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Abstract 

Brain connectivity studies have reported that functional networks change with older age. We 

aim to (1) investigate whether electroencephalography (EEG) data can be used to 

distinguish between individual functional networks of young and old adults; and (2) identify 

the functional connections that contribute to this classification. Two eyes-open resting-state 

EEG recording sessions with 64 electrodes for each of 22 younger adults (19-37 years) and 

22 older adults (63-85 years) were conducted. For each session, imaginary coherence 

matrices in theta, alpha, beta and gamma bands were computed. A range of machine 

learning classification methods were utilized to distinguish younger and older adult brains. A 

support vector machine (SVM) classifier was 94% accurate in classifying the brains by age 

group. We report decreased functional connectivity with older age in theta, alpha and 

gamma bands, and increased connectivity with older age in beta band. Most connections 

involving frontal, temporal, and parietal electrodes, and approximately two-thirds of 

connections involving occipital electrodes, showed decreased connectivity with older age. 

Just over half of the connections involving central electrodes showed increased connectivity 

with older age. Functional connections showing decreased strength with older age had 

significantly longer electrode-to-electrode distance than those that increased with older age. 

Most of the connections used by the classifier to distinguish participants by age group 

belonged to the alpha band.  Findings suggest a decrease in connectivity in key networks 

and frequency bands associated with attention and awareness, and an increase in 

connectivity of the sensorimotor functional networks with ageing during a resting state. 
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1. Introduction 

Advanced age is associated with a progressive decline in cognition, particularly in the 

domains of attention, memory and executive function (Hedden & Gabrieli, 2004; Raz & 

Rodrigue, 2006). While there has been considerable research investigating the 

pathophysiological changes that characterize Alzheimer’s disease and other age-related 

neurodegenerative disorders (Goedert & Spillantini, 2006; Y. Huang & Mucke, 2012), much 

less is known about the neural processes affecting cognition in normal, non-pathological 

ageing. A greater understanding of the basic neurophysiology of healthy human ageing may 

prove critical for devising novel therapeutic approaches for slowing or reversing age-related 

cognitive decline.  

The long-range connectivity of resting-state brain networks decreases in healthy ageing 

(Esposito et al., 2008; Ferreira & Busatto, 2013; Hafkemeijer, van der Grond, & Rombouts, 

2012; Koch et al., 2010; Meunier, Achard, Morcom, & Bullmore, 2009; Mevel, Chételat, 

Eustache, & Desgranges, 2011; Tomasi & Volkow, 2012). Using fMRI age-related decreases 

in resting-state functional connectivity have been observed in the default mode network 

(DMN) and the dorsal attention network (DAN) (Hafkemeijer et al., 2012; Mevel et al., 2011), 

both of which are heavily implicated in attention, memory and executive functions (van Den 

Heuvel & Hulshoff Pol, 2010). The DMN comprises a set of regions active at rest, including 

the medial prefrontal cortex, the inferior parietal lobule, the hippocampus and the posterior 

cingulate cortex/retrosplenial cortex/precuneus (Buckner, Andrews-Hanna, & Schacter, 

2008). The DAN includes a set of brain regions comprising the prefrontal, anterior cingulate 

and posterior parietal cortices (Tomasi & Volkow, 2012).  

It is suggested that age-related changes in the motor networks may be different from those 

in the DMN and the DAN. Using fMRI increased functional connectivity has been found in 

motor and subcortical networks in healthy ageing (Tomasi & Volkow, 2012). In a resting-

state functional magnetic resonance imaging (fMRI) study of 913 healthy adults from the 

1000 Functional Connectomes Project repository, Tomasi and Volkow (2012) observed that 

advancing age was associated with increased functional connectivity in the somatosensory 

and motor cortices, cerebellum and brainstem. However, other studies have reported 

reverse findings (Allen et al., 2011; Toussaint et al., 2011; T. Wu et al., 2007).  

