r/(1 + r))n

(1− 2
√
r/(1 + r) cos(π/N))n

− 1

∣∣∣∣
=

√
rnπ2

(
√
r − 1)2N2

+O(1/N4).

(17)
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FIG. 2. Scaling of the skew of the fixation-time distribution
on the 1D lattice with non-neutral fitness. Data points show
numerical calculation of the skew for various fitness levels.
The solid lines are the predicted scaling given in Eq. 19 with
exponent q = 1/2 for each value of fitness r. For small N (and
small enough r), the skew is that of a random walk, namely
κ3 = 1.807, as shown by the dashed line. For large N , the
skew κ3 ∼ 1/

√
N with an r-dependent coefficient.

Then we have ∆ � 1 when N � Nc ≈ 2π
√
n/(r − 1)

(assuming r is near 1). To compute the skew, we require
the sums with n = 2 and 3, giving Nc ≈ 10/(r − 1).

The above calculation fails for r � 1, because when
r = ∞ the transition probabilities bm = 1/m have dif-
ferent asymptotic behavior as N → ∞. In particular,
more time is spent waiting at states with large m. The
process still has normally distributed fixation times, but
the skew becomes

κ∞3 = 2

(
N−1∑
m=1

m3

)/(
N−1∑
m=1

m2

)3/2

≈ 3
√

3

2

1√
N
, (18)

for large N . Notice that the coefficient is different from
that given by the infinite-r limit of Eq. 16, κ3 ≈ 2/

√
N .

We conjecture that there is a smooth crossover between
these two scaling laws with the true skew given approxi-
mately by

κ̃3 = κ3

[
r−q +

3
√

3

4
(1− r−q)

]
(19)

for some exponent q, where κ3 is the skew given in Eq. 16.
For small r this ansatz has skew similar to that of a
random walk, but captures the correct large-r limit. We
do not have precise theoretical motivation for this ansatz,
but as discussed below, it appears to work quite well.

Numerical calculation of the skew for the 1D lattice
was performed using the recurrence relation method dis-
cussed above and detailed in SI Abstract, S3. The results
are shown in Fig. 2 for a few values of r. This calculation
confirms our initial hypothesis, that near neutral fitness

the waiting times are uniform enough that the process
is well approximated by a biased random walk and the
skew approaches 0, scaling in excellent agreement with
Eq. 16. When N � Nc, the bias is not sufficient to
give the mutants a substantial advantage: the process
behaves like an unbiased random walk and the fixation-
time distribution has large skew κ3 ≈ 1.807, as found in
the preceding section. For N � Nc, the bias takes over,
the cumulants approach 0, and the distribution become
normal. For large fitness r � 1, the crossover ansatz
(Eq. 19) captures the scaling behavior quite well if we
use an exponent q = 1/2. Direct numerical simulations
of the process confirm that, for any r > 1, the fixation
time on the 1D lattice has an asymptotically normal dis-
tribution [Fig. 1(b)].

The random walk approximation allows us to find the
scaling law for the fixation-time cumulants, but ignores
the heterogeneity of waiting times present in the Moran
process. Using visit statistics we can compute the cu-
mulants exactly with Eq. 8 and rigorously prove they
vanish as N →∞, verifying that the waiting times have
no influence on the asymptotic form of the distribution.
Details are provided in SI Abstract, S4.

COMPLETE GRAPH

We now turn to the Moran process on a complete
graph, useful for modeling well-mixed populations in
which all individuals interact. By similar reasoning to
above, given m mutants the probability of adding a mu-
tant in the next time step is

bm =
rm

rm+N −m
· N −m
N − 1

, (20)

while the probability of subtracting a mutant is

dm =
N −m

rm+N −m
· m

N − 1
. (21)

Interestingly, as we will see in this section, these tran-
sition probabilities give rise to a rich fitness dependence
of the fixation-time distribution in stark contrast to the
universality observed on the 1D lattice.

Neutral Fitness

Again we begin with neutral fitness r = 1. Now bm =
dm = (Nm − m2)/(N2 − N). The eigenvalues of this
transition matrix also have a nice analytical form:

λm =
m(m+ 1)

N(N − 1)
, m = 1, 2, . . . N − 1. (22)

The asymptotic form of the sums Sn (defined identically
to above), can be found by taking the partial fraction
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FIG. 3. Fixation-time distributions on the complete graph
with N = 100 nodes and neutral fitness (r = 1) obtained
from 106 simulation runs. The distribution is standardized to
zero mean and unit variance. The solid curve is a fifth order
Pearson approximation to the theoretical distribution using
the first ten cumulants in Eq. 23.

decomposition of (λm)−n and evaluating each term indi-
vidually. The resulting cumulants are

κn = (n− 1)!
3n/2

(π2 − 9)n/2
(23)

× (−1)n
n∑
k=1

(
2n− k − 1

n− 1

)[
ζ(k)

(
1− (−1)k

)
− 1
]
.

We have not managed to calculate the distribution of
the fixation times or its characteristic function in closed
form, but fortunately the full set of its cumulants pro-
vides equivalent information. By using the first ten cu-
mulants given by Eq. 23, we approximate the true dis-
tribution with a fifth-order Pearson-style distribution [as
described in Ref. [45], Chapter 5]. Figure 3 shows that
the result agrees well with simulations.

The numerical value of the fixation-time skew for the
Bd process on the complete graph is κ3 ≈ 1.671, slightly
less than that for the 1D lattice. The decrease is the re-
sult of two competing effects contributing to skew. First,
since the birth and death transition probabilities are the
same, the process is a random walk, which has a highly
skewed fixation-time distribution, as shown above. The
average time spent in each state, however, varies with m.
For instance, when m = 1 or N − 1, bm → 0 for large N .
But if m = αN for some constant 0 < α < 1 independent
of N , then bm approaches a constant. The beginning and
end of the process are very slow because the transition
probabilities are vanishingly small. To start, the single
mutant must be chosen to give birth from the N available
nodes. Near fixation, the reproducing mutant must find
and replace one of the few remaining non-mutants.

The characteristic slowing down at certain states is

reminiscent of “coupon collection”, as discussed earlier.
Erdős and Rényi proved that for large N , the normalized
time to complete the coupon collection follows a Gumbel
distribution [41], which we denote by Gumbel(α, β) with
density

f(t) = β−1e−(t−α)/β exp(−e−(t−α)/β). (24)

For the Moran process, each slow region is produced by
long waits for the random selection of rare types of indi-
viduals: either mutants near the beginning of the process
or non-mutants near the end. In fact, for infinite fitness
there is an exact mapping between Bd on the complete
graph and coupon collection [37, 38]. In the next sec-
tion we show that the two coupon collection regions of
the Bd process on a complete graph lead to fixation-time
distributions that are convolutions of two Gumbel dis-
tributions. In the case of neutral fitness, these Gumbel
distributions combine with the random walk to produce
a new highly skewed distribution with cumulants given
by Eq. 23.

