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ABSTRACT

Multiple hypothesis testing is an essential component of modern data science. Its goal is to maximize the number of discoveries
while controlling the fraction of false discoveries. In many settings, in addition to the p-value, additional information/covariates
for each hypothesis are available. For example, in eQTL studies, each hypothesis tests the correlation between a variant
and the expression of a gene. We also have additional covariates such as the location, conservation and chromatin status of
the variant, which could inform how likely the association is to be due to noise. However, popular multiple hypothesis testing
approaches, such as Benjamini-Hochberg procedure (BH) and independent hypothesis weighting (IHW), either ignore these
covariates or assume the covariate to be univariate. We introduce AdaFDR, a fast and flexible method that adaptively learns
the optimal p-value threshold from covariates to significantly improve detection power. On eQTL analysis of the GTEx data,
AdaFDR discovers 32% and 27% more associations than BH and IHW, respectively, at the same false discovery rate. We prove
that AdaFDR controls false discovery proportion, and show that it makes substantially more discoveries while controlling FDR in
extensive experiments. AdaFDR is computationally efficient and can process more than 100 million hypotheses within an hour
and allows multi-dimensional covariates with both numeric and categorical values. It also provides exploratory plots for the user
to interpret how each covariate affects the significance of hypotheses, making it broadly useful across many applications.

Introduction
Multiple hypothesis testing is an essential component in many modern data analysis workflows. A very common objective
is to maximize the number of discoveries while controlling the fraction of false discoveries. For example, we may want to
identify as many genes as possible that are differentially expressed between two populations such that less than, say, 10% of
these identified genes are false positives.

In the standard setting, the data for each hypothesis is summarized by a p-value, with a smaller value presenting stronger
evidence against the null hypothesis that there is no association. Commonly-used procedures such as Benjamini-Hochberg
(BH)1 works solely with this list of p-values2–6. Despite being widely used, these multiple testing procedures fail to utilize
additional information that is often available in modern applications that are not directly captured by the p-value.

For example, in expression quantitative trait loci (eQTL) mapping or genome-wide association studies (GWAS), single
nucleotide polymorphism (SNP) in active chromatin state are more likely to be significantly associated with the phenotype7.
Such chromatin information is readily available in public databases8, but is not used by standard multiple hypothesis testing
procedures—it is sometimes used for post-hoc biological interpretation. Similarly, the location of the SNP, its conservation
score, etc., can alter the likelihood for the SNP to be an eQTL. Together such additional information, called covariates, forms a
feature representation of the hypothesis; this feature vector is ignored by the standard multiple hypothesis testing procedures.

In this paper, we present AdaFDR, a fast and flexible method that adaptively learns the decision threshold from covariates
to significantly improve the detection power while having the false discovery proportion (FDP) controlled at a user-specified
level. A schematic diagram for AdaFDR is shown in Figure 1. AdaFDR takes as input a list of hypotheses, each with a p-value
and a covariate vector. Conventional methods like BH use only p-values and have the same p-value threshold for all hypotheses
(Figure 1 top right). However, as illustrated in the bottom-left panel, the data may have an enrichment of small p-values for
certain values of the covariate, which suggests an enrichment of alternative hypotheses around these covariate values. Intuitively,
allocating more FDR budget to hypothesis with such covariates could increase the detection power. AdaFDR adaptively learns
such pattern using both p-values and covariates, resulting in a covariate-dependent threshold that makes more discoveries under
the same FDP constraint (Figure 1 bottom right).
Overview. AdaFDR extends conventional procedures like BH and Storey-BH (SBH)2, 3 by considering multiple hypothesis
testing with side information on the hypotheses. The input of AdaFDR is a set of hypotheses each with a p-value and a vector
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of covariates, whereas the output is a set of selected (also called rejected) hypotheses. For eQTL analysis, each hypothesis
is one pair of SNP and gene, and the p-value tests for association between their values across samples. The covariate can be
the location, conservation, and chromatin status at the SNP and the gene. The standard assumption of AdaFDR and all the
related methods is that the covariates should not affect the p-values under the null hypothesis (see the Methods section for more
discussion of this). AdaFDR learns the covariate-dependent p-value selection threshold by first fitting a mixture model using
expectation maximization (EM) algorithm, where the mixture model is a combination of a generalized linear model (GLM) and
Gaussian mixtures9–11. Then it makes local adjustments in the p-value threshold by optimizing for more discoveries. We prove
that AdaFDR controls FDP under standard statistical assumptions in Theorem 1. AdaFDR is designed to be fast and flexible
— it can simultaneously process more than 100 million hypotheses within an hour and allows multi-dimensional covariates
with both numeric and categorical values. In addition, AdaFDR provides exploratory plots visualizing how each covariate is
related to the significance of hypotheses, allowing users to interpret its findings. We also provide a much faster but slightly less
powerful version, AdaFDR-fast, which uses only the EM step and skips the subsequent optimization. It can process more
than 100 million hypotheses in around 5 minutes on a standard laptop.

We systematically evaluate the performance of AdaFDR across multiple datasets. We first consider the problem of eQTL
discovery using the data from the Genotype-Tissue Expression (GTEx) project7. As covariates, we consider the distance
between the SNP and the gene, the gene expression level, the alternative allele frequency as well as the chromatin states of the
SNP. Across all 17 tissues considered in the study, AdaFDR has an improvement of 32% over BH and 27% over the state-of-art
covariate-adaptive method independent hypothesis weighting (IHW)12, 13. We next consider other applications, including three
RNA-Seq datasets14–16 with the gene expression level as the covariate, two microbiome datasets17, 18 with ubiquity (proportion
of samples where the feature is detected) and the mean nonzero abundance as covariates, a proteomics dataset12, 19 with the
peptides level as the covariate, and two fMRI datasets20, 21 with the Brodmann area label22 as the covariate that represents
different functional regions of human brain. In all experiments, AdaFDR shows a similar improvement. Finally, we perform
extensive simulations, including ones from a very recent benchmark paper (Oct 31st 2018)18, to demonstrate that AdaFDR has
the highest detection power while controlling the false discovery proportion (FDP) in various cases where the p-values may be
either independent or dependent. The default parameters of AdaFDR are used for every experiment in this paper, both real data
analysis and simulations, without any tuning. In addition to the experiments, we theoretically prove that AdaFDR controls FDP
with high probability when the null p-values, conditional on the covariates, are independently distributed and stochastically
greater than the uniform distribution, a standard assumption also made by related literature13, 23, 24.
Related works. The problem of multiple hypothesis testing with covariates has recently been actively explored12, 13, 24–28.
These works assume that for each hypothesis, we observe not only a p-value Pi but also a general covariate xi which is meant to
capture the information on the significance of the hypothesis. However, the nature of this relationship is not known ahead of
time and must be learned from the data. IHW12, 13 groups the hypotheses into a pre-specified number of bins and applies a
constant threshold for each bin to maximize the discoveries. It is practical, well-received by the community, and can scale
up to 1 billion hypotheses. Yet it only supports the covariate to be univariate and uses a stepwise-constant function for the
threshold, which limits its detection power. AdaPT24 cleverly uses a p-value masking procedure to control FDR. While IHW
and AdaFDR need to split the hypotheses into multiple folds for FDR control, AdaPT can learn the threshold using virtually
the entire data. However, such p-value masking procedure takes many iterations of optimization, and can be computationally
expensive. Hence, while having high detection power, AdaPT usually takes a long time to run. AdaFDR is designed to achieve
the best of both worlds: it has a speed comparable to IHW while using a flexible modeling strategy to have greater detection
power than AdaPT.

There are also other methods in the field tailored for specific applications, where the domain knowledge can be used to
increase the detection power. For example, gene set enrichment analysis (GSEA)29 uses the gene pathway information to
identify classes of genes that are over-represented in a given set of genes. A recent work integrates genomic annotations into a
Bayes hierarchical model to increase detection power in eQTL study30. Another incorporates phylogenetic tree information
into a Bayesian model to increase the detection power in microbiome-wide multiple testing31. Compared to these methods,
AdaFDR does not assume any prior knowledge about the covariates and learns the decision threshold in a completely data-
driven manner. Hence, it is a more general approach that has a wider range of applications. Some other related works include
non-adaptive p-value weighting32–34, 34, 35, estimation of the covariate-dependent null proportion36–38, and estimation of the
local false discovery rate39–43.

AdaFDR is the mature development of and subsumes a previous, preliminary method that we called NeuralFDR27. Instead
of using a neural network to model the discovery threshold as in NeuralFDR, AdaFDR uses a mixture model that lacks some
flexibility but is much faster to optimize — for the GTEx data used in the NeuralFDR paper, it takes NeuralFDR 10+ hours
to process but only 9 minutes for AdaFDR. Yet, AdaFDR maintains similar discovery power on the benchmark data used to test
NeuralFDR (Supplementary Figure 3b). We systematically evaluated AdaFDR on many more settings and experiments than
what was done for NeuralFDR.

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496372doi: bioRxiv preprint 

https://doi.org/10.1101/496372
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results
Discovering eQTLs in GTEx
We first consider detecting eQTLs using data from GTEx7. The GTEx project has collected both genetic variation data (SNPs)
and gene expression data (RNA-Seq) from 44 human tissues, with sample sizes ranging from 70 (uterus) to 361 (muscle
skeletal). Its goal is to study the associations between genotype and gene expression across humans. Each hypothesis test is
to test if there is a significant association between a SNP and a gene, also referred to as an eQTL. A standard caveat is that
a selected eQTL (either through small p-value or a FDR procedure) may not be a true causal SNP — it could tag a nearby
causal SNP due to linkage disequilibrium. We should interpret the selected eQTLs with care; nonetheless, it is still valuable to
discover candidate associations and local regions with strong associations while controlling FDR12.