EEG is a non-invasive method of recording cortical activity through the scalp (Niedermeyer & 

da Silva, 2005). While the spatial resolution of EEG is limited compared to fMRI, its high 

temporal precision makes it possible to measure neural oscillations that occur in the 

millisecond time range due to synchronized rhythmical firing of populations of neurons 

(Niedermeyer & da Silva, 2005). This oscillatory activity is thought to play a key role in 

coordinating activity in large-scale brain networks, facilitating information flow between 
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distributed brain regions when oscillations are synchronized between regions (Siegel, 

Donner, & Engel, 2012). Neural oscillations are grouped into specific frequency bands, each 

reflecting neural activity within particular brain structures and under different brain states. For 

instance, theta band oscillations have been linked to hippocampal-dependent behaviours 

such as spatial navigation and learning (Araújo, Baffa, & Wakai, 2002; Kahana, Sekuler, 

Caplan, Kirschen, & Madsen, 1999), and are also increased in frontal and parietal brain 

regions during different types of working memory and attentional control tasks (Klimesch, 

Freunberger, Sauseng, & Gruber, 2008; Sauseng, Griesmayr, Freunberger, & Klimesch, 

2010). Alpha band oscillations are dominant in occipital regions, particularly during relaxed 

wakefulness with eyes closed, and are also thought to play an important role in attention and 

working memory by gating sensory processing to protect information held online from 

sensory interference (Klimesch, Sauseng, & Hanslmayr, 2007). Beta band oscillations have 

been linked to sensorimotor network activity (Pfurtscheller, Stancak Jr, & Neuper, 1996; 

Roopun et al., 2006). Gamma band oscillations, on the other hand, have been associated 

with a range of sensory and cognitive processes (Başar, Başar-Eroglu, Karakaş, & 

Schürmann, 2001; Fries, 2009), although appear particularly affected by muscle and 

electrical noise (Pope, Fitzgibbon, Lewis, Whitham, & Willoughby, 2009; Whitham et al., 

2007).  

Functional connectivity can be estimated in specific frequency bands using EEG recordings 

(Sakkalis, 2011). Frequency specific changes in functional connectivity throughout the 

lifespan have been previously reported (Micheloyannis et al., 2009; Smit et al., 2012). Smit 

et al. (2012) investigated the change in the functional brain connectivity from ages 5 through 

71 years using resting-state EEG. Smit et al. (2012) reported large increases in theta, alpha 

and beta functional connectivity from childhood to adolescence that continued at a slower 

pace into adulthood (peaking at 50 years) and decreases in theta, alpha and beta functional 

connectivity above 50 years. Micheloyannis et al. (2009) used resting-state and task 

(mathematical thinking) EEG from twenty children and twenty young adults and reported 

lower beta and gamma connectivity in both rest and during task in adults. Vysata et al. 

(2014) used resting-state EEG in a group of 17,722 healthy professional drivers with a mean 

age of 43.2 years (SD = 11.2 years) and reported average functional connectivity over the 

whole scalp increased with older age in the beta band and decreased with older age in theta 

and alpha bands. However, it is still unknown how frequency-specific functional connections 

change with older age  

Machine learning classifiers (Pereira, Mitchell, & Botvinick, 2009) provide a powerful 

approach to investigate age-related differences in functional networks. One of the commonly 

used machine learning classifiers is support vector machine (SVM). A crucial aspect of SVM 

is that it identifies the features that drive classifier performance. An SVM algorithm trained on 
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a training dataset can generate feature weights corresponding to the relative contribution of 

an individual feature to successful differentiation of the two groups. Following this, the 

classifier can be applied to a separate testing dataset to assess the accuracy of the classifier 

in differentiating the two groups. SVM classifiers have been used to classify individual brains 

by chronological age using resting-state fMRI connectivity data. Dosenbach et al. (2010) 

used data from 238 fMRI scans of participants aged 7 to 30 years old. They classified 

children and adult brains with 91% accuracy, which was replicated as 92% and 93% 

accuracy with two other datasets comprising of 195 and 186 scans. Meier et al. (2012) used 

three scans from 26 younger adults (18-35 years old) and 26 older adults (55-85 years old) 

and were able to classify younger and older adult brains with 84% accuracy. They showed 

that the majority of the functional connections that distinguished older and younger adults 

came from regions belonging to the sensorimotor and cingulo-opercular functional networks. 