Non-neutral fitness

We saw above that when the average time spent in
each state is constant or slowly varying, as is the case for
the biased random walk and Moran Bd on the 1D lattice
respectively, the fixation-time distribution is normal. In
contrast to these systems, Moran Bd on the complete
graph exhibits coupon collection regions at the beginning
and end of the process, where the transition probabilities
are very small. We begin this section with a heuristic
argument that correctly gives the asymptotic fixation-
time distribution in terms of independent iterations of
coupon collection.

Differentiating bm with respect to m, we find the slope
near m = 0 is (r + 1)/N , while the slope near m = N
has magnitude (r + 1)/(rN) for N � 1. The transition
rates approach zero at each of these points, so we ex-
pect behavior similar to coupon collection giving rise to
two Gumbel distributions. Since the slope is greater for
m near 0 than for m near N , the Moran process com-
pletes its coupon collection faster near the beginning of
the process than near fixation.

This heuristic suggests that the asymptotic fixation
time should be equal in distribution to the sum of two
Gumbel random variables, one weighted by r, which is
the ratio of the slopes in the coupon collection regions.
Specifically, if T is the fixation time with mean µ and
variance σ2, we expect

T − µ
σ

d−→ G+ rG√
1 + r2

, (25)

where
d−→ means convergence in distribution for large N

and G is a Gumbel random variable with zero mean and
unit variance. It is easy to check that G has distribution
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FIG. 4. Fixation-time distributions on the complete graph with N = 5000 nodes and non-neutral fitness (r > 1) obtained
from 106 simulation runs. All distributions are standardized to zero mean and unit variance. Solid curves are the theoretical
predictions obtained by numerical convolution of two Gumbel distributions, one weighted by r. Distributions are shown for (a)
r = 1.1 and (b) r = 5.0. For larger r, the distribution has larger skew and a slightly sharper peak.

Gumbel(−γ
√

6/π,
√

6/π), where γ ≈ 0.5772 is the Euler-
Mascheroni constant.

Let us make this argument more rigorous. Previous
theoretical analysis showed that in the infinite fitness
limit, the fixation time has an asymptotically Gumbel
distribution [38]. This result can be recovered within our
framework, since when r = ∞ it follows that dm = 0,
so the eigenvalues of the transition matrix are just bm =
(N −m)/(N − 1) and the cumulants can be directly cal-
culated using Eq. 4.

Now consider large, but not infinite, fitness. In this
limit, the number of mutants is monotonically increasing,
to good approximation, since the probability that the
next change in state increases the mutant population is
r/(1 + r) ≈ 1. The time spent waiting in each state,
however, changes dramatically, especially near m = 1.
Here, b1 → 0 for large N , in stark contrast to the infinite
fitness system where b1 → 1. The time spent at each
state, tm is an exponential random variable, E(bm+dm).
In this approximation each state is visited exactly once,
so the total fixation time is a sum of these waiting times:

T =
N−1∑
m=1

E(bm + dm). (26)

But this sum of exponential random variables has density
given by Eq. 3, with the substitution λm → bm + dm.
Thus, the cumulants of (T − µ)/σ are

κn =
1 + rn

(1 + r2)n/2
· (n− 1)!ζ(n)

ζ(2)n/2
, (27)

which are exactly the cumulants corresponding to the
sum of Gumbel random variables given in Eq. 25. In the
limit r →∞, the first term in Eq. 27 becomes 1, and the
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FIG. 5. Fitness dependence of fixation-time skew for the
Moran Birth-death process on the complete graph. The skew
is shown for r ≥ 0 and is invariant under r → 1/r. For finite
N , the skew does not have a discontinuity, but does show
non-monotonic dependence on fitness r. In particular, for a
given N , there is a certain fitness level with minimum skew.
As N →∞, we see non-uniform convergence to the predicted
skew given by κ3 in Eq. 27, leading to the discontinuity at
r = 1. Moreover, for fixed r, the convergence to the N = ∞
skew is non-monotonic.

cumulants are those for a single Gumbel distribution, in
agreement with previous results.

Remarkably, these cumulants are exact for any r > 1,
not just in the large-r limit. We can see this directly
for the skew κ3 using the visit statistics approach, com-
puting the asymptotic form of Eq. 8 with the complete
graph transition probabilities given in Eqs. 20 and 21.
Details of the asymptotic analysis are provided in SI Ab-
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stract, S5. Numerical simulations of the Moran process
corroborate our theoretical results. As shown in Fig. 4,
for r = 1.1 and r = 5 the agreement between simulated
fixation times and the predicted convolution of Gumbel
distributions is excellent, at least when N is sufficiently
large.

For smaller networks, it is fascinating to see how the re-
sults converge to the asymptotic predictions as N grows.
Figure 5 shows how the skew of the fixation-time distri-
bution depends on r and N for the complete graph. Note
the fixation-time distributions for these systems are in-
variant under r → 1/r. Therefore we show the skew
for all r > 0, to emphasize the intriguing behavior near
neutral fitness, where r = 1. We find that non-uniform
convergence of the fixation-time skew leads to the dis-
continuity predicted at r = 1. For finite N , the skew is
a non-monotonic function of r and has a minimum value
at some fitness rmin(N). Furthermore, at fixed r, the
convergence to the N = ∞ limit is itself non-monotone.
Though beyond the scope of the current study, further
investigation of this finite-N behavior would be worth
pursuing.

PARTIAL FIXATION TIMES: TRUNCATING
COUPON COLLECTION

In many applications, we may be interested in the time
to partial fixation of the network. For instance, consid-
ering cancer progression [23, 24, 46] or the incubation of
infectious diseases [38], symptoms can appear in a pa-
tient even when a relatively small proportion of cells are
malignant or infected. We therefore consider Tα, the to-
tal time to first reach αN mutants on the network, where
0 < α < 1. The methods developed above apply to these
processes as well. For the eigen-decomposition approach
we instead use the sub-matrix of Ωtr containing the first
αN rows and columns. In calculations involving the nu-
merical recurrence relations or visit statistics, we simply
cut the sums off at αN instead of N and for the latter,
replace wi1i2···in(r,N) with wi1i2···in(r, αN).

Truncation of the Moran Bd process on the 1D lattice
has no effect on the asymptotic shape of the fixation-time
distributions. In both the neutral fitness system and the
random walk approximation to the non-neutral fitness
system, the transition matrix has no explicit dependence
on the state or N (aside from proportionality factors that
cancel in Eq. 4). Thus, the eigenvalues are identical to
those calculated previously, but correspond to a smaller
effective system size αN . Taking the limit N →∞ there-
fore yields the same asymptotic distribution found above.
This result is borne out numerically.