We focus on cis-eQTLs where the SNP and the gene are close to each other on the genome (< 1 million base pairs).
Previous works provide evidence that various covariates could be associated with the significance of cis-eQTLs7, 30, 44, 45. In
this study, we consider four covariates for each SNP-gene pair: 1) the distance from SNP to gene transcription start site (TSS);
2) the log10 gene expression level; 3) the alternative allele frequency (AAF) of the SNP; 4) the chromatin state of the SNP.
Out of 44 tissues, we selected 17 whose chromatin state information is available8 and have more than 100 samples. For each
tissue, p-values for all associations are tested simultaneously with numbers of hypotheses ranging from 140 to 180 million for
different tissues, imposing a very-large-scale multiple hypothesis testing problem. We use a nominal FDR level of 0.01. Such
experiments of testing all SNP-gene pairs simultaneously are also performed in12, 13. An alternative analysis workflow is to first
discover significant genes (eGenes) and then match significant SNPs (eVariants) for each eGene30.

As shown in Figure 2a, AdaFDR and its fast version consistently make more discoveries than other methods in every
tissue. On average, it has an improvement of 32% over BH and 27% over IHW. Next we investigate whether using the eQTL
p-values of an existing tissue could boost the power of discovering eQTLs in a new tissue. To simulate this scenario, we
consider specifically the two adipose tissues, Adipose_Subcutaneous and Adipose_Visceral_Omentum. For each of them,
we use the -log10 p-values from the other tissue as an additional covariate— e.g. for Adipose_Subcutaneous, the -log10
p-value of Adipose_Visceral_Omentum is used as an extra covariate. Leveraging previous eQTL results substantially increases
discovery power (Figure 2b); the p-value augmentation (AdaFDR (aug)) yields 56% and 83% more discoveries for the two
adipose tissues compared to BH. We then perform a control experiment, where the augmented p-values, instead of coming from
the other adipose tissue that is similar to the one under investigation, are from a brain tissue (Brain_Caudate_basal_ganglia)
that is very different from the adipose tissue (Figure 2 in the GTEx paper7). In this case, the improvement in the number
of discoveries due to the extra covariate vanishes for the two tissues (AdaFDR (ctrl), which is consistent with the idea that
AdaFDR learns to leverage shared genetic architecture in closely related tissues to improve power. This analysis suggests that
we can potentially greatly improve eQTL discovery by leveraging related tissues during multiple hypothesis testing. We provide
additional supporting experiments for the two colon tissues in Supplementary Figure 1a.

AdaFDR also characterizes how each covariate affect the significance level of the hypotheses. The results for Adi-
pose_Subcutaneous are shown in Figure 2c as an example. We first consider the distance from TSS and the top-left panel
provides a simple visualization, where for each hypothesis (downsampled to 10k), the p-values are plotted against the distances
from TSS. There is a strong enrichment of small p-values when the distance is close to 0, indicating that the SNP and gene
are more likely to have a significant association if they are close to each other. In the top-center panel, AdaFDR characterizes
such relationship by providing estimates of the null hypothesis distribution (blue) and the alternative hypothesis distribution
(orange), with respect to the distance from TSS. It learns that an alternative hypothesis is more likely to appear at the center,
where the distance from TSS is small, consistent with previous works7, 44.

AdaFDR interprets other covariates in a similar fashion. Figure 2c top-right panel indicates that genes with higher
expression levels are more likely to have significant associations, in agreement with previous observations12, 24. SNPs with
AAF close to 0.5 are also more likely to have significant associations. In addition, the bottom-center panel indicates that SNPs
with active chromatin states—Tx (strong transcription), TxWk (weak transcription), TssA (active TSS)—are more likely to
have significant associations as compared to SNPs with inactive states—Quies (quiescent), ReprPC (repressed PolyComb)
ReprPCWk (weak repressed PolyComb). Finally, the bottom-right panel shows that p-values from the augmented tissue
Adipose_Visceral_Omentum are positively correlated with the significance of the associations. See Supplementary Figure 1b
for analogous results on the Colon_Sigmoid tissue.

We use adipose eQTL data from the Multiple Tissue Human Expression Resource (MuTHER) project46 to validate our GTEx
eQTL discoveries. The participants in MuTHER are disjoint from the GTEx participants, making MuTHER an independent
dataset. For this analysis, we compare the testing results of AdaFDR on Adipose_Subcutaneous with that of Storey-BH (SBH),
which is known to be a better baseline than BH. As shown in the top panel of Figure 2d, AdaFDR detects almost all discoveries
made by SBH while having 26% more discoveries. The p-values of these discoveries are shown in the middle panel of Figure 2d,
where x-axis is the p-value quantile and y-axis is the -log10 p-value. Hypotheses discovered by both methods have significantly
smaller GTEx p-values while SBH-only p-values are smaller than AdaFDR-only p-values in the GTEx data; the latter is due to
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the fact that SBH uses the same threshold for all p-values. On the MuTHER validation data, the eQTLs discovered only by
AdaFDR have more significant p-values than the eQTLs discovered only by SBH. This reveals a counter-intuitive behaviour
of AdaFDR: it rejects some hypotheses with larger p-values if these SNPs have covariates that indicate a higher likelihood
of eQTL. The MuTHER data validates this strategy—AdaFDR is able to discover more eQTLs on GTEx and the discovered
eQTLs have more significant replication results on MuTHER.

AdaFDR can be broadly applied to any multiple testing problem where we have covariates for the hypotheses. This includes
many highthroughput biological studies beyond eQTL. Here we evaluate its applications to RNA-seq, microbiome, proteomics
and fMRI imaging data. In all cases, AdaFDR significantly outperforms current state-of-the-art methods.

Small GTEx data
AdaPT cannot be run on the full GTEx data due to its computational limitations. In order to perform a direct comparison
between AdaFDR and AdaPT, we created a small GTEx data that contains the first 300k associations from chromosome 21 for
the two adipose tissues. Even this small data takes AdaPT around 15 hours to process compared to less than 20 minutes for
other methods. As shown in Figure 3a, AdaFDR has most number of discoveries in both experiments while AdaPT has slightly
less. In addition, all covariate-adaptive methods have significant improvement over the non-adaptive methods (BH, SBH).

RNA-Seq data
We considered three RNA-Seq datasets that were used for differential expression analysis in AdaPT and IHW, i.e. the Bottomly
data15, the Pasilla data16 and the airway data14. Here, the log expression level is used as the covariate, and the FDR level is set
to be 0.1. The results are shown in Figure 3a, where AdaFDR and AdaPT have a similar number of discoveries (AdaFDR is
consistently higher), and both are substantially more powerful than others. All covariate-adaptive methods make significantly
more discoveries than the non-adaptive methods. In addition, the covariate patterns learned by AdaFDR are shown in Figure 3b
for the Bottomly data and the Pasilla data, and in Supplementary Figure 2c for the airway data. The alternative hypotheses are
more likely to occur when the expression levels are high, consistent with previous findings12, 13, 24.

Microbiome data
We considered a subset of microbiome data from the Ecosystems and Networks Integrated with Genes and Molecular Assemblies
(ENIGMA), where samples were acquired from monitoring wells in a site contaminated by former waste disposal ponds and all
sampled wells have various geochemical and physical measurements17, 18. Following the original study, we performed two
experiments to test for correlations between the operational taxonomic units (OTUs) and the pH, Al respectively. Ubiquity
and the mean nonzero abundance are used are covariates, where the ubiquity is defined as the proportion of samples in which
the OTU is present. The FDR level is set to be 0.2 for more discoveries and the fast version of AdaFDR is used due to the
small sample size. As shown in Figure 3a, AdaFDR is significantly more powerful than other methods. The covariates are
visualized in Figure 3c for the pH test and Supplementary Figure 2b for the Al test. The alternative hypotheses are more likely
to occur when both the ubiquity and the mean nonzero abundance are high. This may be because that a higher level of these
two quantities improves the detection power similar to the expression level in the RNA-Seq case.

Proteomics data
We considered a proteomics dataset where yeast cells treated with rapamycin were compared to yeast cells treated with dimethyl
sulfoxide (2×6 biological replicates)12, 19. Differential abundance of 2,666 proteins is evaluated using Welch’s t-test. The
total number of peptides is used as covariate that is quantified across all samples for each protein. The FDR level is set to be
0.1 and the fast version of AdaFDR is used due to the small sample size. As shown in Figure 3a, AdaFDR is significantly
more powerful than other methods. The covariate is visualized in Figure 3d where a higher level of peptides increases the
likelihood for the alternative hypotheses to occur. This is expected since the peptides level is similar to the expression level in
the RNA-Seq data.

fMRI data
We considered two functional magnetic resonance imaging (fMRI) experiments where the human brain is divided spatially
into isotropic voxels and the null hypothesis for each voxel is that there is no response to the stimulus20. The first experiment
was done on a single participant with auditory stimulus and the second was done on a healthy adult female participant where
the stimulus was to ask the person to imagine playing tennis21. We use the Brodmann area label, which represents different
functional regions of the human brain22, as covariate for each voxel. The FDR level is set to be 0.1 and the fast version of
AdaFDR is used due to the inflation of p-values at 1. As shown in Figure 3a, AdaFDR is significantly more powerful than other
methods. The result of AdaPT is omitted since it does not support categorical covariates, and directly running the GAM model
yields a result much worse than BH. The covariate is visualized in Figure 3e. For the auditory experiment, the Brodmann areas
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corresponding to auditory cortices, namely 41, 42, 22, are among areas where the alternative hypotheses are most likely to
occur. For the tennis imagination experiment, multiple cortices seem to respond to this stimulus, including auditory cortex (42),
visual cortices (18,19), and motor cortices (4,6,7).