They reported a decrease in long-range functional connectivity and an increase in short-

range functional connectivity with older age. Machine learning has been successfully applied 

to resting-state EEG data in the classification of typically developing children from a group of 

infants at high risk for autism spectrum disorder (Kousarrizi, Ghanbari, Gharaviri, 

Teshnehlab, & Aliyari, 2009) and in the classification of alcoholics and non-alcoholics (Bosl, 

Tierney, Tager-Flusberg, & Nelson, 2011). Investigating EEG functional connectivity 

characteristics of healthy ageing will provide further understanding of the physiological 

processes that mediate changes in functional connectivity as humans age. 

We aim at uncovering whether an individual resting EEG session can be used to distinguish 

young and old brains and most importantly, the identity of the functional connections that 

contribute to such classification. We hypothesized that long-range functional connectivity of 

theta and alpha band oscillations, particularly in frontal, parietal and occipital regions, would 

be decreased with older age. 

2. Materials and Methods 

2.1. Procedure 

Resting-state EEG data from 22 younger adults aged 19 to 37 years (mean 24.3 years, SD 

6.1 years, 9 male, 21 self-reported right-handed) and 22 older adults aged 63 to 85 years 

(mean 71 years, SD 6 years, 9 male, 22 right-handed according to the Flinders Handedness 

Survey (Nicholls, Thomas, Loetscher, and Grimshaw (2013)) were recorded. In line with 

Meier et al. (2012) we used more than one recording session from each participant. Our 

dataset consists of two separate resting-state recording sessions for each participant, 

recorded at least 7 days apart. The EEG recordings were baseline measurements in pre-

intervention or sham conditions embedded in larger studies on the effects of transcranial 

magnetic stimulation and/or Noxious stimulation on brain dynamics. The EEG data for 
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younger adults is published elsewhere in the context of a graph theoretical analysis (Moezzi, 

Hordacre, Berryman, Ridding, & Goldsworthy, 2018). Participants gave written informed 

consent in accordance with the World Medical Association Declaration of Helsinki to 

participate in this study. Ethical approval was provided by the University of Adelaide Human 

Research Ethics Committee and University of South Australia’s Human Research Ethics 

Committee. 

2.2. EEG acquisition and pre-processing 

We acquired three minutes of continuous resting-state EEG data (eyes open) using an ASA-

lab EEG system (ANT Neuro, Enschede, Netherlands) or a TMSi EEG system (Twente 

Medical Systems International B.V, Oldenzaal, The Netherlands) using a WaveguardTM 

original cap with 64 sintered Ag-AgCl electrodes in standard 10-10 positions. During 

recording, participants were instructed to view a fixation point, remain still, quiet and relaxed 

to avoid blinking too much. Each participant’s two sessions were performed using the same 

EEG system. Signals were sampled at 2048 Hz, amplified 20 times, filtered (high pass, DC; 

low pass 553 Hz) and referenced to the average of all electrodes. Impedance was kept 

below 5 kΩ and the recorded data were stored on a computer for offline analysis. 

EEG data were exported to MATLAB 9.0 (MathWorks, Inc., Natick, MA) for pre-processing 

and analysis. The EEG signals were segmented into epochs of 1 second. The baseline 

means were removed from the EEG dataset. Channels Fp1, Fpz, Fp2, M1, M2, AF7 and 

AF8 and channels that were disconnected during recording or dominated by exogenous 

artefact noise were removed. The data were filtered using a hamming windowed sinc finite 

impulse response filter (1-45 Hz). We excluded epochs contaminated by excessive 

deflection identified by a threshold for the maximum allowed amplitude for the EEG signals 

>100 µV (7% of epochs were excluded). Fast ICA artefact correction was implemented to 

correct for non-physiological artefacts (e.g. eye blinks and scalp muscle activity) (Delorme & 

Makeig, 2004). Missing channels were interpolated using super-fast spherical interpolation. 

