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Abstract  
Cells respond in complex ways to topographies, making it challenging to identify a ��
direct relationship between surface topography and cell response. A key problem is ��
the lack of informative representations of topographical parameters that translate ��
directly into biological properties. Here, we present a platform to relate the effects of ��
nanotopography on morphology to function. This platform utilizes the ‘morphome’, a ��
multivariate dataset containing single cell measures of focal adhesions, the ��
cytoskeleton, and chromatin. We demonstrate that nanotopography-induced ��
changes in cell phenotype are uniquely encoded by the morphome. The morphome ��
was used to create a Bayesian linear regression model that robustly predicted ��
changes in bone, cartilage, muscle and fibrous tissue gene expression induced by ���
nanotopography. Furthermore, the morphome effectively predicted nanotopography-���
induced phenotype within a complex co-culture microenvironment. Thus, the ���
morphome enables the cell function-oriented exploration of new topographies, with ���
potential applications in the development of novel surface-patterned biomaterials for ���
tissue implants. ���

���
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Introduction  ��
 ��
Biomedical implants continue to be developed to improve patient outcomes. One ��
way to enhance implant efficacy and tissue regeneration is to vary substrate texture ��
with nanotopographies. Topographies at the cell-material interface are widely shown ��
to direct cell behaviour: nanopillars change cell morphology1; nanogratings ��
drastically alter lipid metabolism2, and pluripotent3-5 and multipotent cell ��
differentiation6; nanogradients improve stem cell cardiomyogenic differentiation; and ��
subtle changes to nanopit geometric arrangement switches human mesenchymal ��
stem cells from multipotent to osteogenic fate7-10. Morphological responses to ���
nanotopography are manifested through varying focal adhesion size17-19, ���
orientation19-21, and composition22,23 and changes in actin contractility and nuclear ���
deformation24. ���
 ���
A quantitative relationship exists between a material’s physicochemical structure and ���
its biological activity. Rational drug design has long relied on molecule solubility, ���
ionisation and lipophilicity to predict activity11. Protein engineering has similarly ���
modelled protein-peptide interactions from protein structure12. Cell metabolic activity ���
correlates with synthetic polymer composition, glass transition temperature, and ���
water contact angle13. Meanwhile, bacterial attachment can be predicted from ���
descriptors of secondary ionic hydrocarbon chains14. In contrast to active ���
biomolecules, the mechanotransductive effects of topography on cell response do ���
not intuitively relate to topography length scale, isotropy, geometry, and polarity. This ���
limits the discovery of functional topography to the screening of libraries for hits ���
using a single, representative cell type15-18. Among its limitations (which include cost, ���
inefficiency and the sampling of a small topography space), this screening approach ���
disregards the cell specificity of response to nanotopogrpahy. Thus, it is vitally ���
important to develop a systematic method to capture cell phenotypes induced by ���
topography.  ���
  ���
Here, we demonstrate a platform that encompasses cell phenotype and ���
morphological response induced by nanotopography using image-based cellular ���
features. We obtained measurements of focal adhesions, actin cytoskeleton and ���
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chromatin, referred to here as the ‘morphome’, from single cells on ��
nanotopographies. We observed a unique morphological signature based on cell ��
identity and nanotopography in the morphome. We also identified changes in the ��
transcription of myogenic, osteogenic, chondrogenic and fibroblastic genes across all ��
combinations of cells and nanotopographies. We used a Bayesian linear regression ��
model to directly relate the morphological and phenotypic changes induced by ��
nanotopography. Using the morphome as predictors and without prior knowledge ��
about the nanotopography, the model robustly predicted gene expression induced by ��
nanotopography. A new morphome dataset from a co-culture of osteoblastic and ��
fibroblastic cells verified that the model positively predicts bone tissue formation ���
induced by nanotopography, even within a complex microenvironment. The lack of ���
topography-specific parameters in the model and the presence of the ���
mechanosensing machinery in all cell types highlights the broad applicability of this ���
platform to many biomaterial and cell systems, thereby supporting the function-���
oriented exploration and rational design of new topographies.   ���
 ���
Results ���
 ���
Measuring morphological cell responses to topography: the morphome ���
We used nanopit topographies consisting of 120 nm diameter, 100 nm depth and ���
with a 300 nm centre-to-centre distance in a square array (SQ)7, hexagonal array ���
(HEX)25-27, and arranged with centre-to-centre distance offset from 300 nm by 50 nm ���
in both x and y directions (NSQ array)7,8. An unpatterned (‘FLAT’) surface was used ���
as a control (Figure 1A). ���
 ���
We employed cells of the musculoskeletal system due to the diverse responses of ���
muscle, bone, cartilage and fibrous cell types to nanotopographies27-29. Mouse ���
myoblasts, osteoblasts, chondrocytes, fibroblasts, and pre-osteoblast30 and pre-���
myoblast31 progenitors, were grown on nanotopographies. Responses from ���
combinations of each cell type on all nanotopographies were measured, providing 24 ���
unique combinations of cell type and nanotopography (Figure S1). Effects of ���
nanotopography on morphological characteristics such as cell and nuclear area, and ���
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in pFAK activation levels, actin intensity and focal adhesion area were evident ��
(Figure S2-S4).  ��
 ��
Morphology (shape and geometry of different compartments), texture (spatial ��
patterns of fluorescence), intensity (total fluorescence value), and radial distribution ��
of intensity (measuring radial arrangement of fluorescence), were analysed for ��
chromatin, actin, focal adhesion kinase (FAK) and phosphorylated FAK (pFAK) ��
signals at day 2 of culture (Supplementary data). The morphome consisted of 624 ��
single cell measurements (“features”), with 75 chromatin and nuclear features, 211 ��
actin and whole-cell features, 168 FAK features, and 170 pFAK features (Figure 1B). ���
Quantitative polymerase chain reaction (qPCR) was then used to assess changes in ���
lineage marker expression induced by nanotopography by day 7. Machine learning ���
was then applied on the morphome: (i) hierarchical clustering was used to uncover ���
unique patterns of morphological features that distinguish cell type-specific ���
responses on nanotopographies, and nanotopography-specific morphological ���
changes induced within the cell; (ii) Bayesian linear regression was used to predict ���
myogenic, osteogenic, chondrogenic and fibrogenic gene expression induced by ���
nanotopography using the morphome as predictors (Figure 1D).���
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Figure 1. An overview of the morphome platform for relating cell phenotype and 
morphological features changed by nanotopography. (A) Osteoblastic, myoblastic, 
chondroblastic and fibroblastic cells were cultured on nanotopographies to obtain 24 
combinations of cell type and topography.(B) At day 2, various measures of chromatin 
(blue), actin (red), focal adhesion kinase (FAK, yellow) and phosphorylated FAK (pFAK, 
green) were obtained from images of single cells to create the ‘morphome’. (C) At day 7, 
lineage-specific gene expression induced by nanotopography was measured using 
population-based qPCR.  (D) Machine learning for data-driven exploration and model 
building using the morphome. (i) Hierarchical clustering uncovered unique patterns that 
delineate cell type and nanotopography within the morphome. (ii) Bayesian linear regression 
created a predictive model that related the morphome to gene expression and phenotype.  
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The morphome depicts unique cell signatures induced by nanotopographies ��
Patterns of nanotopography-induced morphological changes were visible from the ��
morphome (Figure 2A). Immediately apparent were large blocks of actin, FAK and ��
pFAK measurements with similar values within a cell type on a specific ��
nanotopography. These features correspond to increasingly complex measures of ��
texture, granularity and radial intensity distribution for chromatin, actin, FAK and ��
pFAK (Table S1). Frequency of pixel gray levels measures texture and thus of ��
homogeneity, with high texture values indicating coarseness. Granularity measures ��
an object’s coarseness, with higher values indicating heterogeneity of pixel ��
intensities and coarser texture. The Zernike coefficient measures the spatial ���
arrangement of intensity as it resembles the increasingly complex Zernike ���
polynomials (Figure 2A). Interestingly, higher Zernike polynomials resemble the ���
punctate shape and spatial distribution of focal adhesions32.  ���
 ���
Nanotopography induces cell type-specific gene expression changes ���
Gene expression was used to determine the effect of nanotopographies on cell ���
phenotype (Figure S5). We discuss here the changes induced by nanotopography ���
on lineage-specific gene expression relevant to the cell type. Pre-myoblasts showed ���
significantly higher expression of the early lineage marker MYOD1, and of the late ���
markers MYOG and MYH7 when cultured on SQ surfaces relative to FLAT surfaces ���
(Figure 2B-2D). Both pre-osteoblasts and osteoblasts showed increased expression ���
of early (RUNX2, SP7) and late (BGLAP, SPP1) osteogenic markers when cultured ���
on NSQ relative to FLAT (Figure 2E-2H), in line with previous studies7,8,10,33. ���
Chondrocytes cultured on HEX showed increased expression of COL2A1 (early ���
marker) and ACAN (late marker) compared to those cultured on FLAT (Figure 2I-���
2K). Meanwhile, fibroblasts showed increased expression of pathogenic fibrosis ���
markers, TGFB1I1, COL3A1 and ELN34, on all nanotopographies compared with ���
FLAT (Figure 2M-2O). In general, a cell type-specific response to nanotopography ���
was observed. Each lineage was notably enhanced in a specific cell type and ���
nanotopography combination: SQ stimulated the myoblast phenotype, NSQ ���
enhanced the osteoblast phenotype, HEX stimulated the chondrocyte phenotype, ���
while all surfaces except FLAT stimulated the fibrotic phenotype.  ���
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Figure 2. Unique responses of cells to nanotopography at single-cell and population levels. (A) Heat map of the morphome across 
cell types and nanotopographies. The morphome consisted of 624 features that quantitatively measure the cell and nucleus 
geometries, as well as chromatin, actin, FAK, pFAK characteristics within single cells. The colour and intensity of each tile 
represents the average value of the feature for a particular cell type and nanotopography combination. Each feature has an 
average of 0 and a standard deviation of 1 after normalization across all cell types. Schematic diagrams of representative 
morphome features are included in (i) to (v). (B-O) QPCR of musculoskeletal genes in response to nanotopographies. 