Simulation studies
In order to systematically quantify the FDP and power of all the methods, we conducted extensive analysis of synthetic data
where we know the ground truth. Each experiment is repeated 10 times and 95% confidence intervals are provided. In Figure
4a, the top two panels correspond to a simulated data with one covariate while the bottom two panels correspond to a simulated
data with weakly-dependent p-values generated according to a previous paper4. In both simulations, all methods control FDR
while AdaFDR has significantly larger power. Additional simulation experiments with strongly-dependent p-values and higher
dimensional covariates can be found in Supplementary Figure 4a, where similar results are observed. Detailed descriptions of
the synthetic data can be found in Supplementary Section 3.

We also investigate the running time of different methods. In Figure 4b, all experiments are repeated 5 times and the 95%
confidence intervals are provided. The top panel uses a simulated dataset with 2d covariate, with the number of hypotheses
varying from 20k to 100k. AdaFDR-fast takes 10s to run while both AdaFDR and IHW finished within a reasonable time of
around 100s. AdaPT, however, needs a few hours to finish, significantly slower than other methods. In the bottom panel, the
number of hypotheses is fixed to be 50k and the covariate dimension varies from 2 to 8; a similar result is observed.

After we have finished our initial paper, a very recent work18 on the bioRxiv (October 31, 2018) proposed a new set of
benchmark experiments to compare state-of-the-art multiple testing methods including IHW, AdaPT and an additional method
of Boca-Leek (BL) that is on the bioRxiv47. We use their main simulation benchmark that includes two RNA-Seq in silico
experiments, one experiment with uninformative covariate, and another two experiments that vary the number of hypotheses
and the null proportion respectively. We run AdaFDR on this benchmark without any modification or tuning; AdaFDR achieves
greater power than all other methods while controlling FDR (Supplementary Figure 4, 5). AdaFDR reduces to SBH when the
covariate is not informative, indicating that it is not overfitting the uninformative covariate (Supplementary Figure 4e).

Discussion
Here we propose AdaFDR, a fast and flexible method that efficiently utilizes covariate information to increase detection power.
Extensive experiments show that AdaFDR has greater power than existing approaches while controlling FDR. We discuss some
of its characteristics and limitations.

Our theory proves that AdaFDR controls FDP in the setting when the null hypotheses are independent (the alternative
hypotheses can have arbitrary correlations, see Theorem 1). This is a standard assumption also used in BH, SBH, IHW and
AdaPT. To check the robustness of AdaFDR when there is model mismatch, we have performed systematic simulations with
different p-value correlation structures to demonstrate that AdaFDR still controls FDP even when the null hypotheses are
not independent. Moreover, although there are correlations among SNPs in the eQTL study, we show that the discoveries
made by AdaFDR on the GTEX data replicate well on the independent MuTHER data with a different cohort. These suggest
that AdaFDR behaves well when there is a dependency between null p-values. Since none of the other methods popular
methods—BH, SBH, IHW, AdaPT—provides FDR control under arbitrary dependency, our comparison experiments are fair.
AdaFDR can potentially be extended to allow arbitrary dependency using a similar idea as discussed in IHW13. Specifically,
hypotheses should be split in such a way that the p-values from the two folds are independent, though they may have dependency
within each fold. As a result, the learned threshold is independent of the fold it is applied onto. Then ideas discussed in the
Benjamini-Yekutieli paper6 can be used to scale the threshold to allow arbitrary dependency13.

The typical use-case for AdaFDR is when there are many hypotheses to be tested simultaneously — ideally more than 10k.
This is because AdaFDR needs many data to learn the covariate-adaptive threshold and to have an accurate estimate of FDP. A
similar recommendation on the number of hypotheses is also made for IHW. When we have a smaller number of hypotheses,
the discoveries are still valid but need to be treated with precaution — ideally with some orthogonal validations.

The scalability of AdaFDR and its ability to handle multivariate discrete and continuous covariates makes it broadly
applicable to any multiple testing applications where additional information is available. While we focus on genomics
experiments in this paper—because most of the previous methods were also evaluated on genomics experiments — it would be
interesting to also apply AdaFDR to other domains such as imaging association analysis.

Methods
Definitions and notations
Suppose we have N hypothesis tests and each of them can be characterized by a p-value Pi, a d-dimensional covariate xi, and a
indicator variable hi with hi = 1 representing the hypothesis to be true alternative. Then the set of true null hypotheses H0
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and the set of true alternative hypotheses H1 can be written as H0 = {i : i ∈ [N],hi = 0} and H1 = {i : i ∈ [N],hi = 1}, where

we adopt the notation [N]
de f
= {1,2, · · · ,N}. Given a threshold function t(x), we reject the itth null hypothesis if Pi ≤ t(xi).

The number of discoveries D(t) and the number of false discoveries FD(t) can be written as D(t)
de f
= ∑i∈[N] I{Pi≤t(xi)} and

FD(t)
de f
= ∑i∈H0

I{Pi≤t(xi)}. The false discovery proportion (FDP) is defined as FDP(t)
de f
= FD(t)

D(t)∨1 , where a∨ b
de f
= max(a,b).

The expected value of FDP is the false discovery rate (FDR): FDR = E[FDP]23.

Multiple testing via AdaFDR
AdaFDR can take as input multi-dimensional covariates x. The key assumption is that the null p-values remain uniform
regardless of the covariate value while others, including the alternative p-values and the likelihood for the hypotheses to be
true null/alternative, may have arbitrary dependencies on the covariate. This is a standard assumption in the literature12, 23, 24.
For example, in the case of AAF, the null p-values are uniformly distributed independent of AAF since the gene expression
has no association with the SNP under the null hypothesis. However, the alternative p-values may depend on AAF since the
associations are easier to detect/yield smaller p-values if the AAF is close to 0.5.

AdaFDR aims to optimize over a set of decision rules t(x) ∈ T to maximize the number of discoveries, subject to the
constraint that the FDP is less than a user-specified nominal level α . Conceptually, this optimization problem can be written as

maximize
t∈T

D(t), s.t. FDP(t)≤ α. (1)

There are three challenges in this optimization problem: 1. the set of decision thresholds T needs to be parameterized in such a
way that both captures the covariate information and scales well with the covariate dimension; 2. the actual FDP is not directly
available from the data; 3. direct optimization of (1) may cause overfitting and hence lose FDR control.

For the first challenge, intuitively, the decision threshold should have large values where the alternative hypotheses are
enriched. Such enrichment pattern, as discussed the NeuralFDR paper27, usually consists of local “bumps” at certain covariate
locations and a global “slope” that represents generic monotonic relationships. For example, the distance from TSS and the
AAF in Figure 2c correspond to the bump structure (at 0 and 0.5 respectively) whereas the rest of the covariates correspond
to the slope structure. AdaFDR addresses these two structures by using a mixture of generalized linear model (GLM) and
K-component Gaussian mixture (with diagonal covariance matrices), i.e.,

t(x) = exp(aT x+b)+
K

∑
k=1

exp
[
wk− (x−µµµk)

T diag(σσσ k)(x−µµµk)
]
, (2)

where diag(σσσ k) represents a diagonal matrix with diagonal elements specified by the d-dimensional vector σσσ k. The set of
parameters to optimize can be written as {a ∈ Rd ,b ∈ R,{wk ∈ R,µµµk ∈ Rd ,σσσ k ∈ Rd}K

k=1}. We choose to use the diagonal
covariance matrices for Gaussian mixture to speed up the optimization. As a result, the number of parameters grows linearly
with respect to the covariate dimension d, and the parameters can be easily initialized via EM algorithm, as described below.

For the second challenge, we use a “mirror estimator” to estimate the number of false discoveries of a given threshold
function t,

mirror estimator: F̂D(t)
de f
=

N

∑
i=1

I{Pi≥1−t(xi)}.

Such estimator has been used in recent works24, 27, 48, 49 and yields a conservative estimate of the true number of false discoveries
(FD), in the sense that its expected value is larger than that of the true FD under mild assumptions (Lemma 1 in Supplementary

Materials). Furthermore, FDP can be simply estimated as F̂DP(t) = F̂D(t)
D(t) .

For the third challenge, AdaFDR controls FDP with high probability via hypothesis splitting. The hypotheses are randomly
split into two folds; a separate decision threshold is learned on each fold and applied on the other. Since the learned threshold
does not depend on the fold of data onto which it is applied, FDP can be controlled with high probability — such statement is
made formal in Theorem 1. We note that in multiple testing by AdaFDR, the learning-and-testing process is repeated twice,
with each fold being the training set at one time and the testing set at the other. Figure 5 shows one of such process with fold 1
being the training set.

The full algorithm is described in Algorithm 1. Here, for example, Dtrain(t), Dtest(t) are understood as the number of
discoveries on the training set and the testing set respectively. Similar notations are used for other quantities like FDP(t) and
the mirror estimate F̂DP(t) without explicit definition.

AdaFDR follows a similar strategy as our preliminary work NeuralFDR27, which it subsumes: both methods use the
mirror estimator to estimate FDP and use hypothesis splitting for FDP control. The main difference is on the modeling of the
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Algorithm 1 AdaFDR for multiple hypothesis testing

1: Randomly split the data D = {(Pi,xi)}N
i=1 into two folds D = D1∪D2 of equal size.

2: for ( j, j′) = (1,2),(2,1) do
3: Set D j to be the training set and D j′ the testing set.
4: Learn the decision threshold t∗(x) on the training set by optimizing

maximize
t

Dtrain(t) s.t. F̂DPtrain(t)≤ α. (3)

5: Compute the best rescale factor γ∗ on the testing set

γ
∗ = sup

γ>0
{γ : F̂DPtest(γt∗)≤ α}. (4)

6: Reject the hypotheses R j′ = {i : i ∈D j′ ,Pi ≤ γ∗t∗(xi)}.
7: Report discoveries on both folds R = R1∪R2.

decision threshold t: NeuralFDR uses a neural network, which is flexible enough but hard to optimize. AdaFDR, in contrast,
adopts the simpler mixture model that may lack certain flexibility but is much easier to optimize. This change of modeling,
however, does not seems to reduce much of the detection power for AdaFDR. As shown in Supplementary Figure 3b, the
performance of AdaFDR is similar to that of NeuralFDR, while AdaFDR is orders of magnitude faster.