2.3. Power 

We used the power spectra to set the range of the theta, alpha, beta and gamma frequency 

bands separately for younger and older adults. We computed power-spectra by performing 

time-frequency analysis on EEG time series over multiple trials using the multitaper method 

based on Hanning tapers. The analysis windows were centred in each trial at 0.01 s intervals 

with three cycles per time window. In line with (Haegens, Cousijn, Wallis, Harrison, & Nobre, 

2014; Moretti et al., 2011), our alpha frequency was defined as the biggest local maximum 

within the extended range (5–14 Hz). The theta/alpha transition frequency (TF) was 

computed as the minimum power in the alpha frequency range. Theta band was defined 
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from 4 Hz to TF. The gamma frequency was defined as the highest peak with frequency 

above 30 Hz (Herrmann, Lenz, Junge, Busch, & Maess, 2004) and up to 45 Hz (Hordacre, 

Moezzi, & Ridding, 2018). The beta band was defined as the frequencies between the higher 

endpoint of the alpha band and 30 Hz (Henelius, Korpela, & Huotilainen, 2011). We utilized 

FieldTrip which is a MATLAB software toolbox for EEG and MEG analysis to compute power 

(Oostenveld & Praamstra, 2001). 

2.4. Functional connectivity 

We constructed the functional connectivity matrices for each participant using imaginary 

coherence in theta, alpha, beta and gamma frequency bands. The l-th segment of the i-th 

time course is denoted by xi,l and its Fourier transform by Xi,l. The cross-spectral matrix is 

defined as 

𝑆𝑖,𝑗 =
1

𝑁
∑ 𝑋𝑖,𝑙

∗ 𝑋𝑗,𝑙

𝐾

𝑙=1

    (1) 

where (.)* denotes complex conjugation and N denotes the total number of segments. The 

coherency between the i-th and j-th times series is defined as 

𝐶𝑖,𝑗 =
𝑆𝑖,𝑗

√𝑆𝑖,𝑖𝑆𝑗,𝑗

          (2) 

We computed the absolute value of imaginary coherence between each two EEG electrodes 

m and n as 

𝐽𝑝.𝑞 = |𝜁(𝐶𝑖𝑚,𝑗𝑛
)|    (3) 

where 𝜁(. ) denotes the imaginary part. Finally, matrix J was divided by its standard deviation 

using the Jackknife method to generate a connectivity matrix. To compute functional 

connectivity, we utilized the FieldTrip software package (Oostenveld & Praamstra, 2001). 

2.5 Classification  

Soft-margin SVM classification was performed using Scikit-Learn, a machine learning 

toolbox implemented in Python (Pedregosa et al., 2011). Local Outlier Factor and Isolation 

Forest algorithms were used to identify outliers (Breunig, Kriegel, Ng, & Sander, 2000; Liu, 

Ting, & Zhou, 2008). In line with previous literature, we mapped the data in higher-dimension 

using a radial basis function (RBF) as the underlying kernel and discriminated functional 

connectivity data as belonging to the younger or older adult group using a linear decision 

function (Meier et al., 2012). A leave-one-out cross-validation (LOOCV) procedure was 

performed to (1) identify the most significant features, (2) tune the hyper-parameters (C-

regularization factor and gamma-kernel coefficient) of SVM and (3) determine the accuracy 
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of the classifier. For each iteration of LOOCV, both sessions of a participant were removed, 

and the top 300 features (functional connections) were selected using two-sample t-tests on 

the training set and ranked according to their absolute t-statistics. We used the resulting t-

scores as our feature weights. We kept 300 features because this was the approximate 

number of features that remained significant following False Discovery Rate correction. After 

selecting the top features, a nested LOOCV was performed to train the classifier and tune 

the hyperparameters. In the outer LOOCV loop, both the sessions of a participant were set 

aside for validating the classifier. The sessions of the remaining participants were used in 

the inner LOOCV loop to tune the hyperparameters of the classifier. Once the classifier is 

trained, the left-out sessions were separately classified as belonging to the younger or older 

adult group. The total accuracy of the classifier was determined by the percent of correctly 

classified sessions across all iterations. Receiver operating characteristics (ROC) curve was 

considered to calculate the area under curve score for a dataset having balanced classes 

(Fawcett, 2006). ROC takes into consideration the value of the threshold that identifies which 

class the session belongs to. A perfect classifier has a score of 1 whereas a classifier 

operating at random has a score of 0.5. For each group, young and old, the precision of the 

classifier was determined as the number of true positives divided by the sum of true 

positives and false positives. The recall of the classifier was determined by the number of 

true positives divided by the sum of true positives and false negatives. 