In contrast to the 1D lattice, the complete graph ex-
hibits more interesting dependence on truncation. Since
the transition probabilities have state dependence, the
eigenvalues vary with truncation (they don’t exactly cor-
respond to the full system with a smaller effective N).
Our intuition from coupon collection, however, lets us

predict the resulting distribution.
First suppose fitness is non-neutral. Then there are

two coupon collection stages, one near the beginning and
another near the end of the process, and together they
generate a fixation-time distribution that is a weighted
convolution of two Gumbel distributions. The effect of
truncating the process near its end should now become
clear: it simply removes the second coupon collection,
since truncation means the process stops before the mu-
tants have to laboriously find and replace the last re-
maining non-mutants. Therefore, we intuitively expect
the fixation time for non-neutral fitness to be distributed
according to just a single Gumbel distribution, regardless
of fitness level.

The only exception occurs if r = ∞; then no coupon
collection occurs at the beginning of the process either,
because the lone mutant is guaranteed to be selected to
give birth in the first time step, thanks to its infinite
fitness advantage. Thus, when fitness is infinite and the
process is truncated at the end, both coupon collection
phases are deleted. In this case, the fixation times are
normally distributed.

Similar reasoning applies to the Birth-death process
with neutral fitness. It also has two coupon collection
regions, one of which is removed by truncation. In
this case, however, the random walk mechanism con-
tributes to the skew of the overall fixation-time distribu-
tion, combining non-trivially with the coupon collection-
like process. We find that the skew of the fixation time
depends on the truncation factor α, varying between
6
√

3(10 − π2)/(π2 − 9)3/2 ≈ 1.6711 when α = 1, and√
3 ≈ 1.732 when α = 0. A derivation of the α→ 0 limit

of the skew is given in SI Abstract, S5.
The above results are summarized in Fig. 6, which

shows the asymptotic fitness dependence of fixation-time
skew for each network considered in this paper. As be-
fore, we show the skew for all r > 0 (not just r > 1)
to emphasize the discontinuities at zero, neutral, and in-
finite fitness r. On the 1D lattice, independent of the
truncation factor α, the Bd process has normally dis-
tributed fixation times, except at neutral fitness where
the distribution is highly skewed. The complete graph
fixation-time distributions are the weighted convolution
of two Gumbel distributions for r 6= 1, again with a
highly skewed distribution at r = 1. With truncation
by a factor α, the distribution for the complete graph is
a Gumbel for 1 < r <∞, and a normal for r =∞. With
neutral fitness the fixation distribution is again highly
skewed, with skew dependent on the truncation factor α.

DISCUSSION

Multi-fitness Moran process: comparison to the
Isotherm Theorem

So far, we have considered Moran processes with a
single fitness level, designating the relative reproduction
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FIG. 6. Variation of fixation-time skew with fitness level r and truncation factor α for different network structures. (a) The
fixation-time skew versus fitness for the 1D lattice (black solid line), complete graph (red dashed line), and complete graph with
truncation (green dotted line). The skew is shown for all r ≥ 0 and is invariant under r → 1/r. Each curve has a discontinuity
at r = 1, where the distribution is highly skewed and jumps up to values of κ3 > 1.5. The truncated fixation time on the
complete graph has a second discontinuity at r =∞ (equivalently r = 0), where the distribution goes from Gumbel to normal.
The complete graph with truncation also has variable skew at r = 1, dependent on the value of α, shown by the solid bar
labelled with (?). (b) The fixation-time skew for the complete graph with neutral fitness, plotted as a function of α.

rates between mutants and non-mutants. It also makes
sense to consider a second fitness level r̃ during the re-
placement step, measuring the resilience of mutants ver-
sus non-mutants [9]. Taking this into account, when a
mutant or non-mutant is trying to replace its neighbors,
mutants are replaced with probability proportional to
1/r̃. Taking r̃ = 1 returns to the model used through-
out the preceding sections. The multi-fitness model may
better capture the complexity of real-world evolutionary
systems but, as we will see below, does not generally give
rise to qualitatively different fixation-time distributions.

On the 1D lattice, the Moran process with fitness at
both steps (birth and death), has new transition proba-
bilities

bm =
r

rm+N −m
r̃

1 + r̃
, dm =

1

rr̃
bm, (28)

for 1 < m < N − 1. The probabilities are different when
m = 1 and m = N − 1 and there is only one mutant
or non-mutant. In this case the cells on the population
boundary don’t have one mutant and one non-mutant as
neighbors, as is the case for all other m. In the limit
N � 1, however, changing these two probabilities does
not affect the fixation-time distribution and we can use
the probabilities given in Eq. 28.

The multi-fitness Moran model on the 1D lattice dif-
fers from the previously considered Moran Bd process
in two ways. First, the transition probabilities have the
same functional form as before, but are scaled by a factor
r̃(1 + r̃)−1. This factor determines the time-scale of the
process but does not alter the shape of the fixation-time
distribution because it drops out of the expression for the
cumulants, Eq. 4. Second, the ratio bm/dm = rr̃ shows
that the process is still a random walk, but with new bias

corresponding to an effective fitness level reff = rr̃. With
these observations, when reff 6= 1, our preceding analy-
sis applies and we predict normally distributed fixation
times. If reff = 1, the random walk is unbiased, and we
expect highly skewed fixation-time distributions.

On the complete graph, considering fitness during the
replacement step leads to transition probabilities

bm =
rm

rm+N −m
· r̃(N −m)

r̃(N −m) +m− 1
(29)

and

dm =
N −m

rm+N −m
· m

r̃(N −m− 1) +m
. (30)

In this case, the ratio of transition probabilities is m-
dependent, but as N →∞, bm/dm → rr̃, again motivat-
ing the definition of the effective fitness level reff = rr̃. If
we take the large (but not infinite) fitness limit reff � 1,
so that the mutant population is monotonically increas-
ing to good approximation, then the fixation time cumu-
lants are again given by Eq. 4 with λm → bm + dm. As
N →∞, the cumulants become

κn =
1 + rn/r̃n

(1 + r2/r̃2)n/2
· (n− 1)!ζ(n)

ζ(2)n/2
, (31)

identical to the Moran Bd process on the complete graph,
with r → r/r̃. Simulations again indicate this expression
for the cumulants holds for all r, not just in the high
fitness limit. When reff = 1, we expect highly skewed
fixation distributions arising from the unbiased random
walk underlying the dynamics. This is indeed the case,
though simulations show we get a whole family of distri-
butions dependent on r = 1/r̃.
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It is interesting to contrast the above observations
with a result in evolutionary dynamics known as the
isotherm theorem. The theorem states that for r̃ = 1,
the Moran process on a large class of networks, known
as isothermal graphs, has fixation probability identical
to the complete graph [5]. Recent work has shown that
this breaks down if r̃ 6= 1; the fixation probability de-
velops new network dependence [9]. In contrast, even
isothermal graphs (including the complete graph and 1D
lattice) have fixation-time distributions that depend on
network structure. Likewise, adding a second fitness level
to the model breaks the universality in fixation probabil-
ities predicted by the isotherm theorem, but leads to the
same family of fixation distributions that arise due to
network structure.