Optimization
Recall that the optimization is done solely on the training set Dtrain. Substituting FDP in (1) with its mirror estimate we can
rewrite the optimization problem as

maximize
t∈T

Dtrain(t), s.t.
F̂Dtrain(t)
Dtrain(t)

≤ α, (5)

where T , the set of decision thresholds to optimize over, corresponds to the mixture model (2). Our strategy is to first compute
a good initialization point and then perform optimization by gradient descent on a relaxed problem. We note that a better
solution to the optimization problem will give a better detection power. However, the FDP control guarantee holds regardless
of the decision threshold we come up with.

• Initialization: Let π0(x) and π1(x) be the distributions for the null hypotheses and the alternative hypotheses, over the
covariate x, respectively. Following the intuition that the threshold t(x) should be large when the number of alternative
hypotheses is high and the number of null hypotheses is low, it is a good heuristic to let

t(x) ∝
π1(x)
π0(x)

.

This is done in AdaFDR as follows. First, covariates with p-values larger than 0.75, i.e. {xi : i ∈Dtrain,Pi ≥ 0.75}, are
treated as an approximate ensemble of the null hypotheses, and those with p-values smaller than the BH threshold, i.e.
{xi : i ∈ Dtrain,Pi ≤ tBH}, are treated as an approximate ensemble of the alternative hypotheses. Then first, a mixture
model same as (2) is fitted on the null ensemble {xi : i ∈Dtrain,Pi ≥ 0.75} using EM algorithm, resulting in an estimate of
the null hypothesis distribution π̂0(x). Second, each point in the alternative ensemble {xi : i ∈Dtrain,Pi ≤ tBH} receives a
sample weight 1/π̂0(x). Last, the mixture model (2) is fitted on the weighted alternative ensemble using EM algorithm to
obtain the final initialization threshold. The details of the EM algorithm can be found in Supplementary SubSection 2.3.

• Optimization: First, a Lagrangian multiplier is used to deal with the constraint:

minimize
t∈T

−Dtrain(t)+λ1[F̂Dtrain(t)−αDtrain(t)]∨0, (6)

where λ1 is chosen heuristically to be 10/α . Second, the sigmoid function is used to deal with the discontinuity of the

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496372doi: bioRxiv preprint 

https://doi.org/10.1101/496372
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicator functions in Dtrain(t) and F̂Dtrain(t):

Dtrain(t) = ∑
i∈Dtrain

I{Pi≤t(xi)} ≈ ∑
i∈Dtrain

S[λ0(t(xi)−Pi)],

F̂Dtrain(t) = ∑
i∈Dtrain

I{Pi≥1−t(xi)} ≈ ∑
i∈Dtrain

S[λ0(Pi−1+ t(xi))],

where S(·) = 1
1+e−x is the sigmoid function and λ0 is automatically chosen at the beginning of the optimization such that

the smoothed versions are good approximations to the original ones. Finally, the Adam optimizer50 is used for gradient
descent.

FDP control
We would like to point out that the mirror estimate is more accurate when its value is large. Hence, when the number of
rejections is small (<100), the result should be treated with precaution. However, this should not be a major concern since in
the target applications of AdaFDR, usually thousands to millions of hypotheses are tested simultaneously, and hundreds to
thousands of hypotheses are rejected. In those cases, the mirror estimate is accurate. Hence, we further require that for each
fold, the best scale factor γ∗ should have a number of discoveries exceeding c0N for some pre-specified small proportion c0;
failing to satisfy this condition will result in no rejection in this fold. In other words, we consider a modified version of Alg. 1
with (4) substituted by setting

γ
∗ = sup

γ>0
{γ : F̂DPtest(γt∗)≤ α,Dtest(γt∗)≥ c0N}∪{0}. (7)

Our FDP control on this modified version can be stated as follows.

Theorem 1. (FDP control) Assume that all null p-values Pi ∈H0, conditional on the covariates, are independently and
identically distributed (i.i.d.) following Unif[0,1]. Then with probability at least 1-δ , AdaFDR with the modification (7)

controls FDP at level (1+ ε)α , where ε = O
(√

log 1
δ

αN

)
.

The assumption made in Theorem 1 is standard in the literature13, 24 and can be easily relaxed to the assumption that the null
p-values, conditional on the covariates, are independently distributed and stochastically greater than Unif[0,1] (Supplementary
SubSection 4.1). In addition, Theorem 1 is strictly stronger than the one for NeuralFDR (Supplementary SubSection 2.2).

Covariate visualization via AdaFDR_explore
AdaFDR also provides a FeatureExplore function that can visualize the relationship between each covariate and the
significance of hypotheses, in terms of estimated distributions for the null hypothesis and the alternative hypothesis with respect
to each covariate, as those shown in Figure 2c and Figure 4b. This is done as follows. First, for the entire dataset, covariates
with p-values greater than 0.75, i.e. {xi : i ∈ [N],Pi ≥ 0.75}, are treated as an approximate ensemble of the null hypotheses,
and those with p-values less than the BH threshold, i.e. {xi : i ∈ [N],Pi ≤ tBH}, are treated as an approximate ensemble of
the alternative hypotheses. Then, the null hypothesis distribution and the alternative hypothesis distribution are estimated
from these two ensembles using kernel density estimation (KDE) for continuous covariates and simple count estimator for
categorical covariates. In addition, for categorical covariates, the categories are reordered based on the ratio between the
estimated alternative probability and null probability π̂1(x)/π̂0(x).
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Figures

hypothesis p-value covariate
H1 p1 [x11, x12, …]

H2 p2 [x21, x22, …]

H3 p3 [x31, x32, …]

H4 p4 [x41, x42, …]

… … …

input data

conventional method

• uses only p-values 
• same threshold t for 

all p-values 

high density of small p-values suggests 
more alternative hypotheses   

AdaFDR

• uses both p-values and 
covariates 

• covariate-dependent 
threshold t(x) 

Figure 1. Intuition of AdaFDR. Top-left: As input, AdaFDR takes a list of hypotheses, each with a p-value and a covariate
that could be multi-dimensional. Bottom-left: A toy example with a univariate covariate. The enrichment of small p-values in
the bottom-right corner suggests that there are more alternative hypotheses there. Leveraging this structure can lead to more
discoveries. Top-right: Conventional method uses only p-values and has the same p-value threshold for all hypotheses.
Bottom-right: AdaFDR adaptively learns the uneven distribution of the alternative hypotheses, and makes more discoveries
while controlling the false discovery proportion (FDP) at the desired level (0.1 in this case).
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Figure 2. Analysis of the GTEx data. (a) Results of 17 tissues considered in the study. AdaFDR and its fast version
consistently make more discoveries than other methods. (b) Results on the two adipose tissues where the -log10 p-value from
another tissue was added as an extra covariate. Using p-values from a similar tissue (AdaFDR (aug)) yields significantly more
discoveries than using p-values from an unrelated tissue (AdaFDR (ctrl)). (c) Top-left: P-values (y-axis) plotted against the
distances from TSS (x-axis); each dot corresponds to one SNP-gene pair. Small p-values at the center suggest that hypotheses
with smaller distances from TSS are more likely to be significant. Other panels: AdaFDR-estimated null hypothesis
distribution (blue) and alternative hypothesis distribution (orange) with respect to each covariate. Higher values of the orange
distribution suggest an enrichment of alternative hypotheses. (d) Top: Discoveries made by SBH and AdaFDR. Middle: The
p-values of these discoveries—SBH-only p-values are smaller than AdaFDR-only p-values on GTEx. Bottom: The p-values of
the same set of discoveries on the independent MuTHER data, where AdaFDR-only p-values are smaller than SBH-only
p-values, suggesting that AdaFDR-only discoveries are more likely to be true discoveries.
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Figure 3. (a) The number of discoveries of various methods on two small GTEx eQTL datasets, three RNA-Seq differential
expression datasets, two microbiome datasets, one proteomics dataset, and two fMRI datasets. The fMRI results for AdaPT are
omitted since the AdaPT software does not support categorical covariates. (b) Covariate visualization for RNA-Seq datasets. (c)
Covariate visualization for microbiome dataset. (d) Covariate visualization for proteomics dataset. (e) Covariate visualization
for fMRI datasets.
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a simulation study for FDP and power
simulated data with one covariate 

simulated data with weakly-dependent p-values 

running timeb
as # of hypotheses grows

as # of dimension grows

Figure 4. (a) The number of discoveries of various methods on three RNA-Seq differential expression datasets and two small
GTEx eQTL datasets. (b) Covariate visualization for RNA-Seq datasets. Note that the AdaPT software does not support
categorical covariates and can not be ran on the two fMRI datasets. (c) Simulation of FDP and power on an independent case
(top) and a weakly-dependent case (bottom). (d) Running time analysis. Top: as the number of hypotheses grows. Bottom: as
the covariate dimension grows.
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Figure 5. Schematic of the AdaFDR learning and testing process. Fold 1 is the training set and fold 2 is the testing set (left
panel). In step 1, a decision threshold t∗(x) is learned on the training set via solving the optimization problem (1) (upper-right
panel). In step 2, as shown in the bottom-right panel, this learned threshold t∗(x) is first rescaled by a factor γ∗, defined as the
largest number whose corresponding mirror-estimated FDP on the testing set is less than α (orange). Then all p-values on the
testing set below the rescaled threshold are rejected. Here the nominal FDP is α = 0.1.
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Supplemental Materials
1 Additional Results

a number of selected eQTLs in the two colon tissues

unit: million BH SBH IHW AdaFDR AdaFDR (aug) AdaFDR (ctrl)