Due to equal number of older and younger adults, the chance performance of the classifier 

generates an accuracy of 50%. In line with previous literature, we considered each iteration 

of the LOOCV as a Bernoulli trial with success probability of 0.5 (Pereira et al., 2009). By 

comparing the number of true positives to the number of sessions to be classified we also 

determined the probability of the accuracy occurring by chance. 

In addition to SVM, we performed classification using alternative methods. Once the most 

significant features were identified, the LOOCV procedure was performed to tune the 

hyperparameters and determine the accuracy of each of the following methods: K-nearest 

neighbours (Cover & Hart, 1967) was performed by tuning the number of nearest 

neighbours, least squares linear classifier (Bishop, 2006), SVM classifier with linear kernel 

by tuning the regularization factor (C), and extreme learning machine (ELM) (Akusok, Bjork, 

Miche, & Lendasse, 2015; G.-B. Huang, Zhu, & Siew, 2004) with linear, RBF and sigmoid 

kernels by tuning the number of neurons to be added to the network. 

2.6. Brain regions 

We categorized electrodes into groups approximating frontal, central, parietal, temporal, and 

occipital brain regions based on an EEG study by Kamarajan et al. (2015) – see Figure 1. To 

compute the contribution of each region to the SVM classification, if a feature consisted of 
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two electrodes from different brain regions, then half of the feature weight was assigned to 

each brain region. If both electrodes of a feature were from the same region, then the full 

feature weight was assigned to that region. The percentage contribution of each region was 

then normalized to account for differences in the total number of electrodes included in each 

region. 

2.7. Electrode-to-electrode distance 

We characterized consensus features by the Euclidian distance between electrode pairs to 

investigate patterns of age-related differences. The 3-D electrode template we used was a 

standard 10-5 template constructed by Oostenveld and Praamstra (2001) electrode positions 

represented in millimetre in the Montreal Neurological Institute (MNI) coordinate system.  

2.8. Statistical analysis 

We compared the connections that decreased with older age to those that increased with 

older age based on electrode-to-electrode Euclidian distance using Mann-Whitney U-test. P-

values < 0.05 were considered statistically significant. 

3 Results 

3.1. Power 

We plotted the power spectra for younger and older adults for theta, alpha, beta and gamma 

bands (see Figure 2). For older adults, frequency ranges of 4-6 Hz and 7-13 Hz were 

selected for theta and alpha bands, respectively, whereas for younger adults, 4-7 Hz and 8-

13 Hz were used. We set beta band to 14-30 Hz and gamma band to 31-45 Hz for both 

younger and older adults. While we used the power spectra to set the frequency bands we 

continue with analysing on functional connectivity data. Our main goal is to identify the 

distinguishing age-related differences in functional connectivity. 

3.2. Outliers 

Of the 88 separate EEG recording sessions, Local Outlier Factor algorithm identified seven 

outliers, four of which belonged to the younger adult group and three to the older adult 

group. These same outliers were detected using Isolation Forest algorithm and therefore 

were removed from the dataset prior to SVM classification. To maintain equal numbers of 

sessions for both younger and older groups, we also randomly selected a session from the 

older adult group and removed it from the dataset. 

3.3. Classifier performance 

The classifier successfully classified younger adults from older adults with an accuracy of 

94%. The 94% accuracy of the classifier was significantly higher than the accuracy by 
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chance performance of the classifier (p < 10-8). Five recording sessions belonging to the 

older adult group were misclassified with one older adult having both sessions misclassified. 

The accuracy achieved by the SVM (linear kernel), k-nearest neighbours, ELM (linear 

kernel), ELM (RBF kernel), ELM (sigmoid kernel) and least squares linear classifier was 

below 84%. The accuracy, area under ROC curve, precision and recall values for all the 

methods are summarized in Table 1. The SVM classifier with RBF kernel has the highest 

accuracy, area under ROC curve, precision and recall among all the methods tested. 

3.4. Features 

The features were analysed to uncover the patterns of functional connectivity changes that 

contributed to the SVM classification. From approximately 300 features obtained from each 

iteration of LOOCV, 162 features were identified to be common among all iterations 

(consensus features) – see Supplementary material Table 2. Eighty three percent of total 

consensus feature weights came from pairs of electrodes that showed lower functional 

connectivity in older adults than younger adults. 