Mean-Field Transition Probabilities: Random
Networks, Stars, and Lattices

While the 1D lattice and complete graph provide il-
lustrative exactly solvable models of the fitness depen-
dence of fixation-time distributions, other networks may
be more realistic. On more complicated networks many
of the analytical tools developed here fail because the
transition probabilities (the probability of adding or sub-
tracting a mutant given the current state) depend on the
full configuration of mutants, not just the number of mu-
tants. In principle such a system could still be modeled
as a Markov process, but the state space would become
prohibitively large.

Fortunately, for certain networks the effect of different
configurations can be averaged over, giving a mean-field
approximation to the transition probabilities. This ap-
proach has been used on a variety of networks to cal-
culate fixation times with reasonable success [31, 35].
For instance, the mean-field transition probabilities for
the Erdős-Rényi random network were recently estimated
in Ref. [31]. The result is identical to the complete
graph probabilities (Eqs. 20-21) up to a constant factor
1 − 2/Np, dependent on the edge probability p for the
network. This correction is important for computing the
mean fixation times, but does not affect the shape of the
fixation-time distribution, since proportionality factors
cancel in the expression for the cumulants. Therefore we
again expect a fixation-time distribution corresponding
to the weighted sum of two Gumbel distributions. Pre-
vious work indicates this prediction holds for infinite fit-
ness, where the fixation time on an Erdős-Rényi network
has a Gumbel distribution [38].

Preliminary simulations show that the Erdős-Rényi
network has the expected fixation-time distributions for
p = 1/4 and r = 2 (see Figure 7). Whether this re-
sult holds for the full range of fitness and edge proba-
bilities requires further investigation. It may be that for
some values of p and r the mean-field approximation is
not sufficient to capture the higher-order moments of the
distribution. In the same vein, what other networks ad-
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FIG. 7. Fixation-time distribution on an Erdős-Rényi ran-
dom graph with N = 100 nodes, edge probability p = 1/4,
and fitness r = 2, obtained from 106 simulation runs. The
distribution is standardized to zero mean and unit variance.
The solid curve is the theoretical prediction for the complete
graph, obtained by numerical convolution of two Gumbel dis-
tributions, one weighted by r. For these parameters, the ran-
dom graph fixation time is accurately captured by the mean
field approximation.

mit accurate mean-field approximations to the transition
probabilities? Do many complex networks have fixation-
time distributions identical to the complete graph?

Another nice approximation maps the Moran process
on a star graph, a simple amplifier of selection, onto a
birth-death Markov chain [15]. The resulting transition
probabilities exhibit coupon collection regions, similar to
the complete graph. The ratio of slopes near these re-
gions (few mutants or non-mutants), however, is r2. Our
heuristic predicts the fixation-time distribution on the
star is G+ r2G. In addition to amplifying fixation prob-
ability, the star increases fixation-time skew. This raises
a broader question: do evolutionary amplifiers also am-
plify fixation-time skew?

Similar mean-field arguments have also been applied to
d-dimensional lattices in the infinite-fitness limit [37, 38].
In this limit the population of mutants grows in an ap-
proximately spherical shape near the beginning of the
process and the population of non-mutants is approxi-
mately spherical near fixation. The surface area to vol-
ume ratio of the d-dimensional sphere gives the probabil-
ity of adding a mutant. With finite fitness non-mutants
can now replace their counterparts and the surface of
the sphere of growing mutants roughens [46]. For near-
neutral fitness, the configurations of mutants resembles
the shape of real cancerous tumors. Perhaps, by ex-
tending our theoretical framework, connections can be
made between the fitness-dependent roughness of a grow-
ing mutant population and fixation-time distributions for
Moran processes on lattices.
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Future Directions

Future studies could analyze random networks and lat-
tices more deeply, as well as stars, the prototypical evolu-
tionary amplifiers [5]. More sophisticated models involv-
ing evolutionary games are also of interest. These have
skewed fixation-time distributions [34] whose asymptotic
form remains unknown. Finally, we hope that meth-
ods developed here will prove useful in other areas, such
as epidemiology [47], ecology [48], and protein folding

[49], where stochastic dynamics may similarly give rise
to skewed first-passage times.
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Supplementary Information for “Fitness dependence of the fixation-time distribution
for evolutionary dynamics on graphs”

David Hathcock and Steven H. Strogatz

This SI is devoted to providing the mathematical details supporting the results quoted in the main text. We
start with the general theory for birth-death Markov chains. In Section S1 we show how to condition the transition
probabilities on fixation, producing a Markov chain with identical statistics that is guaranteed to reach fixation. This
result is used both in formulating the visit statistics approach (Section S2, which gives an exact series expression
for the fixation-time cumulants), and to derive a numerically efficient recurrence relation for calculating the fixation-
time skew (Section S3). In Sections S4 and S5 we apply these results to the Moran process on the one-dimensional
(1D) lattice and complete graph respectively. For the 1D lattice, we compute the asymptotic form of the fixation-time
cumulants for neutral fitness and prove the cumulants vanish for non-neutral fitness. For the complete graph, we show
the fixation-time skew under non-neutral fitness corresponds to that of a weighted convolution of Gumbel distributions
and derive the α→ 0 limit of the truncated fixation-time skew in the Moran process with neutral fitness.

S1: BIRTH-DEATH MARKOV CHAIN CONDITIONED ON FIXATION

For both the numerical recurrence relation and the visit statistics approach described in the main text (and detailed
below), it is useful to consider the birth-death Markov chain conditioned on hitting N , which has an identical fixation-

time distribution. This Markov chain has new conditioned transition probabilities b̃m and d̃m. If Xt is the state of
the system at time t, then b̃m = P(Xt = m → Xt+1 = m + 1|X∞ = N) and d̃m is defined similarly. Applying the
laws of conditional probability, we find that

b̃m =
P(Xt+1 = m+ 1 AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

=
P(X∞ = N |Xt = m+ 1)

P(X∞ = N |Xt = m)
P(Xt+1 = m+ 1|Xt = m)

=
P(X∞ = N |Xt = m+ 1)

P(X∞ = N |Xt = m)
bm,

(1)

where bm is the transition rate in the original Markov chain. Following the same procedure, we also find the backward
transition probabilities are related by

d̃m =
P(X∞ = N |Xt = m− 1)

P(X∞ = N |Xt = m)
dm. (2)

The conditioned Markov chain has a few nice properties. First, the fixation probability in the conditioned system
is one, by construction. This is particularly helpful for accelerating simulations of the Moran process. Conditioning
the transition probabilities also accounts for the normalization of the fixation-time distribution. Furthermore, this
operation only changes the relative probability of adding versus subtracting a mutant. The probability that the system
leaves a given state is unchanged:

b̃m + d̃m =
P(Xt+1 = m+ 1 AND Xt = m AND X∞ = N) + P(Xt+1 = m− 1 AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

= 1− P(Xt+1 = m AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

= 1− P(Xt+1 = m|Xt = m)

= bm + dm.