Colon_ 
Sigmoid 0.72 0.73 

(+1.0%)
0.77 

(+6.6%)
0.97 

(+34.6%)
1.18 

(+63.9%)
1.03 

(+43.0%)

Colon_ 
Transverse 0.87 0.88 

(+0.9%)
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(+5.5%)
1.14 

(+31.8%)
1.33 

(+52.9%)
1.16 

(+33.3%)

AdaFDR_only 
0.35 mil
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SBH_only 
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c validation on MuTHER for Adipose_Visceral_Omentum
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Supplementary Figure 1. Additional results on the GTEx data. (a) Results on the two colon tissues. (b) Feature
visualization for Colon_Sigmoid (c) Validation on MuTHER for Adipose_Visceral_Omentum.
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log expression level

a covariate for airway b covariate for enigma_al 

mean nonzero abundance 
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Supplementary Figure 2. (a) The covariate visualization for the RNA-Seq airway data. (b) The covariate visualization for
the microbiome enigma_al data. Top: ubiquity; bottom: mean nonzero abundance.
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a

simulated data in AdaPT 

b comparison with NeuralFDR

NeuralFDR AdaFDR

2DGM 18844 20182

5DGM 18364 19832

GTEx_ 
NeuralFDR 37195 37141

more simulations for FDP and power 

simulated data in IHW 

simulated data with 2 covariates 

simulated data with 10 covariates simulated data with strongly-dependent p-values 

Supplementary Figure 3. (a) Additional simulations for FDP and power. Descriptions of the data are in Supplementary
SubSection 3.6. (b) Comparison between NeuralFDR and AdaFDR.
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polyester RNA-Seq resampling experiment
power in SummarizedBenchmark simulations

polyester (uninformative covariate)

varying number of tests varying non-null proportion

yeast RNA-Seq resampling experiment a

dc

b

e

AdaFDR

AdaPT

AdaPT

AdaFDR

AdaPT

AdaFDR 
AdaPT 

BL 
SBH

IHW 
BH

Supplementary Figure 4. Power in five SummarizedBenchmark simulations18 with the corresponding FDP shown in
Supplementary Figure 5. Panels a-d correspond to Figure 3 in18 while panel e corresponds to the first row of Table S2 in18.
Performance of an extra method BL47 is provided. Performance of AdaFDR is very similar to AdaFDR-fast and is hence
omitted to reduce clutter. Ten resamplings were done for RNA-Seq experiments (a,b,e) while twenty were done for others; 95%
confidence intervals are provided. Panels a, b are two RNA-Seq spike-in resampling experiments with an informative covariate,
panel c contains a simulated data with the number of tests varying from 500 to 50k, while panel d contains a simulated data
with the non-null proportion of tests varying from 0.95 to 0.6. In all four experiments, AdaFDR and AdaPT have the highest
power (with AdaFDR being slightly better). We note that AdaPT does not have such high power in the same experiments in18.
This is probably because we used adapt_gam while adapt_glm is used in18; the former has a better performance but takes a
longer time to run. Panel e uses the same set of p-values as panel b but with an uninformative covariate. We can see the
performance of IHW reduces to BH while others reduce to SBH, a phenomenon also mentioned in18. AdaFDR maintains high
power here indicating that it is not overfit to the uninformative covariate. 4
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polyester RNA-Seq resampling experiment
FDR control in SummarizedBenchmark simulations

polyester (uninformative covariate)

varying number of tests varying non-null proportion

yeast RNA-Seq resampling experiment a

dc

b

e
AdaFDR 
AdaPT 

BL 
SBH

IHW 
BH
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IHW 
BH

IHW 
BH

AdaFDR 
AdaPT 

BL 
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Supplementary Figure 5. FDR control in five SummarizedBenchmark simulations18 with the corresponding power shown
in Supplementary Figure 4. The detailed description of the data can also be found in Supplementary Figure 4. Performance of
an extra method BL47 is provided. Performance of AdaFDR is very similar to AdaFDR-fast and is hence omitted to reduce
clutter. All methods control the FDR accurately, except in panel c, where BL slightly exceeds the FDR control when the
number of tests is small.
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2 Additional Algorithm Information
2.1 Feature preprocessing
We perform feature preprocessing to integrate both numerical covariates and categorical covariates. First for each categorical
covariate, the categories are reordered based on the ratio of the alternative probability and the null probability, estimated on the
training set using the same method as above. Then quantile normalization is performed for each covariate separately. Note that
after this transformation, all covariates will have values between 0 and 1. Also, overfitting is not a concern since the entire
proprecessing is done without seeing p-values from the testing set.

2.2 Remark on Theorem 1
Theorem 1 is similar to, but stronger than that for NeuralFDR. First, NeuralFDR requires the scale factor to be selected
from a finite set of L numbers and has an extra multiplicative factor

√
logL in the error term ε . In contrast, AdaFDR selects

the scale factor over all positive numbers and the
√

logL term is gone. This is done by using a stochastic process argument
instead of the union bound. Second, NeuralFDR uses an empirical Bayes model where the tuples (Pi,xi,hi) are generated i.i.d.
following some hierarchical model. AdaFDR, however, requires a less restrictive assumption made only on the conditional
distribution of null p-values, whereas the covariates and alternative p-values can have arbitrary dependence.

2.3 Initialization via EM algorithm
Here we present the EM algorithm that is used to fit the mixture model (2) on a set of N points {xi}N

i=1. Recall that due to
quantile normalization, the value of xi is within [0,1]d . Therefore, each component in the mixture model is truncated to be
within [0,1]d , i.e. truncated GLM or truncated Gaussian. Since we need to use the samples each associated with a sample
weight, let us consider the general case where each sample xi receives a positive weight vi ∈ R+.

For the sake of convenience, let us reparameterize the parameters to have the standard probability distribution

fall(x;w,a,{µµµk,σσσ k}K
k=1) = w0 fslope(x;a)+

K

∑
k=1

wk fbump(x; µµµk,σσσ k), x ∈ [0,1]d , (1)

where w ∈ [0,1]K+1 with ∑
K
k=0 wk = 1 and

fslope(x;a) = expaTx
d

∏
j=1

a j

exp(a j)−1
,

fbump(x; µµµk,σσσ k) =
d

∏
j=1

1

Zk j

√
2πσ2

k j

exp

(
−
(x j−µk j)

2

2σ2
k j

)
,

for Zk j =
∫ 1

0

1√
2πσ2

k j

exp

(
−
(x j−µk j)

2

2σ2
k j

)
dx.

It is not hard to see that (1) is equivalent to the mixture threshold (2) up to a scale factor that can be specified by b in (2);
knowing one, the parameters for the other can be computed without difficulty.

The EM algorithm can be described as follows. For the initialization, the responsibility ri ∈ [0,1]K+1, i ∈ [N] for each point
xi is initialized as

rinit
i = [0.5,

1
2K

,
1

2K
, · · · , 1

2K
],

where the first component corresponds to the slope component and the rest correspond to the K bump components. Then, the
algorithm iterates between the E-step and the M-step as follows until convergence:

1. Expection (E-step): For each point xi, update the responsibility

rnew
i =

1
fall(xi;wold,aold,{µµµold

k ,σσσold
k }K

k=1)
[wold

0 fslope(xi;aold),

wold
1 fbump(xi; µµµ

old
1 ,σσσold

1 ),wold
2 fbump(xi; µµµ

old
2 ,σσσold

2 ), · · · ,wold
K fbump(xi; µµµ

old
K ,σσσold

K )].

2. Maximization (M-step): Update the component weights wnew by

wnew
k =

∑
N
i=1 viwold

ik

∑
K
k=0 ∑

N
i=1 viwold

ik
, k = 0,1, . · · · ,K
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Update the parameters for the slope component and each of the K bump component:

anew = MLslope({xi,virnew
i0 }N

i=1)

µµµ
new
k ,σσσnew

k = MLbump({xi,virnew
ik }N

i=1), k ∈ [K].

The ML estimates of slope and bump, i.e. MLslope({xi,virnew
i0 }N

i=1) and MLbump({xi,virnew
ik }N

i=1), are described as follows.
ML estimate of the slope. The log likelihood function of a single observation xi can be written as

li(a) = log fslope(xi;a) =
d

∑
j=1

log
(

a j

exp(a j)−1

)
+aT xi. (2)

Further the weighted average log likelihood function,

l̄(a) = ∑
N
i=1 virnew

i0 li(a)
∑

N
i=1 virnew

i0
=

d

∑
j=1

log
(

a j

exp(a j)−1

)
+

aT

∑
n
i=1 virnew

i0

N

∑
i=1

virnew
i0 xi. (3)

We add a regularization term c‖a‖2
2 to encourage small values of c‖a‖2

2, i.e.

l̄(a) =
d

∑
j=1

log
(

a j

exp(a j)−1

)
+

aT

∑
N
i=1 virnew

i0

N

∑
i=1

virnew
i0 xi− c‖a‖2

2. (4)

We found that setting c = 0.005 gives a stable result. We solve the ML estimation problem by setting the derivative to be zero.
Namely, for the j-th element a j,

∂ l̄
∂a j

=
1
a j
− ea j

ea j −1
+

1

∑
N
i=1 virnew

i0

N

∑
i=1

virnew
i0 xi j−2ca j = 0. (5)

Rearranging terms on both sides we have that the ML estimate â j satisfies

eâ j

eâ j −1
− 1

â j
+2câ j =

1

∑
N
i=1 virnew

i0

N

∑
i=1

virnew
i0 xi j. (6)

Since the left-hand-side term is monotonic in â j, the ML solution â j can be computed via binary search.
ML estimate of the k-th bump. Since the density function can be factorized as a product of different dimensions, the ML
estimation can be done for each dimension separately. Now consider observation xi. The log likelihood function corresponding
to dimension j can be written as

li j(µk j,σk j) =− logZk j−
1
2

log(2π)− logσk j−
1

2σ2
k j
(xi j−µk j)

2. (7)

Then the weighted average log likelihood function for dimension j can be written as

l̄ j(µk j,σk j) =
∑

N
i=1 virnew

ik li j(µk j,σk j)

∑
N
i=1 virnew

ik
(8)

=− logZk j−
1
2

log(2π)− logσk j−
1

2σ2
k j ∑

n
i=1 virnew

ik

N

∑
i=1

virnew
ik (xi j−µk j)

2. (9)

Since l̄ j(µk j,σk j) is convex, we compute the ML estimation µ̂k j and σ̂k j via gradient descent, where the derivatives are given as
follows.