Measurement of (B-D) myogenic markers from pre-myoblasts and myoblasts, (E-H) osteogenic markers from pre-osteoblasts and 
osteoblasts, (I-L) chondrogenic markers from chondrocytes, (M-O) fibrotic markers from fibroblasts on nanotopographies. Gene 
expression is listed left to right in order of increasing maturity for the given cell lineage. QPCR measurements shown here were 
normalized to the reference gene and cell type on FLAT. QPCR measurements across all 24 combinations of cell type and 
topography are shown in Figure S3. All qPCR measurements are given as mean ± standard deviation from 2 independent 
experiments (n=6). Significance levels obtained from one-way ANOVA with Tukey’s post-hoc test, denoted by * (p<0.05), ** 
(p<0.01), *** (p<0.001), and **** (p<0.0001). 
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Distinct nanotopographical responses of single cells are reflected in the ��
morphome  ��
 ��
A subset of the morphome, consisting of 185 features, varied significantly across ��
nanotopographies (Figure 3, Supplementary Data). Hierarchical clustering revealed ��
that measurements of actin and pFAK radial distribution were most dissimilar to each ��
other (Figure S6). Notably, the morphome of cells on FLAT already show that unique ��
cell type signatures are manifested in the morphome.  ��
 ��
Hierarchical clustering within each cell type reflected the cell type specificity of ���
nanotopography response. Here, we highlight morphome for cell type and ���
nanotopography combinations that induced highest lineage-specific gene ���
expression. When compared to FLAT, pre-myoblasts on SQ showed high average ���
values of: focal adhesion textures (Figure 3A, cluster 2); pFAK radial distribution ���
(cluster 4); nuclear morphometry; and chromatin textures (cluster 4). The morphome ���
of pre-myoblasts cultured on SQ reflects the need for FAK phosphorylation and for ���
its preferential localization at stress fiber edges, which is necessary for myotube ���
differentiation36,37. In contrast, myoblasts on SQ showed a particularly high average ���
value for chromatin granularity and nuclear morphometry (cluster 4), and near-zero ���
values for radial distribution of actin and of focal adhesions (cluster 1). High ���
chromatin granularity observed for both pre-myoblasts and myoblasts on SQ ���
denotes chromatin heterogeneity and condensation and transcriptional activity, ���
which is reportedly higher prior to myotube formation38,39. ���
 ���
Pre-osteoblasts on SQ and NSQ had high average values for pFAK radial ���
distribution, intensity, granularity and texture, and high average values for granularity ���
of chromatin and actin (clusters 1-5). However, pre-osteoblasts on SQ had higher ���
order pFAK and FAK radial distribution than on NSQ, which induced the highest ���
expression of osteogenic markers. The morphome of pre-osteoblasts grown on NSQ ���
featured radially variable actin that resemble bone cells, which have high contractility ���
and actin stress fibers40.  ���
 ���
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For osteoblasts, the differences between the SQ and NSQ morphome were more ��
prominent: NSQ induced lower average values of focal adhesion granularity, ��
chromatin texture and nuclear morphometry (cluster 1), and higher average values ��
for focal adhesion radial distribution (clusters 4-7) compared to SQ (Figure 3D). The ��
osteoblast morphome on NSQ indicates that focal adhesions localize at regular ��
intervals along the periphery, which is associated with osteogenesis41. Furthermore, ��
changes in nuclear morphometry attributed to spreading after growth on stiff ��
surfaces is also associated with osteogenic differentiation42.  ��
 ��
Chondrocytes on HEX, which significantly increased chondrogenic marker gene ���
expression relative to FLAT, showed high average values of radial distribution, ���
texture and granularity of actin and FAK, high average nuclear morphometry, and ���
low average values of pFAK and chromatin measurements (Figure 3E, clusters 1-3). ���
These characteristics reflect the morphological changes (including reduced ���
contractility and stress fiber formation, increased cell circularity, and decreased cell ���
spreading40, low FAK phosphorylation43 and poor focal adhesion formation44) of stem ���
cells undergoing chondrogenesis.   ���
 ���
The morphome of fibroblasts cultured on FLAT had high average values of both actin ���
and focal adhesion measurements (Figure 3F, clusters 3 and 5). The highly uniform ���
radial arrangement of focal adhesions and actin of cells on FLAT indicate reduced ���
polarization and contractile morphology of fibroblasts activated to a fibrotic state45. ���
Inflammation pathways are reportedly increased in fibroblasts on HEX46, inducing ���
low adhesion that is reflected in low actin and focal adhesion radial distribution ���
(clusters 3-9). Fibroblasts grown on NSQ and HEX showed low average values of ���
focal adhesion and actin radial distribution but high values when grown on SQ ���
(cluster 2-5). ���
 ���
Overall, the morphome reflected cell-type specific responses to nanotopography. ���
The morphome also exhibited patterns from different cell types (e.g. pre-osteoblasts ���
vs osteoblasts) despite similarity in origin (Table S2). A multi-class logistic regression ���
classifier was able to accurately distinguish 6 different cell types using the ���
morphome (Figure S7). The radial arrangement of actin and focal adhesions were a ���
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critical distinction of the musculoskeletal cell types induced by nanotopography, ��
while the arrangement of actin fibers into stress fibers or into cortical, circular ��
bundles provided information on various cell states.  ��
 ��
We also clustered the morphome based on cell type (Figure S8-S9, Supplementary ��
data). Patterns emerge in the morphome in direct response to nanotopography: NSQ ��
induced high average values of pFAK radial distribution, texture and granularity; and ��
HEX induced high average values of actin radial distribution. Correlation between the ��
dendrograms confirm that the morphome clusters of different nanotopographies were ��
dissimilar to each other (Table S3). The morphome enabled discrimination between ���
4 nanotopographies with 68% overall accuracy (87% classification rate for HEX) ���
using multi-class logistic regression (Figure S10). ���
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Figure 3. Nanotopography induced changes in single cells are evident in their morphomes. (A-F) Cell 
type-specific hierarchical clustering of the morphome averaged for each cell type. The total number of 
cells analyzed from two independent experiments are: (A) n=877 pre-myoblasts; (B) n=931 myoblasts; 
(C) n=644 pre-osteoblasts; (D) n=728 osteoblasts; (E) n=619 chondrocytes; and (F) n=1140 fibroblasts. 
The colour and intensity of each tile represents the average value of the feature. Each feature has an 
average of 0 and a standard deviation of 1 by normalizing within each cell type. The nanotopography 
specific morphome is made up of 21 chromatin, 42 actin, 23 FAK and 60 pFAK features. Features 
included were changed significantly across topographies (p < 0.05 using one-way ANOVA). 
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The morphome predicts nanotopography induced gene expression changes ��
The Spearman rank correlation revealed that varying degrees of correlation exist ��
between morphome features and gene expression (Figure S11). We hypothesized ��
that the features of the morphomes would sufficiently encompass cell phenotypes ��
induced by nanotopography thus allowing prediction. We utilized Bayesian linear ��
regression to predict gene expression using the morphome features as predictors ��
(for the explicit model definition, see Materials and Methods). A Bayesian linear ��
regression model reflects uncertainty in the estimation of regression weights ��
compared to point value estimates using maximum likelihood regression. Gene ��
expression was modelled independently of each other, thereby creating 14 different ���
equations with variable weighting of the morphome features. Importantly, the model ���
was trained without any prior knowledge of topography type, instead relying on the ���
morphome to encode for this information.  ���
 ���
The morphome clearly captured gene expression changes induced by ���
nanotopography (Figure 4A). The heterogeneity inherent in single cells, usually ���
uncaptured by population measurements of gene expression, are apparent in the ���
variance of the predictions using the morphome and the model. The mean absolute ���
error (MAE) for prediction of all genes was between 10% (for prediction of MYOD1, ���
MYOG and MYH7) and 21% (for prediction of COL3A1, Table S4). Features with the ���
highest contribution in predicting the 14 different genes  were predominantly ���
measurements of FAK texture and radial distribution, actin texture, and chromatin ���
granularity (Figure S12, Supplementary data). pFAK activation, as indicated by ���
pFAK/FAK intensity ratio, consistently contributed to the prediction of all 14 genes. ���
pFAK was particularly important to the model due to its relevance in contractility ���
induced by nanotopography19, fibrosis and scar tissue formation48, in vitro ���
osteogenesis49,50, and chondrogenic maintenance43. Through the variability in the ���
model, we obtain realistic expectations of single cell predictions from population level ���
measurements ���
 ���
The sensitivity and predictive power of the morphome was verified by iteratively ���
training a model without one combination of cell type and topography (Figure 4E). ���
Drastic increases in MAE were observed when lineage-specific genes were ���
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predicted from models that excluded the particular cell type lineage being tested, ��
regardless of nanotopography. ��
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��

Figure 4. The morphome reliably predicts nanotopography-induced cell phenotype and gene expression from specific cell type and topography 
combinations. (A) The morphome was used to train a Bayesian linear regression model that predicted myogenic, osteogenic, chondrogenic, and 
fibrotic gene expression. The expression of each gene (response) was trained against linear combinations of morphome features (predictors) 
and without any prior knowledge on topography parameters. The linear regression model was trained using 60% of the dataset and tested using 
40% of the data. Scatterplots show actual and predicted gene expression values by using the test set as input to the model. Mean absolute error 
(MAE) was obtained by averaging the differences between actual and predicted qPCR values. (B) Testing the predictive power of the 
morphome by leave-one-out validation. To test the predictive power and bias of the morphome, the linear regression model was retrained after 
exclusion of one combination of cell type and topography. The excluded cell type and topography dataset was used for prediction, from which 
MAE was calculated. The tile position denotes the cell type and nanotopography combination that was excluded in the model and used for 
testing, while the color of each tile denotes the MAE. 