(3)

This invariance, along with Eqs. 1 and 2, shows that conditioning the Markov chain is equivalent to a similarity
transformation on the transient transition matrix with a diagonal change of basis:

Ω̃tr = S Ωtr S
−1 Smn = P(X∞ = N |Xt = m)δm,n, (4)
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where Ωtr is the birth-death transition matrix with absorbing states removed as defined in the main text (and in Eq. 7
below).

For the Moran Birth-death process considered in the main text, bm/dm = r. In this case, by setting up a linear
recurrence it is easy to show that the probability of fixation, starting from m mutants, is

P(X∞ = N |Xt = m) =
1− 1/rm

1− 1/rN
, (5)

so that

b̃m =
rm+1 − 1

rm+1 − r
bm, d̃m =

rm − r
rm − 1

dm. (6)

Note that we can scale the similarity matrix S by an overall constant, so it is convenient to choose Smn = (1 −
1/rm)δm,n. For the multi-fitness Moran Birth-Death model discussed in the main text fixation probabilities derived
by Kaveh et al. [1] can be used together with Eq. 4 to condition the Markov chain on fixation.

S2: VISIT STATISTICS

In this section we derive an exact series expression for the cumulants of the fixation time. This result requires
constant selection, bm/dm = r, as is the case for the Moran process. In terms of the probabilities bm and dm of adding
and removing mutants, the transient transition matrix is

[Ωtr]mn = bnδm,n+1 + dnδm,n−1 − (bn + dn)δm,n, (7)

for m,n = 1, 2, . . . , N − 1. As noted in the main text, when the constant selection condition holds this can be written
as ΩRWD, where D is diagonal with elements Dii = bi + di and ΩRW is the transition matrix for a random walk:

[ΩRW]nm =
r

1 + r
δm,n+1 +

1

1 + r
δm,n−1 − δm,n. (8)

Since we are interested in the fixation-time distribution, we want to condition on fixation occurring. From the preceding
section, we have that the conditioned transition matrix Ω̃tr = S Ωtr S

−1, where S is diagonal with Sii = 1 − 1/ri.
Combining these results, we have that

Ω̃tr = S ΩRW S−1D, (9)

where we have used the fact that both D and S are diagonal matrices, and therefore commute.
As discussed in the main text, using the conditioned transient transition matrix Ω̃tr, the fixation-time distribution

can be written as

fT (t) = −1 Ω̃tr exp(Ω̃trt)p(0), (10)

where 1 is a row vector of ones and p(0) is the initial state of the system. In what follows we will always take the initial
state to be a single mutant pm(0) = δm,1, but generalizations to other cases are straightforward. The corresponding
characteristic function is

φ(ω) := E[exp(iωT )] = 1 Ω̃tr (iω + Ω̃tr)
−1 p(0) (11)

and the derivatives (−i)nφ(n)(0) give the moments of T ,

mn := E[Tn] = (−1)nn!1 Ω̃−ntr p(0). (12)

To compute these moments, we need to compute Ω̃−1
tr = D−1S Ω−1

RWS
−1. Since ΩRW is a tridiagonal Toeplitz matrix,

its inverse has a well-known form [2]:

(−ΩRW )−1
ij =


(r + 1)(ri − 1)(rN − rj)

rj (r − 1)(rN − 1)
if i ≤ j,

(r + 1)(rj − 1)(rN − ri)
rj (r − 1)(rN − 1)

if i > j.

(13)
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Hence the matrix V = S Ω−1
RWS

−1 has elements

Vij =


(r + 1)(ri − 1)2(rN − rj)
ri (r − 1)(rj − 1)(rN − 1)

if i ≤ j,

(r + 1)(ri − 1)(rN − ri)
ri (r − 1)(rN − 1)

if i > j.

(14)

The matrix V , sometimes called the fundamental matrix, encodes the visit statistics of the conditioned random walk:
Vij is the mean number of visits to state i from state j before hitting the absorbing state N [3]. The Moran process
has the same visit statistics, but on average spends a different amount of time, designated by bi + di, waiting in each
state.

While one could now compute the moments mn in Eq. 12 directly, we have found that the cumulants yield nicer
expressions. Furthermore, the normal and Gumbel fixation-time distributions, predicted by our simulations and ap-
proximate calculations in the main text, are more simply described in terms of their cumulants. The non-standardized
cumulants κ′n are linear combinations involving products of moments whose orders sum to n. Thus each term in the
cumulants has n powers of D producing n factors of bi + di with a weight designated by the visit statistics. With this
observation, it is clear the standardized cumulants κn = κ′n/(κ

′
2)n/2 have the form given in the main text,

κn(N) =

 N−1∑
i1,i2,...,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)

/N−1∑
i,j=1

w2
ij(r,N)

(bi + di)(bj + dj)

n/2

, (15)

where wni1i2···in(r,N) are the weighting factors coming entirely from the visit statistics of a biased random walk.
We emphasize that even without explicit knowledge of the factors wni1i2···in(r,N), this formulation can be extremely
useful. For instance when bi + di = 1, these are just the cumulants for the biased random walk, which were computed
in the main text to approximate the Moran process on the 1D lattice. This fact can be used to bound the sums in
Eq.15, which in some cases is sufficient to determine the leading asymptotic behavior. When this is not possible, the
weighting factors must be computed. We derive w2

ij(r,N) and w3
ijk(r,N) below.

We can compute the weighting factors by writing out the matrix multiplication of Ω̃−1
tr . First note that

[−Ω̃−1
tr ]ij =

Vij
bi + di

. (16)

Then the first three moments of the fixation time are,

m1 =
N∑
i=1

Vi1
bi + di

m2 = 2
N∑

i,j=1

VijVj1
(bi + di)(bj + dj)

m3 = 6
N∑

i,j,k=1

VijVjkVk1

(bi + di)(bj + dj)(bk + dk)
.

(17)

The corresponding non-standardized cumulants are given by the usual formulas, κ′2 = m2 − m2
1 and κ′3 = m3 −

3m2m1 + 2µ3
1. In terms of the visit numbers the non-standardized cumulants become

κ′2 = 2
N∑

i,j=1

VijVj1 − Vi1Vj1
(bi + di)(bj + dj)

κ′3 = 6
N∑

i,j=1

VijVjkVk1 − 3VijVj1Vk1 + 2Vi1Vj1Vk1

(bi + di)(bj + dj)(bk + dk)
.