∂ l̄ j

∂ µk j
=− 1

Zk j

∂Zk j

∂ µk j
+

1
σ2

k j ∑
N
i=1 virnew

ik

N

∑
i=1

virnew
ik (xi j−µk j) (10)

∂ l̄ j

∂σk j
=− 1

Zk j

∂Zk j

∂σk j
− 1

σk j
+

1
σ3

k j ∑
N
i=1 virnew

ik

N

∑
i=1

virnew
ik (xi j−µk j)

2, (11)

where the derivatives with respect to Zk j are

∂Zk j

∂ µk j
=

1
σk j

[φ(β1)−φ(β2)],
∂Zk j

∂σk j
=

1
σk j

[β1φ(β1)−β2φ(β2)], (12)

for β1 =
−µk j
σk j

, β2 =
1−µk j

σk j
and φ(x) = 1√

2π
exp(− 1

2 x2).
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2.4 Implementation of other methods
1. AdaPT: adapt_gam is used with a 5-degree spline for each dimension. This choice is based on a discussion with the

authors of AdaPT.

2. IHW: The covaraites are first clustered into 20 clusters using Kmeans clustering. Then IHW is run with the default setting
and the cluster labels as the univariate covariate. This automatically incorporates the multi-dimensional case. For the
univariate case, this does not change the result much as compared to directly running IHW. For example, for the airway
data, directly running IHW gives 4873 discoveries while Kmeans+IHW gives 4862 discoveries.

3. BL: First the null distribution π0(x) is estimated using lm_pi0 with 5 degrees of freedom. Then BH is used with p-values
weighted by 1/π0(xi). This is the same as the usage in18.
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3 Data

3.1 eQTL study
GTEx For eQTL study, we used Genotype-Tissue Expression (GTEx) dataset7. This dataset aims at characterizing variation in
gene expression levels across individuals and diverse tissues of the human body. We used the V7 release of GTEx analysis data
(dbGaP Accession phs000424.v7.p2). The dataset contains 11688 samples, and in total there are 53 tissues from 714 donors
(44 of them with sample size >70 are used in the GTEx paper). We filtered the tissues based on the following criteria. First,
the tissue needs to have eQTL analysis, where the number of samples with genotype is greater than 70. Second, we set the
number of samples threshold to be 100 in order to make the p-values more reliable. Third, we would like the tissue to have a
corresponding roadmap8 cell type, so that we can leverage the cell-specific chromatin state data from roadmap. After filtering,
we were left with 17 cell types. The meta-information of the filtered GTEx dataset is listed in Table 1.

Table 1. Information for selected GTEx tissue types

Tissue name Sample size Roadmap cell type Number of hypothesis
Adipose Subcutaneous 298 E063 1.72E+08
Adipose Visceral Omentum 185 E063 1.73E+08
Artery Aorta 197 E065 1.66E+08
Breast Mammary Tissue 183 E027 1.80E+08
Cells EBV-transformed lymphocytes 114 E116 1.60E+08
Colon Sigmoid 124 E106 1.70E+08
Colon Transverse 169 E075, E076 1.77E+08
Esophagus Gastroesophageal Junction 127 E079 1.67E+08
Esophagus Mucosa 241 E079 1.67E+08
Esophagus Muscularis 218 E079 1.66E+08
Heart Atrial Appendage 159 E104 1.61E+08
Heart Left Ventricle 190 E095 1.50E+08
Lung 278 E096 1.82E+08
Muscle Skeletal 361 E107, E108 1.47E+08
Pancreas 149 E098 1.59E+08
Stomach 170 E110, E111 1.69E+08
Whole Blood 338 E062 1.45E+08

In this filtered dataset, each hypothesis is a gene-variant pair. Nominal P values for each gene-variant pair were estimated
using a two-tailed t-test. Each gene-variant is associated with 4 or 5 covariates listed below:

• gene expression We obtained the median gene expression from the gene in gene-variant pair and used as a feature.

• alternative allele frequency We mapped each SNP to the dbSNP database51. We took the alternative allele frequency as
a feature. If there were multiple alternative alleles, we took the smallest one. For the SNPs we cannot find a mapping,
this feature is imputed with mean alternative allele frequency.

• TSS distance The distance from the SNP to the transcription starting site is used as a feature. It is defined as posSNP−
posT SS.

• cell-specific chromatin state We took the position of the SNP and mapped it to roadmap database. Each SNP falls into
the 15-state chromatin model. This state is used as a categorical feature.

• p-value from another tissue (optional) Optionally, we used the P value from another tissue as a covariate. If we cannot
find the same gene-variant pair in another tissue, we impute with the mean P value. This covariate is only used for
“AdaFDR (aug)” and “AdaFDR (ctrl)” experiments.

MuTHER In the Multiple Tissus Human Expression Resource project46, samples from 850 individuals were collected and 3
tissues, namely adipose, LCL, and skin, were studied. We used only the data for the adipose tissue, where a nominal p-value is
provided for each SNP-gene pair.
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3.2 RNA-Seq data
We used three RNA-Seq datasets to validate our algorithm. The first one bottomly15 is an RNA-Seq dataset used to detect
differential gene expression between mouse strains. We used the same data preprocessing pipeline as in IHW12. p-values were
calculated using DESeq2, and the mean of normalized counts for each gene were chosen to be the covariate. The second
dataset airway14 is an RNA-Seq dataset used to identify the differentially expressed genes in airway smooth muscle cell lines
in response to dexamethasone. The dataset is processed with the same pipeline as bottomly. The thrid dataset Pasilla52 is
an RNA-Seq dataset for detecting genes that are differentially expressed between the normal and Pasilla-knockdown conditions.
This dataset is available in Pasilla package and it is analyzed in the vignette of genefilter package using independent
filtering method. The p-values were generated using DESeq package and the logarithm of normalized count were used as the
covariate. All the preprocessing steps can be reproduced using vignettes of R package IHWPaper53.

3.3 Microbiome data
The two microbiome experiments are from the benchmark paper18.

3.4 Proteomics data
The proteomics data is from the IHW paper12.

3.5 fMRI data
The two fMRI data are from the fMRI paper20.

3.6 Simulated data
Data 1. Simulated data with one covariate. The covariate xi∼Unif[0,1] and the probability of being an alternative hypothesis
given the covariate P(hi = 1|xi) is defined using the mixture model (1) as

P(hi = 1|xi) = 0.1 fall(x;w = [0.5,0.25,0.25],a = 0.5,µ1 = 0.25,µ2 = 0.75,σ1 = σ2 = 0.05).

The null p-values are generated i.i.d. from Unif[0,1] while the alternative p-values are generated i.i.d. from Pi ∼ Beta(α =
0.3,β = 4). The number of hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 2. Simulated data with two covariates The covariate xi∼Unif[0,1] and the probability of being an alternative hypothesis
given the covariate P(hi = 1|xi) is defined using the mixture model (1) as

P(hi = 1|xi) =0.1 fall(x;w = [0.5,0.25,0.25],a = [0.5,0.5],
µµµ1 = [0.25,0.25],µµµ2 = [0.75,0.75],σσσ1 = σσσ2 = [0.1,0.1]).

The null p-values are generated i.i.d. from Unif[0,1] while the alternative p-values are generated i.i.d. from Pi ∼ Beta(α =
0.3,β = 4). The number of hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 3. Simulated data with ten covariates First a simulated data with two covariates is generated (data 2). Then, another 8
noisy dimensions are added to the covariates with each entry drawn i.i.d. from Unif[0,1]. The number of hypotheses is 20000
and 10 datasets are generated with different random seeds.
Data 4. Simulated data with weakly-dependent p-values The covariate xi ∼ Unif[0,1] and the probability of being an
alternative hypothesis given the covariate P(hi = 1|xi) is generated same as the simulated data with one covariate (data 1).
The p-values are converted to z-scores via p = 1−Φ(z), where Φ(·) is the cdf of the standard normal distribution. Every 10
consecutive null z-scores are generated from N (0,Σ), while every 10 consecutive alternative z-scores are generated from
N (2,Σ), with the symmetric covariance matrix whose upper triangular part is specified as

Σii = 1,
Σi j = 0.25, i < j ≤ 4,
Σi j =−0.25, j > 4.