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The morphome encompasses cell response to topography within a complex ��
environment ��
We demonstrate the application of the linear regression model by predicting the ��
outcome of pre-osteoblasts and fibroblasts co-cultured on nanotopographies. A new ��
morphome were obtained from all cells on the entire nanotopography (Figure S13). ��
This co-culture morphome was then used in the linear regression model to predict ��
gene expression (Figure S14).  ��
 ��
For visualization, the sum of predicted osteogenic (RUNX2, SP7, BGLAP and SPP1) ��
and fibrotic (TGFB1I1, COL3 and ELN) genes was plotted against the spatial ���
coordinates of the pre-osteoblasts and fibroblasts. Osteogenic gene expression was   ���
highest on NSQ, which also induced concentrated areas of highly expressing cells ���
(Figure 5A). These areas might represent hotspots of osteogenic paracrine signaling ���
induced by the NSQ nanotopography9. In contrast, osteogenic gene expression was ���
low and homogenous on the FLAT, SQ and HEX topographies.  ���
 ���
Fibrotic gene expression showed more spatial variability across the ���
nanotopographies but was also maximized on the NSQ nanotopography, and largely ���
overlaps with the spatial pattern of osteogenic gene expression (Figure 5B). This is ���
attributable to the synergistic interaction of osteoblasts and fibroblasts on osteogenic ���
differentiation and mineralization51. The predicted effect of high osteogenic gene ���
expression induced by NSQ was verified in the increased mineralization and bone ���
tissue formation compared to FLAT at 28 days (Figure S15). Our results ���
demonstrate the capability of the morphome-based platform to capture topography ���
induced responses within complex microenvironments reminiscent of in vivo settings. ���
 ���
The morphome and its application in the linear regression model enables the ���
simultaneous assessment of morphological and functional effects of nanotopography ���
at the single cell level. For instance, nanotopographies show no discernible effects ���
on nuclear perimeter or on the ratio of pFAK/FAK intensity (Figure 5C). Yet there ���
was a clear gradient in predicted osteogenic gene expression: as the nucleus ���
reduced in size and pFAK activation rises, osteogenic gene expression increased. ���
This gradient was less clear with fibrotic gene expression. However, the ���
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nanotopographies have discernably different effects on actin and pFAK radial ��
distribution, with cells on SQ showing the lowest values (Figure 5D). These ��
nanotopography-specific cell clusters also revealed low osteogenic gene expression ��
yet high fibrotic gene expression. The morphome clearly enables new insight into ��
single cell responses induced by nanotopography.   ��
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�

 
Figure 5. Morphological and functional response of single cells induced by nanotopography.  
(A-B) Predicted functional response of a pre-osteoblast and fibroblast co-culture to 
nanotopography. Contour plots show the sum of predicted (A) osteogenic (RUNX2, SP7, 
BGLAP, SPP1) and (B) fibrotic (TGFB1I1, COL3, ELN) gene expression for individual cells on 
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FLAT, SQ, NSQ and HEX topographies. Pre-osteoblast and fibroblast cells were co-cultured on 
FLAT, SQ, NSQ and HEX nanotopographies for 2 days, and their morphome obtained from the 
entire grid. This new morphome was then used as input in the linear regression model (shown 
in Figure 4) to predict gene expression. A 2.12 mm x 2.12 mm grid was imaged for each 
nanotopography. X and Y axes of each contour plot shows are spatial coordinates on the 
nanotopogrpahy substrate. (C-D) Morphological and functional information at the single-cell 
level is provided by the morphome. Each dot in the plot denotes a single cell. The morphome 
enables simulataneous analysis of morphological and functional changes induced by 
nanotopography at the single cell. N ≥ 5000 cells per topography. 