(18)

From here we can read off the weighting factors accordingly. For convenience, we can choose w2
ij(r,N) and w3

ijk(r,N)
to be symmetric by averaging the numerators in Eq. 18 over the permutations of the indices. Then,

w2
ij(r,N) =

∑
σ∈Π2

Vσ(1)σ(2)Vσ(2)1 − Vσ(1)1Vσ(2)1

w3
ijk(r,N) =

∑
σ∈Π3

Vσ(1)σ(2)Vσ(2)σ(3)Vσ(3)1 − 3Vσ(1)σ(2)Vσ(2)1Vσ(3)1 + 2Vσ(1)1Vσ(2)1Vσ(3)1,
(19)
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where Π2 is the set of permutations of {i, j} and Π3 are the permutations of {i, j, k}. Plugging Eq. 14 into the
expression for w2

ij we obtain, after some algebra,

w2
ij(r,N) =

(r + 1)2(rj − 1)2(rN − ri)2

ri+j (r − 1)2(rN − 1)2
, (20)

for i ≥ j. Since we have constructed w2
ij(r,N) to be symmetric, when j > i the formula is identical with i and j

exchanged. Similarly, using Eq. 14 together with the expression for w3
ijk in Eq. 19 leads to

w3
ijk(r,N) = 2

(r + 1)3(rk − 1)2(rj − 1)(rN − ri)2(rN − rj)
ri+j+k (r − 1)3(rN − 1)3

, (21)

for i ≥ j ≥ k. Again, the formula for different orderings of the indices i, j, k is the same with the indices permuted
appropriately, so that w3

ijk is perfectly symmetric.
This completes the derivation of the visit statistics expression for the fixation-time cumulants. Together, Eqs. 15,

20 and 21 give a closed form expression for the fixation-time skew which is manageable for the purpose of asymptotic
approximations. The diagonal terms in the higher-order weighting factors are also particularly simple, wnii···i(r,N) =
(n − 1)!V nii . While we will not explicitly compute them, the off diagonal weights wni1i2···in(r,N) can be found by a
straightforward generalization of the above procedure. Applications of this approach are given below, where we show
that all cumulants of the fixation time vanish for the Moran process on the 1D lattice and compute the asymptotic
skew for the Moran process on the complete graph.

S3: RECURRENCE RELATION FOR FIXATION-TIME SKEW

With the conditioned transition probabilities derived in Section S1, there is a reflecting boundary at m = 1, which
lets us set up a recurrence relation for the fixation-time moments. This derivation follows the method described by
Keilson in Ref. [4]. Let Sm(t) be the first passage time distribution from state m to state m+ 1. Clearly, S1(t) is an
exponential distribution,

S1(t) = b̃1e
−b̃1t. (22)

From m > 1, the state m + 1 can be reached either directly, with exponentially distributed times, or indirectly by
first stepping backwards to m− 1, returning to m, and then reaching m+ 1 at a latter time. Thus, the distributions
Sm(t) satisfy

Sm(t) = b̃me
−(b̃m+d̃m)t + d̃me

−(b̃m+d̃m)t ∗ Sm−1(t) ∗ Sm(t), (23)

where the symbol ∗ denotes a convolution of distributions. This equation can be solved by Fourier transform to obtain

Sm(ω) =
b̃m

iω + b̃m + d̃m − d̃mSm−1(ω)
. (24)

We can compute a recurrence relation for the moments of the first passage time distributions Sm(t) by differentiating
Eq. 24. Let µm, νm and γm to be the first, second, and third moments of Sm(t) respectively. Using the relations
µm = iS′(ω = 0), νm = iS′′(ω = 0), and γm = iS′′′(ω = 0), we find that

µm = b̃−1
m (1 + d̃mµm−1),

νm = b̃−2
m [b̃md̃mβm−1 + 2(1 + d̃mµm−1)2],

γm = b̃−3
m [b̃2md̃mγm−1 + 6b̃md̃mνm−1(1 + d̃mµm−1) + 6(1 + d̃mµm−1)3],

(25)

with boundary conditions µ0 = ν0 = γ0 = 0. The recurrence relations in Eq. 25 give the moments of incremental
first passage time distributions Sm(t). The total fixation time, T is the sum of these incremental first passage times.
Thus, the cumulants of T are the sum of the cumulants of the incremental times and the skew of T can be expressed
as,

κ3(N) =

(
N−1∑
m=1

γm − 3νmµm + 2µ3
m

)/(
N−1∑
m=1

νm − µ2
m

)3/2

. (26)

Numerical computation of for κ3(N) requires calculating the 3N moments and carrying out the two sums in Eq. 26.
By bottom-up tabulation of the incremental moments, this procedure can be completed in O(N) time, asymptotically
faster than the eigenvalue decomposition and the exact series solution from visit statistics.
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S4: ASYMPTOTIC ANALYSIS FOR THE 1D LATTICE

Neutral Fitness

As in the main text, we begin with the neutral fitness Moran process on a 1D lattice with periodic boundary
conditions. In this case, the eigenvalues of the transition matrix describing the system are,

λm =
1

N
− 1

N
cos

(
mπ

N

)
, m = 1, 2, . . . , N − 1. (27)

From the eigen-decomposition of the Markov birth-death process described in the main text, the standardized fixation-
time cumulants are given by

κn(N) = (n− 1)!

(
N−1∑
m=1

1

λnm

)/(
N−1∑
m=1

1

λ2
m

)n/2
. (28)

Note that the constant factor 1/N cancels in Eq. 28, so we may equivalently consider rescaled eigenvalues λm =
1− cos(mπ/N). To derive the asymptotic cumulants, we compute the leading asymptotic behavior of sums

Sn =
N−1∑
m=1

1

[1− cos(mπ/N)]n
. (29)

The function (1 − cosx)−n can be expanded as a Laurent series
∑∞
k=0 ck(n)x2(k−n), which is absolutely convergent

for x 6= 0 in the interval (−2π, 2π). So the sum Sn can then be expressed as

Sn =

N−1∑
m=1

∞∑
k=0

ck(n)

(
πm

N

)2(k−n)

=
∞∑
k=0

ck(n)(N/π)2(n−k)HN−1,2(n−k)

=
c0(n)ζ(2n)

π2n
N2n +O(N2(n−1))

(30)

where HN,q =
∑N
m=1m

−q is the generalized harmonic number and in the last line we used the asymptotic approxi-
mation

HN,2q =


ζ(2q) +O(N1−2q) q > 0,

N1−2q

2q + 1
+O(N−2q) q ≤ 0.