3.4.1 Frequency bands 

We further analysed the consensus features belonging to theta, alpha, beta and gamma 

frequency bands. The frequency band with the greatest amount of consensus feature weight 

associated with it was the alpha band (112 of 162 consensus features), followed by beta (28 

features), theta (17 features), and gamma (5 features) (Figure 3). The consensus features 

belonging to theta, alpha and gamma bands had positive weights showing significantly 

higher functional connectivity in younger adults than in older adults. Consensus features of 

the beta band had negative weights showing significantly higher functional connectivity in 

older adults than younger adults.  

3.4.2. Brain regions 

Electrodes were grouped as approximating five brain regions (temporal, frontal, occipital, 

parietal, central). The single electrode with the greatest amount of consensus feature weight 

associated with it was TP7 (temporal) followed by T7 (temporal), Pz (parietal), P2 (parietal) 

and POz (occipital). As seen in Figure 4, the large majority of features involving frontal, 

temporal, and parietal electrodes, and approximately two-thirds of features involving occipital 

electrodes, showed decreased connectivity with older age. Conversely, slightly more than 

half of the features involving central electrodes showed increased connectivity with older 

age. 
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3.4.3. Distance 

We compared the connections that decreased with older age to those that increased with 

older age based on electrode-to-electrode Euclidian distance. We observed that consensus 

features showing decreased functional connectivity with older age were longer than those 

that showed increased connectivity with older age (U = 1289, Z = -2.6, p = 0.009; decrease: 

median = 140.9 mm, range = 29.4-185.4 mm; increase: median = 120.8 mm, range = 36.8-

156.0 mm) – see Figure 5. 

4. Discussion 

The greatest contribution to the classification of young from old brains came from a decrease 

in functional connectivity of electrodes approximating the frontal, parietal and temporal areas 

in older compared to young adults, particularly in alpha band. We also observed an age-

related increase in functional connectivity of electrodes approximating the motor regions in 

the beta band. Our findings suggest a decrease in connectivity in key networks and 

frequency bands associated with attention and an increase in the networks and frequency 

band associated with motor control with advanced ageing 

Ageing is characterized by alterations in functional brain networks (Ferreira & Busatto, 2013; 

Hedden & Gabrieli, 2004; Raz & Rodrigue, 2006; Rossini, Rossi, Babiloni, & Polich, 2007). 

Resting-state functional connectivity has shown to commonly decrease in healthy aging (for 

a review see Ferreira and Busatto (2013)). Most commonly, using fMRI decreases in frontal 

and parietal areas with older ageing have been observed (Hafkemeijer et al., 2012; Mevel et 

al., 2011). In line with this, we found that the most influential connections for classifier 

performance were those showing decreased connectivity with older age. This was largely 

due to connections involving frontal, temporal, parietal, and (to a lesser extent) occipital 

electrodes, with the greatest contribution coming from decreased connectivity in the alpha 

frequency band.  

The decreased alpha band connectivity of frontal and parietal areas in older relative to 

younger adults may reflect changes in attentional and arousal levels with advanced ageing 

(Mathewson et al., 2012), with theta and alpha band oscillations suggested to reflect 

attentional load and arousal level (Klimesch, 2012; Klimesch, Doppelmayr, Russegger, 

Pachinger, & Schwaiger, 1998; Mathewson et al., 2012).  Using EEG and MEG recordings, 

decreased alpha connectivity of frontal, parietal and temporal regions have been observed in 

pathological mild cognitive impairment and dementia (Babiloni et al., 2018; Babiloni et al., 

2006; Babiloni et al., 2004; Bosboom, Stoffers, Wolters, Stam, & Berendse, 2009). A 

frontoparietal network is often engaged during tasks requiring attention (Bonnelle et al., 
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2011; Coull, Frackowiak, & Frith, 1998) so a decrease in frontoparietal connectivity is likely 

to reflect impaired attention. 