 
 

Discussion ��
 ��
In this study, we present a system that robustly encodes nanotopography ��
parameters into functional cell specific output. The morphome, which is the collective ��
morphological measurements of chromatin, actin and focal adhesions within single ��
cells, were found to manifest nanotopography-induced changes in cell morphology ��
and cell function. The information encoded in the morphome underpinned the ��
performance of a Bayesian linear regression model for predicting gene expression. ��
 ��
Focal adhesion complexes are the primary mechanosensing machinery of the cell ���
that respond to the biophysical microenvironment. Focal adhesion assembly or ���
confinement induced by nanotopography allows spontaneous actin cytoskeleton ���
assembly, nucleus deformation, and cell fate determination24,52,53. Cells also change ���
and control their microenvironment, thereby dictating focal adhesion and cellular ���
characteristics to varying degrees54,55. Focal adhesion growth is particularly ���
significant in sensing nanoscale changes in ligand arrangement, as this supports ���
force redistribution throughout the cell 56. This reciprocity between the ���
nanotopographical microenvironment, focal adhesions, cytoskeleton and chromatin, ���
and cell function underline the platform presented in this study.  ���
 ���
Our results demonstrate that quantitative measures of high-level cell response to ���
nanotopography emerge from the morphome. The morphome-based platform ���
reported here offers two unique advantages. First, the design parameters of the ���
nanotopographies were explicitly excluded in predicting cell function. To use ���
structural information from topography (e.g. depth, diameter, pitch, geometry, ���
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isotropy, roughness) considerably limits the dataset to only a handful of descriptors. ��
As opposed to polymer-based biomaterials that contain easily interpretable ��
physicochemical properties derived from chemical structure, the effects of ��
topography parameters on hydrophobicity, serum adsorption and cell attachment are ��
less well understood and quantified. Instead, the information contained in the ��
morphome encompass both topography and cell function. Furthermore, by creating a ��
general model that is independent of topographical parameters, this approach can ��
be easily applied to predict cell functions induced by new nanotopographies. ��
Second, in this approach, gene expression-based measures of cell phenotype ��
determined the specialized function of cells. In contrast to our system, many ���
quantitative structure and function relationship studies of polymeric biomaterials ���
have focused only on unspecialized cellular behaviours, such as adhesion and ���
metabolic activity13,14. Since gene expression is highly scalable, the linear regression ���
model can be adapted to predict other cell behaviours or phenotypes. This also ���
ensures that the morphome supports a function-focused exploration of the ���
topography space and the rational design of topographies, as opposed to the ���
currently used trial-and-error screening approach.  ���
 ���
Our data reveals that the morphome can also manifest information on the stage ���
within the cellular lineage commitment timeline. The morphome easily captured the ���
higher levels of mature gene expression in cells farther along lineage commitment ���
compared to precursor cells. Additionally, our co-culture experiments robustly ���
predicted the osteogenic properties induced by NSQ. The elevated level of predicted ���
osteogenic gene expression was supported by high mineralization on NSQ after 28 ���
days of culture. Our results suggest that the morphome can manifest cellular ���
changes induced by nanotopography, as well as changes driven by chemical or ���
paracrine cues. This property of the morphome can be exploited to predict cell ���
behavior in settings that recapitulate in vivo-like environments with numerous ���
microenvironmental signals. ���
 ���
The co-culture experiment also demonstrated that the morphome dataset ���
encompasses, at high resolution, structural, functional and spatial information. ���
Structural information is crucial for determining how cells look, a highly valuable ���
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feature that can also be used to study drug- and disease-induced cell perturbation. ��
The functional information – represented by changes in the expression of 14 different ��
genes – can be observed at single-cell level, reflecting spatial resolution that is ��
invaluable in high-throughput formats. When developed as an automated platform ��
that executes topography production, cell seeding and staining, image acquisition, ��
morphome extraction and gene expression prediction, this approach could increase ��
screening efficiency and make it more cell function-oriented.  ��
 ��
Clearly, morphome capture is crucial to the ability of the linear regression model to ��
predict nanotopography induced cell function. While population-level measures of ���
gene expression strongly indicate cell function, they introduce a measure of ���
uncertainty and biological variability into the linear regression model. Thus, a one-to-���
one relationship between the morphome and cell function is essential to develop. ���
Non-destructive microscopic and molecular tools57 that combine spatial and ���
structural information from the morphome with single-cell functional assays are vitally ���
important for establishing quantitative topography structure- and cell-function ���
relationships using the morphome. However, the use of routine methods, such as ���
high-content imaging and qPCR, permits any lab to measure the morphome and to ���
model it against the cell function in question. ���
 ���
By generating a multivariate morphome dataset and combining it with machine ���
learning, we have created a powerful platform for relating topography structure to cell ���
function. The predictive power of the Bayesian linear regression model we have ���
developed easily lends to sequential experimental design by exploiting the ���
uncertainty and variability within the model1,2. This platform can ultimately be used to ���
guide the testing and exploration of new topographies.  ���
 ���
Materials and methods ���
 ���
Polycarbonate surfaces with nanotopography  ���
Surfaces patterned with 120 nm diameter and 100 nm depth nanopits were ���
fabricated on polycarbonate using injection molding60. The following ���
nanotopographies were used: surfaces without nanopits (FLAT); nanopits in a ���
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square array with 300 nm center-to-center spacing (SQ); nanopits in a square array ��
with approximately 300 nm center-to-center spacing distorted by 50 nm in both x and ��
y directions (NSQ); nanopits in a hexagonal array with 300 nm center-to-center ��
spacing (HEX). Samples were cleaned in 70% ethanol and dried before treating with ��
O2 plasma at 120 W for 1.5 mins. Samples were sterilized using UV light in biological ��
safety cabinet for at least 20 mins before cell seeding.  ��
 ��
Cell culture  ��
Mouse fibroblast cell line NIH3T3 (ATCC) was cultured in reduced sodium ��
bicarbonate content (1.5 g/L) Dulbecco’s modified eagle’s medium with (DMEM) ���
supplemented with L-glutamate (2mM), 10% bovine calf serum, and 1% penicillin-���
streptomycin. Mouse C2C12 myoblasts (ATCC) were cultured in DMEM with 20% ���
FBS and 1% penicillin-streptomycin, and differentiated into skeletal muscle using ���
DMEM supplemented with 2% horse serum and 1% penicillin streptomycin. Mouse ���
primary chondrocytes were cultured in minimum essential medium alpha (MEMa) ���
with nucleosides, ascorbic acid, glutamate, sodium pyruvate supplemented with 10% ���
FBS and 1% penicillin-streptomycin. Mouse MC3T3 cells (ATCC) were cultured in ���
MEMa with nucleosides and L-glutamine without ascorbic acid and supplemented ���
with 10% FBS and 1% penicillin-streptomycin. To differentiate MC3T3 into ���
osteoblasts, MC3T3 media was supplemented with 10 nM dexamethasone, 50 µg/ml ���
ascorbic acid and 10 mM beta-glycerophosphate61. Lineage committed progenitor ���
cells, referred to here as pre-osteoblasts and pre-myoblasts, were also included in ���
the study to mimic the osteogenic and myogenic regeneration in the adult tissue30,31. ���
 ���
Cell seeding  ���
Cells were harvested from flasks using trypsin in versene buffer and spun down at ���
400 x g for 5 minutes. NIH3T3 and MC3T3 cells were resuspended in complete ���
media and seeded at 4000 cells/cm2. Chondrocytes and C2C12 were seeded at ���
2500 cells/cm2. Cells were seeded at different densities to ensure single cells at ���
approximately 30% confluency on each surface after 2 days culture. To ensure ���
homogeneity of seeding, cells were seeded using a cell seeder that controlled fluid ���
flow. For co-culture studies, MC3T3 and NIH3T3 cells were simultaneously seeded ���
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at 2000 cells/cm2 per cell type in MC3T3 growth media. All cells were grown for 2 ��
days on nanotopographies before fixation for immunofluorescence staining.  ��
 ��
Quantitative polymerase chain reaction (qPCR) ��
After 6 days, total RNA was obtained from lysed cells according to manufacturer’s ��
instructions (Promega ReliaPrep Cell Miniprep kit). Gene expression was measured ��
directly from 5 ng RNA using a one-step RT PCR kit with SYBR dye (PrimerDesign). ��
qPCR was run on the BioRad CFX96 platform. Relative gene expression was ��
normalized to the 18S ribosomal RNA reference gene. A list of the forward and ��
reverse primers used to study different mouse genes is given in Table S5. Bar charts ���
for qPCR data were obtained using GraphPad Prism (v7.0). One-way ANOVA with ���
Tukey’s post hoc test for multiple comparisons was performed to determine the ���
effect of nanotopography on gene expression compared with FLAT. Statistical ���
significance was considered at p < 0.05.  ���
 ���
Immunofluorescence staining ���
After 2 days, cells on surfaces were fixed with 4% paraformaldehyde solution in ���
phosphate buffered saline (PBS) at 4°C for 15 minutes. Fixed cells were then ���
permeabilized and blocked with 10% goat serum and 2% bovine serum albumin in ���
PBS for 1 hour at room temperature. Surfaces were stained with the following ���
primary antibodies overnight at 4°C: pFAK Y397 (Abcam 39967, 1:400) and FAK ���
(ThermoScientific 396500, 1:400). Afterwards, Alexa Fluor-conjugated secondary ���
antibodies (ThermoScientific, 1:500) against the host species of the primary antibody ���
were used. Alexa Fluor 549 conjugated phalloidin (ThermoScientific, 1:200) were ���
used to structuralize the actin cytoskeleton. Cells were also stained with DAPI ���
(ThermoScientific) to structuralize nuclei. All surfaces were mounted on 0.17 µm ���
thick Glass coverslips with ProLong mounting medium (ThermoScientific) and dried ���
overnight at 4°C before imaging.  ���
 ���
Image acquisition and feature extraction  ���
For single-cell population studies, monochrome images of each fluorophore were ���
obtained at 40X magnification (numeric aperture 1.3) using the EVOS FL1 System ���
(ThermoScientific). For co-culture studies, the entire field per nanotopography was ���
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imaged and stitched through an automated microscope (EVOS FL2 Auto) with a 40X ��
magnification. All images from one cell type were obtained using the same camera ��
and light settings. Afterwards, images were analysed using CellProfiler (v2.4.0, The ��
Broad Institute). Image processing, including illumination correction and channel ��
alignment, was performed across each independent experiment and each cell type62. ��
Nucleus and cell body were segmented from each cell in each image. Shape or ��
morphometric measurements, total and local intensities and textures of chromatin, ��
actin, pFAK and FAK were obtained using built-in object measurement modules in ��
CellProfiler63.  ��
 ���
Machine learning and multivariate analysis ���
The morphome initially consisted of a total of 1050 measurements obtained from ���
single cells. Morphome measurements from single-cell populations were combined ���
and were scaled by subtracting the mean and normalizing by the standard deviation ���
of the entire data set. Morphome data from co-culture studies were similarly scaled ���
and normalized using the mean and standard deviation from the initial dataset ���
consisting of homogeneous cell populations. Prior to machine learning, features with ���
zero variance within each batch (e.g. Zernike Phase measurements) were removed ���
from the data set. A Pearson correlation method at significance level 90% was used ���
to remove features with correlation higher than 0.9 without significantly reducing total ���
data variance (Figure S16) using the KMDA package64. After preprocessing, 624 ���
morphome features were used further in the study. To determine the features that ���
were significantly varied either across nanotopography or cell type, a one-way ���
ANOVA was performed (KNIME v3.3.0). The intersection of nanotopography-specific ���
and cell type-specific features were obtained. Hierarchical clustering was performed ���
using Spearman correlation as a distance metric and an average linkage method for ���
cluster linkage using gplots package65. Cluster membership and stability was ���
obtained from silhouette analysis using the cluster package66. Dendrogram ���
correlation was performed using corrplot package67.  ���
 ���
Bayesian linear log-Normal regression ���
Only morphome features with an absolute Spearman correlation coefficient ≥ 0.7 ���
against all examined expression markers were used in the linear regression model ���
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(Supplementary data). The linear regression model used 243 morphome features, ��
containing 22 nuclear morphometry and chromatin, 71 actin, 75 FAK and 75 pFAK ��
measurements, as predictors of the model. Each replicate of the qPCR data was ��
propagated across each replicate of the single-cell morphome data. For each gene ��
analysed, data were rescaled from 0 to 1 by normalizing to the maximum gene ��
expression. ��
 ��
Linear regression was performed as a simple approximation of the relationship ��
between the morphome and myogenic, osteogenic, chondrogenic and fibrotic gene ��
expression. Established Bayesian inference methods were used to determine the ���
probabilities of observing gene expression with a given morphome set. We consider ���
a linear model where expression of one gene (response ") was predicted through a ���
linear combination of the morphome features (predictors #) transformed by the ���
inverse identity link function. We assume that " follows a log Normal distribution ���
parametrized by the mean $ and variance 	&'(: ���
 ���

"'	~	*+,-+./01($', &'() ���
 ���
And that 	$ is a linear function of # parametrized by 5: ���

$' = 		 7 + 	59 +	5:#: +	5(#( + ⋯+	5<#< ���
 ���
All model parameters 5 were assumed a priori to come from a normal distribution, ���
parametrized by mean and standard deviation: ���
 ���

5~	=+./01(0, 2) ���
 ���
Each gene was trained independently resulting in 14 different linear regression ���
equations. A 60%-40% training and test split for Bayesian linear regression was ���
performed randomly and with stratification using the caret package for R68. The ���
Bayesian linear model was created using the brms package for R69, which utilizes ���
the Hamiltonian Markov Chain Monte Carlo sampler for estimation of the posterior ���
distribution of 5. Bayesian linear modelling was carried out using with 1000 warm-up ���
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iterations and 1000 sampling iterations within each chain for 3 independent chains. ��
All models were confirmed to converge to the equilibrium distribution by confirming ��
potential scale reduction statistic split-@A 	≥ 1, effective sample size was smaller than ��
total sample size and low autocorrelation. Predicted gene expression was performed ��
by using the test set or the morphome obtained from the co-culture study as input to ��
the linear model. Predicted values were averaged across 50 draws from the ��
posterior distribution. ��
 ��
To determine the predictive power of the morphome, a specific combination of cell ��
type, topography and replicate were iteratively omitted and the remaining dataset ���
was used to refit new models. Thus, 576 additional models were created to test 24 ���
different cell type combinations across 12 genes and 2 replicates. The predictive ���
quality of the models was assessed by predicting the expression of all 14 genes from ���
the omitted cell type, topography and replicate dataset. We report the mean absolute ���
error (MAE) of qPCR prediction for each cell type and topography combination ���
averaged across 2 replicates. MAE was calculated as the average across all ���
absolute differences between predicted and actual gene expression. ���
 ���
Statistics, visualization and software ���
Statistical analysis and machine learning were performed using statistical software R ���
(v3.4.3) and its graphical interface RStudio (v1.0)70. Scatterplots, boxplots and ���
histograms were generated using ggplot2 in R71. Pearson correlation, Spearman ���
rank correlation and Bayesian linear regression were performed in R (v3.4). ���
Interpolation of x and y coordinates and sum of predicted osteogenic or fibrotic gene ���
expression was performed using bivariate interpolation of a regularly gridded dataset ���
using akima package72. Afterwards, the contour plots were created using the ���
fitted.contour function in the base package of R, with the nuclear centroid position ���
used as spatial coordinates of the cell. Barcharts and one-way ANOVA analysis of ���
qPCR values were obtained using GraphPad Prism (v7.0a). ���
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