We note instead of 0.25, the value 0.4 is used in the original paper (Section 3.2,4). However such choice makes the covariance
matrix not positive semi-definite. We decrease the value until the matrix becomes positive semi-definite. The number of
hypotheses is 20000 and 10 datasets are generated with different random seeds.
Data 5. Simulated data with strongly-dependent p-values The setting is the same as the weakly dependent data (data 4)
except the generation of z-scores. Here, every 5 consecutive null z-scores are generated from N (0, I), while every 5 consecutive
alternative z-scores are generated from N (2, I). This perfect correlation means to model the linkage disequilibrium (LD) that
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frequently occurs in SNPs. Due to the reduction of the inherent multiplicity, the number of hypotheses is increased to 50000.
10 datasets are generated with different random seeds.
Data 6. Simulated data used in AdaPT The same data for Figure 6a in24 is used where the number of hypotheses is 2500. 10
datasets are generated with different random seeds.
Data 7. Simulated data used in IHW The data is generated according to Supplementary Section 4.2.2 in12 where the number
of hypotheses is 20000. While the original paper varies the effect size from 1 to 2.5 (the shift of z-scores for alternative
p-values), here we only use a fixed effect size 2. 10 datasets are generated with different random seeds.
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4 Proofs and Auxiliary Lemmas

4.1 Proof of Theorem 1
Proof. To avoid ambiguity, we make a few clarifications before the proof. First, the entire analysis is done while conditioning
on the hypothesis splitting, all covariates {xi}i∈[N], the type of hypotheses {hi}i∈[N], and the alternative p-values {Pi}i∈H1 ,
hence allowing arbitrary dependencies of them. Here we note that the reason for splitting the hypotheses at random is to attain
good power. The randomness of the analysis comes from the null p-values, which are assumed to be i.i.d. uniformly distributed
for convenience. A discussion on extending to the case where the null p-values, conditional on the covariates, are independently
distributed and stochastically greater than the uniform distribution is provided at the end.

We also clarify a few notations. We use t∗D1
to denote the threshold which is learned on fold 1 and will be applied on fold 2.

γ∗1 denotes the scale factor of fold 1. For the testing-related quantities, we use subscript “1” to denote those evaluated on fold
1, including the number of discoveries D1(γ

∗
1 t∗D2

), the number of false discoveries FD1(γ
∗
1 t∗D2

), the mirror-estimated number

of false discoveries F̂D1(γ
∗
1 t∗D2

) and the mirror-estimated false discovery proportion F̂DP1(γ
∗
1 t∗D2

). Note that here t∗D2
is the

threshold that is learned on fold 2 and then applied on fold 1. The term inside the bracket, (γ∗1 t∗D2
), may be omitted when there

is no concern of being ambiguous. Quantities for fold 2 are defined in a similar fashion. Now we preceed to the proof.
Step 1: show that in order to prove the result, it suffices to show that

P(FDP2 ≥ (1+ ε)α)≤ δ

2
. (13)

Indeed, if (13) it true, then by symmetry P(FDP1 ≥ (1+ ε)α)≤ δ

2 . Further by the union bound, with probability (w.p.) at least
1-δ ,

FDP2 < (1+ ε)α, and FDP1 < (1+ ε)α.

This further implies that w.p. at least 1-δ , the FDP on the whole dataset

FDP =
FD1 +FD2

D1 +D2
≤
(

FD1

D1

)
∨
(

FD2

D2

)
= FDP1∨FDP2 < (1+ ε)α,

which gives the desired result. Hence in the rest of the proof, we denote effort to proving (13). Also, since we are only to deal

with fold 2, we drop the subscript D1 for threshold learned on fold 1 to have t∗
de f
= t∗D1

.
Step 2: convert the probability P(FDP2 ≥ (1+ ε)α) to some analyzable stochastic process.
Let E0 denote the set of random variables that we wish to condition on, including hypothesis splitting, all covariates {xi}i∈[N],
the type of hypotheses {hi}i∈[N], and the alternative p-values {Pi}i∈H1 . Let us consider the conditional version of (13):

P(FDP2 ≥ (1+ ε)α|E0) = P
(

FD2

D2∨1
≥ (1+ ε)α

∣∣∣∣E0

)
= P

(
FD2

D2∨1
1
α
−1≥ ε

∣∣∣∣E0

)
.

Let η
de f
=
(

FD2
D2∨1

1
α
−1
)

. Recall that FD2 and D2 correspond to the best rescaled threshold on fold 2 γ∗2 t∗ and the best scale

factor γ∗2 is selected from the set
{

γ : F̂D2(γt∗)
D2(γt∗)∨1 ≤ α,D2(γt∗)≥ c0N

}
∪{0}. Then η can be upper bounded by

η =
FD2(γ

∗
2 t∗)

D2(γ∗2 t∗)∨1
1
α
−1

≤ sup
γ∈
{

γ: F̂D2(γt∗)
D2(γt∗)∨1≤α, D2(γt∗)≥c0N

}
∪{0}

(
FD2(γt∗)

D2(γt∗)∨1
1
α
−1
)

≤ sup
γ≥0

(
FD2(γt∗)

D2(γt∗)∨1
1
α
−1
)
I{

γ: F̂D2(γt∗)
D2(γt∗)∨1≤α, D2(γt∗)≥c0N

}.

Furthermore, since the indicator function is one only when F̂D2(γt∗)
D2(γt∗)∨1 ≤ α , which can also be written as 1

α
≤ D2(γt∗)∨1

F̂D2(γt∗)
with the
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convention that x
0 = ∞ for any x > 0, we further have

η ≤ sup
γ≥0

[
FD2(γt∗)

D2(γt∗)∨1

(
1
α
∧ D2(γt∗)∨1

F̂D2(γt∗)

)
−1

]
I{

γ: F̂D2(γt∗)
D2(γt∗)∨1≤α, D2(γt∗)≥c0N

}

= sup
γ≥0

(
FD2(γt∗)

(αD2(γt∗))∨α ∨ F̂D2(γt∗)
−1

)
I{

γ: F̂D2(γt∗)
D2(γt∗)∨1≤α, D2(γt∗)≥c0N

}.
Again since indicator function is one only when D2(γt∗)≥ c0N,

η ≤ sup
γ≥0

(
FD2(γt∗)

(αc0N)∨ F̂D2(γt∗)
−1

)
I{

γ: F̂D2(γt∗)
D2(γt∗)∨1≤α, D2(γt∗)≥c0N

},

≤ 0∨ sup
γ≥0

(
FD2(γt∗)

(αc0N)∨ F̂D2(γt∗)
−1

)
.

Furthermore with the notation t∗i
de f
= t∗(xi) where we recall that we have defined t∗ = t∗D1

before,

η ≤ 0∨ sup
γ≥0

 ∑i∈D2∩H0
I{Pi≤γt∗i }

(αc0N)∨
(

∑i∈D2
I{Pi≥1−γt∗i }

) −1


≤ 0∨ sup

γ≥0

 ∑i∈D2∩H0
I{Pi≤γt∗i }

(αc0N)∨
(

∑i∈D2∩H0
I{Pi≥1−γt∗i }

) −1

 .

Finally, we can complete the conversion by noting that

P(FDP2 ≥ (1+ ε)α|E0) = P(η ≥ ε|E0) (14)

≤ P

sup
γ≥0

 ∑i∈D2∩H0
I{Pi≤γt∗i }

(αc0N)∨
(

∑i∈D2∩H0
I{Pi≥1−γt∗i }

) −1

≥ ε

∣∣∣∣E0

 . (15)

Here, the first term in (15), i.e.
∑i∈D2∩H0 I{Pi≤γt∗i }

(αc0N)∨
(

∑i∈D2∩H0 I{Pi≥1−γt∗i }

) , can be understood as a stochastic process that as γ grows from 0 to

infinity, new elements are added to the numerator and the denominator with equal probability. Hence this term should always
be close to 1. We next proceed to prove the result following this intuition.
Step 3: Upper bound the probability of (15).
We note that the p-values involved in (15) are all null p-values from fold 2. Hence, they are i.i.d. uniformly distributed

conditional on E0. Let H0,2
de f
= D2∩H0. For any i ∈H0,2,γ > 0, define the random variables

Bi,γ = I{Pi≤γt∗i or Pi≥1−γt∗i }, Ri = I{Pi≤0.5}− I{Pi>0.5}. (16)

Since ∀i ∈H0,2, Pi|E0 ∼ Unif[0,1], we have Bi,γ |E0 ∼ Bern(2γt∗i ) and Ri|E0 are i.i.d. Rademacher random variables. In
addition, it is easy to verify that Bi,γ is independent of Ri and

I{Pi≤γt∗i } = Bi,γI{Ri=1}, I{Pi≥1−γt∗i } = Bi,γI{Ri=−1}.

Hence (15) can be written in terms of Bi,γ ’s and Ri’s as

P(FDP2 ≥ (1+ ε)α|E0)≤ P

[
sup
γ≥0

(
∑i∈H0,2

Bi,γI{Ri=1}

(αc0N)∨∑i∈H0,2
Bi,γI{Ri=−1}

−1

)
≥ ε

∣∣∣∣E0

]

≤ P

[
sup
γ≥0

(
∑i∈H0,2

Bi,γ Ri

(αc0N)∨∑i∈H0,2
Bi,γI{Ri=−1}

)
≥ ε

∣∣∣∣E0

]
.
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Furthermore, let γ0 =
αc0N

∑i∈H0,2 t∗i
. Divide the set of γ in the sup from [0,∞) into [0,γ0] and (γ0,∞), and apply union bound to

have

P(FDP2 ≥ (1+ ε)α|E0)

≤ P

[
sup

0≤γ≤γ0

(
∑i∈H0,2

Bi,γ Ri

(αc0N)∨∑i∈H0,2
Bi,γI{Ri=−1}

)
≥ ε

∣∣∣∣E0

]

+P

[
sup
γ>γ0

(
∑i∈H0,2

Bi,γ Ri

(αc0N)∨∑i∈H0,2
Bi,γI{Ri=−1}

)
≥ ε

∣∣∣∣E0

]

≤ P

(
sup

0≤γ≤γ0

∑i∈H0,2
Bi,γ Ri

αc0N
≥ ε

∣∣∣∣E0

)
+P

(
sup
γ>γ0

∑i∈H0,2
Bi,γ Ri

∑i∈H0,2
Bi,γI{Ri=−1}

≥ ε

∣∣∣∣E0

)
.

Define the random set Bγ = {i : i ∈H0,2,Bi,γ = 1}. We note that the sequence of sets {Bγ}γ≥0 is monotonic in the sense
that as γ grows, more elements are incorporated into Bγ . With this definition, the above inequality can be further written as

P(FDP2 ≥ (1+ ε)α|E0) (17)

≤ P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

αc0N
≥ ε

∣∣∣∣E0

)
+P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε

∣∣∣∣E0

)
. (18)

Next we upper bound the two terms in (18) respectively. Here let us use m
de f
= αc0N for simplicity.