Whereas consensus features for alpha, theta, and gamma bands all showed decreased 

functional connectivity with older age, features for beta showed increased connectivity in 

older relative to younger adults, accounting for 17% of the total feature weight. Neural 

oscillations in the beta frequency band have been strongly linked to sensorimotor network 

activity (Pfurtscheller et al., 1996; Roopun et al., 2006), with resting-state beta connectivity 

associated with motor cortex function and plasticity in healthy subjects (Hordacre et al., 

2017; J. Wu, Srinivasan, Kaur, & Cramer, 2014) and after stroke (J. Wu et al., 2015). The 

beta band features in this study mostly involved central electrodes overlying sensorimotor 

networks. FMRI studies have shown age-related increases in functional connectivity of 

sensorimotor networks both during task performance (Heitger et al., 2013) and at rest 

(Langan et al., 2010; Meier et al., 2012; Mowinckel, Espeseth, & Westlye, 2012; Solesio‐

Jofre et al., 2014; Tomasi & Volkow, 2012) , reflecting a loss of functional segregation 

among sensorimotor areas that is related to poorer performance on motor coordination tasks 

(Solesio‐Jofre et al., 2014). While less is known about the role of resting-state beta rhythms 

in ageing, there is some evidence that advanced age is associated with increases in both 

resting-state beta power and beta de-synchronization during movement, possibly reflecting 

changes in the balance between GABAergic inhibition and glutamatergic excitation in the 

aged motor cortex (Rossiter, Davis, Clark, Boudrias, & Ward, 2014). Our results showing 

increased beta band functional connectivity and decreased theta and alpha band functional 

connectivity with older age are in agreement with previous research (Vysata et al., 2014). 

While age differences in excitatory-inhibitory balance might have contributed to age-related 

increases in beta band functional connectivity to classifier performance in the present study 

(Rossiter et al., 2014), additional research is needed to explore this further.  

We observed that consensus features showing decreased functional connectivity with older 

age were significantly longer than those that showed increased connectivity with older age. 

This is in agreement with the findings of Meier et al. (2012), who reported a decrease in 

long-range functional connectivity and an increase in short-range functional connectivity with 

older age. While the physiological significance of distances separating surface electrode 

pairs should be interpreted with caution, these data are consistent with the notion that long-

range connections, particularly between anterior and posterior brain regions, are more 

affected than short-range connections in normal and pathological ageing  (Sala-Llonch et al., 

2014; Tomasi & Volkow, 2012). 

There are several limitations to this study. First, we acknowledge that EEG suffers from poor 

spatial resolution and signals that are recorded at the surface level can be affected by 
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volume conduction (Bastos & Schoffelen, 2016). We have tried to mitigate this effect by 

using a conservative measure of functional connectivity (i.e. imaginary coherence). 

However, this may not thoroughly remove the effects of volume conduction and caution is 

needed when suggesting generators of the neural signal recorded with EEG surface 

electrodes. Second, the use of SVM requires several user decisions. For example, for 

estimating parameters we had to choose an appropriate kernel and its parameters. Because 

the data was not linearly separable, we chose a radial RBF kernel which projects the data to 

infinite dimensions and linearly separates both the groups (Meier et al., 2012). The 

parameters for the kernel are estimated using the nested leave one out cross-validation 

procedure. Finally, as mentioned above, it is important to note that using the Euclidian 

distance between electrodes does not reflect the distance of physical connections. 

In summary, we show that an individual resting-state EEG recording can be used to classify 

younger adult brains from older adult brains with high accuracy, enabling greater 

understanding of functional connectivity as a mechanism mediating changes in human 

behaviour with ageing. Our study supports the literature that suggest functional connectivity 

of frontal, parietal and temporal regions decreases, and connectivity of motor areas 

increases with older age. These findings also emphasize the role of alpha frequency band 

connectivity in characterizing advanced ageing.  
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Tables and Figures 

Figure 1. Grouping electrodes to approximate frontal (F), central (C), temporal (T), parietal 