(31)

It is easy to check that c0(n) = 2n. Now the cumulants are κn(N) = (n− 1)!Sn/S
n/2
2 , which for N →∞ are

κn = (n− 1)!

(
2nζ(2n)

π2n

)/(
22ζ(4)

π4

)n/2
= (n− 1)!

ζ(2n)

ζ(4)n/2
,

(32)

as reported in the main text.

Non-neutral fitness

For non-neutral fitness, we showed in the main text that in the random walk approximation the fixation-time
distribution is asymptotically normal. Here we use the visit statistics approach to prove this holds even with the
variation in time spent in each state during the Moran process.
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To prove the fixation-time distribution is normal, we derive bounds on the sums

Sn =
N−1∑

i1,i2,...,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
(33)

that appear in Eq. 15 to show that κn(N) → 0 as N → ∞. First note that wni1i2···in(r,N) = (n − 1)!V nii ≥ 1 if
i1 = i2 = · · · = in ≡ i so we can trivially bound Sn from below by the sum over unweighted diagonal elements.
Furthermore, we claim that wni1i2···in(r,N) ≥ 0 for all i1, i2, . . . , in, since otherwise one could construct a birth-death
process with negative fixation-time cumulants. But from the eigen-decomposition of the birth-death process, described
in the main text, the fixation-time cumulants are all positive. Since bi + di is also positive for all i, the sums are
bounded from above by the maximum value of (bi + di)

−n times the sum over the weighting factors. Putting these
together, we obtain

N−1∑
i=1

1

(bi + di)n
≤ Sn ≤

(
max

1≤i<N

1

bi + di

)n
×

N−1∑
i1,i2,...,in=1

wni1i2···in(r,N). (34)

The Moran process on the 1D lattice has transition probabilities bi+di = (1+ r)/(rm+N −m). Then, as N →∞,
the lower bound is

N−1∑
i=1

1

(bi + di)n
=

1

(r + 1)n

N−1∑
m=1

(rm+N −m)n =
1 + r + r2 + · · ·+ rn

(n+ 1)(1 + r)n
Nn+1 +O(Nn). (35)

For the upper bound, first note that(
max

1≤i<N

1

bi + di

)n
= [r(N − 1) + 1]

n
= rnNn +O(Nn−1). (36)

The sums over the weighting factors give the (non-standardized) fixation-time cumulants corresponding to a process
with bi + di = 1 and uniform bias r. This is exactly the biased random walk model used to approximate the Moran
process in the main text. It follows that

N−1∑
i1,i2,...,in=1

wni1i2···in(r,N) = (n− 1)!
N−1∑
i=1

(
1

1− 2
√
r/(r + 1) cos(mπ/N)

)n
, (37)

where the denominators in the second sum are the eigenvalues of the transition matrix for the biased random walk,
λm = 1 − 2

√
r/(r + 1) cos(mπ/N). As in the main text, we can estimate the leading asymptotics of this sum by

converting to an integral,

N−1∑
i1,i2,...,in=1

wni1i2···in(r,N) =
N

π

∫ π

0

1

(1− 2
√
r/(1 + r) cosx)n

dx+O(1). (38)

Combining the results from Eqs. 34–36 and 38 we arrive at

1 + r + r2 + · · ·+ rn

(n+ 1)(1 + r)n
Nn+1 +O(Nn) ≤ Sn ≤

Nn+1

π

∫ π

0

1

(1− 2
√
r/(1 + r) cosx)n

dx+O(Nn). (39)

For each n, our upper and lower bounds have the same asymptotic scaling as a power of N , with different r-dependent
coefficients. Using these results together in Eq. 15, it follows that for N � 1, the cumulants to leading order are

κn(N) = Cn(r)
1

N (n−2)/2
+O(N−n/2), (40)

where Cn(r) is a fitness-dependent constant. Thus, indeed κn(N)→ 0 as N →∞.
This result confirms the claim made in the main text. Even with heterogeneity in the time spent in each state,

the skew and higher-order cumulants of the fixation time vanish asymptotically. Therefore, the Moran Birth-death
process on the 1D lattice with non-neutral fitness r > 1 has an asymptotically normal fixation-time distribution. The
normal distribution is universal, independent of fitness level for this population structure.
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S5: ASYMPTOTIC ANALYSIS FOR THE COMPLETE GRAPH

Non-neutral fitness

In the main text we predicted that the asymptotic fixation-time distribution for the Moran Birth-death process on
the complete graph is a convolution of two Gumbel distributions by applying our intuition from coupon collection.
Furthermore, our calculation of the fixation-time cumulants to arbitrary order in the large (but finite) fitness limit
agrees with this prediction. Surprisingly, numerical calculations using the recurrence relation formulated above and
direct simulations of the Moran process indicate that this result holds for all r > 1. In this section we prove, using the
visit statistics formulation, that the asymptotic skew of the fixation time for r > 1 is identical to that of a convolution
of Gumbel distributions. Based on our numerical evidence, we conjecture that an analogous calculation holds to all
orders. The below calculation also shows why the coupon collection heuristic works: the asymptotically dominant
terms come exclusively from the regions near fixation (m = N − 1) and near the beginning of the process when a
single mutant is introduced into the system (m = 1).

As for the 1D lattice, we want to derive the asymptotic behavior of the sums

Sn =
N−1∑

i1,i2,...,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
, (41)

where the transition probabilities bi and di are those for the Moran process on the complete graph,

bi + di =
(1 + r)i(N − i)

(N − 1)(ri+N − i)
. (42)

To start, consider the sums Eq. 41, but with two indices i1 and i2 constrained to integers from αN to (1 − α)N for
1/2 > α > 0. This sum may be written as

Sαn =

(1−α)N∑
i1,i2=αN

N−1∑
i3,··· ,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (43)

Now we may apply the upper bound in Eq. 34, except for the sums restricted to αN < i, j < (1−α)N the maximum
of (bi + di)

−1 can be restricted to this range,

Sαn ≤
(

max
1<i<N

1

bi + di

)n−2

×
(

max
αN<i<(1−α)N

1

bi + di

)2

×
N∑

i1,i2,··· ,in=1

wni1i2···in(r,N)

= Nn−1

{(
r

1 + r

)n−2(
r(1− α) + α

(1 + r)(1− α)α

)2

× 1

π

∫ π

0

1

(1− 2
√
r/(1 + r) cosx)n

dx

}
+O(Nn−2).

(44)

In the second line we used the integral approximation from Eq. 38 and evaluated the maximum of (bi+di)
−1 over the

indicated intervals. Since we constructed wni1i2···in(r,N) to be symmetric, this upper bound holds for any permutation
of the indices in Eq. 43.