The first term in (18): For some m0 > 2m to be specified later, by the law of total probability,

first term in (18) = P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε

∣∣∣∣E0

)
(19)

≤ P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε, |Bγ0 | ≤ m0

∣∣∣∣E0

)
+P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε, |Bγ0 |> m0

∣∣∣∣E0

)
(20)

≤ P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε

∣∣∣∣|Bγ0 | ≤ m0,E0

)
+P

(
|Bγ0 |> m0|E0

)
. (21)

The two terms in (21) are upper bounded separately. Consider the first term. Recall that {Bγ}γ≥0 is a random sequence
of monotonic sets; let {B̃γ}γ≥0 denote any of its realization. Then since taking expectation over all possible {B̃γ}γ≥0 s.t.
|B̃γ0 | ≤ m0 is no greater than taking the sup of them,

first term in (21)≤ sup
{B̃γ}γ≥0 s.t. |B̃γ0 |≤m0

P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε

∣∣∣∣{Bγ}γ≥0 = {B̃γ}γ≥0,E0

)
.

Consider the term inside the probability, i.e. sup0≤γ≤γ0

∑i∈Bγ
Ri

m , where due to conditioning {Bγ}γ≥0 = {B̃γ}γ≥0. Recall that
the sequence {B̃γ}γ≥0 is monotonic that as γ grows more elements are incorporated into the set but no element is removed
from the set. Also up to the point γ = γ0 there are altogether |B̃γ0 | elements. Then the sup is equivalent to being evaluated over

a sequence of |B̃γ0 |+1 monotonic sets, i.e. sup0≤γ≤γ0

∑i∈Bγ
Ri

m is equal to sup0≤k≤|B̃γ0 |
∑i∈[k] R̃i

m in distribution, where R̃1, R̃2, · · ·
is a sequence of i.i.d. Rademacher random variables independent of everything else. Therefore,

first term in (21)≤ sup
{B̃γ}γ≥0 s.t. |B̃γ0 |≤m0

P

(
max

0≤k≤|B̃γ0 |

∑i∈[k] R̃i

m
≥ ε

)

= P

(
max

1≤k≤m0

∑i∈[k] R̃i

m
≥ ε

)
≤ 2e−

m2ε2
2m0 ,

where the last inequality is due to Lemma 1.
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Now consider the second term in (21). Recall that E[|Bγ0 |] = ∑i∈H0,2
2γ0ti = 2m by the definition of γ0. By Lemma 2,

second term in (21) = P
[
|Bγ0 |> m0|E0

]
≤ e
−

1
2 (m0−2m)2

2m+ 1
3 (m0−2m) . (22)

By setting m0 = 3m, we have

first term in (18) = P

(
sup

0≤γ≤γ0

∑i∈Bγ
Ri

m
≥ ε

∣∣∣∣E0

)
≤ 2e−

mε2
6 + e−

3m
14 . (23)

The second term in (18): For some m1 ≤ 2m to be specified later, by the law of total probability,

second term in (18) = P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε

∣∣∣∣E0

)
(24)

= P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε, |Bγ0 | ≥ m1

∣∣∣∣E0

)
+P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε, |Bγ0 |< m1

∣∣∣∣E0

)
(25)

≤ P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε

∣∣∣∣|Bγ0 | ≥ m1,E0

)
+P

(
|Bγ0 |< m1|E0

)
. (26)

Using the same argument for analyzing the first term in (21),

first term in (26)≤ P

(
sup

k≥m1

∑i∈[k] R̃i

∑i∈[k] I{R̃i=−1}
≥ ε

)
≤ 2e

− m1ε2

4(ε+2)2

1−2e
− m1ε2

4(ε+2)2

,

where we recall that R̃1, R̃2, · · · is a sequence of i.i.d. Rademacher random variables indepedent of everything else, and the
second inequality is due to Lemma 1.

Similar to (22), by Lemma 2,

second term in (26) = P
(
|Bγ0 |< m1

)
≤ e
−

1
2 (2m−m1)

2

2m+ 1
3 (2m−m1) .

By setting m1 = m, we have

second term in (18) = P

(
sup
γ>γ0

∑i∈Bγ
Ri

∑i∈Bγ
I{Ri=−1}

≥ ε

∣∣∣∣E0

)
≤ 2e

− mε2

4(ε+2)2

1−2e
− mε2

4(ε+2)2

+ e−
3m
14 . (27)

Combining (23) and (27) we have that for (18),

P(FDP2 ≥ (1+ ε)α|E0)≤ 2e−
mε2

6 +
2e
− mε2

4(ε+2)2

1−2e
− mε2

4(ε+2)2

+2e−
3m
14 .

Furthermore,

P(FDP2 ≥ (1+ ε)α)≤ sup
E0

P(FDP2 ≥ (1+ ε)α|E0) (28)

≤ 2e−
mε2

6 ++
2e
− mε2

4(ε+2)2

1−2e
− mε2

4(ε+2)2

+2e−
3m
14 . (29)

By equaling the term in the right-hand-side of (29) with δ

2 we have ε = Θ(

√
log 1

δ

m ). Recall that m = αc0N where c0 is a
constant, we have

ε = Θ(

√
log 1

δ

αN
),

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496372doi: bioRxiv preprint 

https://doi.org/10.1101/496372
http://creativecommons.org/licenses/by-nc-nd/4.0/


which concludes the proof.
In order for the proof to hold, it is required that the mirror estimate F̂D2(γt∗) is stochastically no less than the true number

of false discoveries FD2(γt∗) for any γ ≥ 0. This is still true when the i.i.d. assumption for the null p-values is extended to the
assumption that the null p-values, conditional on the covariates, are independently distributed and stochastically greater than
the uniform distribution. Hence the result is directly extendable.

4.2 Lemma 1 with proof
Lemma 1. (Some properties of random walk) Let R1,R2, · · · be i.i.d. Rademacher random variables and let Sk = ∑

k
i=1 Rk.

Then for any integer n > 1 and for any real number t > 0,

P( max
1≤k≤n

Sk ≥ t)≤ 2e−
t2
2n (30)

P(max
k≥n

1
k

Sk ≥ t)≤ 2e−
nt2
4

1−2e−
nt2
4

(31)

P(max
k≥n

Sk

∑
k
i=1 I{Ri=−1}

≥ t)≤ 2e
− nt2

4(t+2)2

1−2e
− nt2

4(t+2)2

, (32)

where for the second and the third inequalities, we require t to be large enough for the probability to be positive.

Proof. (30) is proved via a standard reflection argument for random walk. First consider when t is an integer,

P( max
1≤k≤n

Sk ≥ t) = P( max
1≤k≤n

Sk ≥ t,Sn ≥ t)+P( max
1≤k≤n

Sk ≥ t,Sn < t)

= P(Sn ≥ t)+P( max
1≤k≤n

Sk ≥ t,Sn > t) = P(Sn ≥ t)+P(Sn > t)≤ 2P(Sn ≥ t).

If t is not an integer,

P( max
1≤k≤n

Sk ≥ t) = P( max
1≤k≤n

Sk ≥ dte)≤ 2P(Sn ≥ dte)≤ 2P(Sn ≥ t).

Finally, using Hoeffding’s inequality, one has

P( max
1≤k≤n

Sk ≥ t)≤ 2P(Sn ≥ t)≤ 2e−
t2
2n .

(31) is proved via a technique called "peeling". Specifically,

P(max
k≥n

1
k

Sk ≥ t)≤ P(∃k ≥ n,Sk ≥ kt)

≤
∞

∑
j=0

P(∃k ∈ {2 jn,2 jn+1, · · · ,2 j+1n−1},Sk ≥ kt)

≤
∞

∑
j=0

P(∃k ∈ {2 jn,2 jn+1, · · · ,2 j+1n−1},Sk ≥ 2 jnt)

≤
∞

∑
j=0

P( max
1≤k≤2 j+1n

Sk ≥ 2 jnt)

≤
∞

∑
j=0

2exp(−2 j−2nt2)
de f
=

∞

∑
j=0

p j,

where the last inequality is due to (30) that we have just proved. Note that for j ≥ 0, p j+1
p j

= exp(−2 j−2nt2)≤ p0. Hence,

P(max
k≥n

1
k

Sk ≥ t)≤ p0

1− p0
=

2e−
nt2
4

1−2e−
nt2
4

.
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Finally, (32) is a direct consequence of (31):

P(max
k≥n

Sk

∑
k
i=1 I{Ri=−1}

≥ t) = P(max
k≥n

2Sk

k−Sk
≥ t)

= P(max
k≥n

1
k

Sk ≥
t

t +2
)≤ 2e

− nt2

4(t+2)2

1−2e
− nt2

4(t+2)2

.

4.3 Lemma 2 with proof
Lemma 2. (Some properties of non-homogeneous Bernoulli sum) Let Bi ∼ Bern(pi) be some independent Bernoulli random
variables. Then

P(
n

∑
i=1

Bi−E[
n

∑
i=1

Bi]≥ t)≤ e
−

1
2 t2

∑
n
i=1 pi+

1
3 t (33)

P(
n

∑
i=1

Bi−E[
n

∑
i=1

Bi]≤−t)≤ e
−

1
2 t2

∑
n
i=1 pi+

1
3 t (34)

Proof. Define Xi
de f
= Bi− pi. Then Xi’s have zero means and are independent of each other. Also, note that |Xi| ≤ 1 almost surely

and ∑iE[X2
i ]≤ ∑i pi. Hence (33) and (34) can be obtained by applying Bernstein inequality on {Xi} and {−Xi} respectively.
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