We now consider the same sums but with 1 < i1 < αN or (1− α)N < i1 < N − 1,

Sα,1n =
αN∑
i1=1

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (45)

and

Sα,2n =
N−1∑

i1=(1−α)N

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wni1i2···in(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (46)

These sums can be estimated using the same upper bound, but without extending the sum on wni1i2···in(r,N) to the
entire domain. Specifically,

Sα,1n ≤ Nn−1

{(
r

1 + r

)n−1(
r(1− α) + α

(1 + r)(1− α)α

)}
×

αN∑
i1=1

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wni1i2···in(r,N) +O(Nn−2). (47)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496380doi: bioRxiv preprint 

https://doi.org/10.1101/496380


8

Note that the weighting factors fall off exponentially away from the diagonal elements. This is because the visit
numbers in the biased random walk become only very weakly correlated if the states are far away. Thus, the sum
in Eq. 47 over terms away from the diagonal elements converges to a constant as N → ∞. We have verified this
explicitly for w2

ij(r,N) and w3
ijk(r, n). The series Sα,2n is similarly bounded, as are all sums of the form Eq. 45 or 46

with the indices permuted.
The remaining terms in Sn involve all indices in either [1, αN ] or [(1 − α)N,N − 1]. If not all indices are in

the same interval, the weighting factors are exponentially small: the visit numbers near m = 1 are uncorrelated
with those near m = N − 1. Thus each term in the sum is exponentially suppressed and doesn’t contribute to Sn
asymptotically. With this observation only two parts of the sum remain: those with bounds 1 ≤ i1, i2 . . . in ≤ αN or
(1− α)N ≤ i1, i2 . . . in ≤ N − 1. We call the sums with these bounds Sc1n and Sc2n respectively. As we will see below,
the sums over these regions have leading order O(Nn). Since all the above terms are order O(Nn−1) or smaller,
the asymptotic behavior of the cumulants is entirely determined by these regions near the beginning and end of the
process, i.e. the coupon collection regions. The fact that we can restrict the sums to this region allows us to make
approximations that do not change the asymptotic behavior, but make the sums easier to carry out. For instance, in
Sc12 , we can set rN − ri → rN and (N − i)→ N , since the indices run only up to αN . This gives

Sc12 =
N2

(r − 1)2


αN∑
i=1

(ri − 1)2

i2r2i
+ 2

αN∑
i=1

i−1∑
j=1

(rj − 1)2

ij ri+j

+O(N)

=
N2ζ(2)

(r − 1)2
+O(N),

(48)

for N � 1. A similar approximation shows Sc22 = r2N2ζ(2)/(r − 1)2. For the third order sums, we find

Sc13 = 2
N3

(r − 1)3

{
αN∑
i=1

(ri − 1)3

i3r3i
+ 3

αN∑
i=1

i−1∑
j=1

(rj − 1)3

ij2ri+2j

+ 3
αN∑
i=1

i−1∑
j=1

(ri − 1)(rj − 1)2

i2jr2i+j
+ +6

αN∑
i=1

i−1∑
j=1

j−1∑
k=1

(rj − 1)(rk − 1)2

ijk ri+j+k

}
+O(N2)

= 2
N3ζ(3)

(r − 1)3
+O(N2),

(49)

for N � 1. Again the other sum, with indices near N − 1, is identical up to a factor of r3, Sc23 = r3ζ(3)/(r − 1)3.
Overall, we have that

S2 =
N2(1 + r2)ζ(2)

(r − 1)2
+O(N) and S3 =

2N3(1 + r3)ζ(3)

(r − 1)3
+O(N2). (50)

Then the asymptotic skew is given by

κ3 =
2(1 + r3)ζ(3)

(r − 1)3

/(
(1 + r2)ζ(2)

(r − 1)2

)3/2

=
1 + r3

(1 + r2)3/2
× 2ζ(3)

ζ(2)3/2
, (51)

which is exactly the skew corresponding to the convolution of Gumbel distributions with relative weighting given
by the fitness, G + rG. While evaluating the series to higher orders is increasingly difficult, our simulations and
the large-fitness approximation suggest this result holds to all orders and that indeed, the asymptotic fixation-time
distribution is a weighted convolution of Gumbel distributions.

Neutral fitness with truncation

As discussed in the main text, the neutral fitness Moran process on the complete graph has a fixation-time skew
that depends on the level of truncation. That is, the time Tα it takes for the process to reach αN mutants, where
0 ≤ α ≤ 1, has a distribution whose skew depends on α. Here we show that the α→ 0 limit of the fixation-time skew
equals

√
3.

To start, we take the neutral fitness limit of the weighting factors to obtain

w2
ij(1, αN) =

4k2(αN − j)2

α2N2
(52)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496380doi: bioRxiv preprint 

https://doi.org/10.1101/496380


9

for i ≥ j and

w3
ijk(1, αN) =

16kl2(αN − j)2(αN − k)

α3N3
(53)

for i ≥ j ≥ k, again with the expressions for other orderings obtained by permuting the indices accordingly. The
neutral fitness Moran process on the complete graph has transition probabilities bi+di = 2(Ni− i2)/(N2−N). Since
we are computing the truncated fixation-time skew, we use Eq. 15, but cut the sums off at αN . In this case, these
sums are dominated by the off-diagonal terms, so that

S2 =
αN∑
i,j=1

w2
ij(1, αN)

(bi + di)(bj + dj)
= 2

αN∑
i=1

i−1∑
j=1

j(αN − i)2(N − 1)2

α2i(N − i)(N − j)
+O(N3)

= 2
αN∑
i=1

i−1∑
j=1

j(αN − i)2

α2i
+O(N3)

=
α2N4

12
+O(N3),

(54)

where in the second line we approximated N − i and N − j by N . This approximation is exact in the limit α → 0
since the upper limit on the sum is αN , which is much smaller than N . Using analogous approximations, we find

S3 =
αN∑

i,j,k=1

w2
ijk(1, αN)

(bi + di)(bj + dj)(bk + dk)
= 6

αN∑
i=1

i−1∑
j=1

j−1∑
k=1

2k(αN − i)2(αN − j)(N − 1)3

α3i(N − i)(N − j)(N − k)
+O(N5)

= 12

αN∑
i=1

i−1∑
j=1

j−1∑
k=1

k(αN − i)2(αN − j)
α2i

+O(N5)

=
α3N6

24
+O(N5).

(55)

The asymptotic fixation-time skew as α→ 0 is therefore

κ3 =
α2N6/24

(α2N4/12)3/2
=
√

3, (56)

as claimed in the main text. This value agrees perfectly with our numerical calculations, which show the above
approximation breaks down when α ≈ 1/2. Above this threshold, the random walk causes mixing between the two
coupon collection regions, thereby lowering the overall skew of the fixation-time distribution toward the α = 1 value
of κ3 = 6

√
3(10− π2)/(π2 − 9)3/2 ≈ 1.6711.
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