(P), and occipital (O) regions. 
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Figure 2. Mean Power spectra over all electrodes for (a) younger and (b) older adults. Error 

bars are SE. Red shade denotes the theta band, yellow shade denotes the alpha band, green 

shade denotes beta band and blue shade denote the gamma band. 
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Figure 3. Illustration of the consensus features with decreased weight with older age (red) 

and the consensus features with increased weight with older age (blue) in theta, alpha, beta 

and gamma frequency bands. 
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Figure 4. Comparison of the contribution of electrodes from each region to the SVM 

classification (expressed as % of total feature weight).  Values are corrected for the total 

number of electrodes included in each region. 
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Figure 5. Comparison of consensus features with decreased weight with older age to those 

with increased weight with older age based on electrode-to-electrode distance. Box plots 

showing the mean (cross), median, interquartile and range of electrode-to-electrode distances 

for consensus features with decreased weight with older age (red) and those with increased 

weight with older age (blue). *p < 0.01. 
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Table 1. The accuracy of the different classification methods. SVM: support vector machine, 

ELM: extreme learning machine, RBF: radial basis function, ROC: receiver operating 

characteristics. 

   Young Old 

Method Accuracy Area under ROC curve Precision Recall Precision Recall 

SVM (RBF kernel) 94% .97 .89 1.0 1.0 .88 

SVM (linear kernel) 80% .89 .85 .73 .76 .88 

K-nearest neighbours 78% .82 .79 .75 .76 .80 

ELM (linear kernel) 70% .80 .70 .70 .70 .70 

ELM (RBF kernel) 80% .78 .82 .78 .79 .83 

ELM (sigmoid kernel) 84% .84 .87 .80 .81 .88 

Least squares linear classifier 68% .75 .68 .68 .69 .68 
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Supplementary material 

Table 2. Information on consensus features (FDR corrected for multiple comparison, q < 0.05). 

Positive features denote decreased functional connectivity with older age and negative 

features denote increased functional connectivity with older age. 

Frequency Electrode 1 Electrode 2 Feature weights P-value 

Alpha T7 F8 4.79 0.0008 

Alpha P2 P5 4.78 0.0008 

Beta C2 O2 -4.74 0.0008 

Beta PO8 C2 -4.71 0.0008 

Alpha PO3 P2 4.61 0.0008 

Alpha TP7 AF4 4.55 0.0008 

Alpha P1 AF4 4.54 0.0008 

Alpha PO5 POz 4.48 0.0008 

Beta PO6 C2 -4.44 0.0008 

Alpha PO5 P2 4.42 0.0008 

Beta Oz C3 -4.40 0.0008 

Alpha TP7 F8 4.35 0.0008 

Alpha PO3 Pz 4.34 0.0008 

Alpha POz F4 4.31 0.0008 

Alpha P2 T8 4.31 0.0008 

Alpha PO3 POz 4.31 0.0008 

Alpha TP7 F4 4.30 0.0008 

Alpha TP7 P7 4.30 0.0008 

Alpha P5 POz 4.28 0.0008 

Alpha TP7 P1 4.26 0.0008 

Alpha FT7 Pz 4.25 0.0008 

Alpha FT7 P2 4.24 0.0008 

Alpha TP7 AF3 4.23 0.0008 

Alpha FT7 CP2 4.19 0.0009 

Alpha P7 T7 4.17 0.0010 

Alpha P5 AF4 4.16 0.0010 

Alpha CP4 AF3 4.14 0.0010 

Alpha POz FC6 4.13 0.0010 

Beta C2 Oz -4.12 0.0010 

Alpha P4 CP6 4.11 0.0010 

Alpha P5 Pz 4.09 0.0010 

Gamma CP3 CP1 4.07 0.0011 

Alpha P1 F8 4.06 0.0011 

Alpha TP7 Pz 4.06 0.0011 

Gamma CP4 F5 4.02 0.0012 

Alpha TP7 P5 4.02 0.0012 

alpha TP7 Fz 4.00 0.0012 
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alpha PO7 T7 4.00 0.0012 

alpha PO7 POz 3.99 0.0012 

alpha CP2 T7 3.97 0.0012 

Beta PO4 C2 -3.97 0.0012 

Alpha P2 P3 3.95 0.0012 

Alpha TP7 F3 3.95 0.0012 

Alpha P2 CP5 3.95 0.0012 

Alpha P5 P4 3.90 0.0014 

Alpha TP7 FC1 3.89 0.0014 

Alpha FC2 POz 3.88 0.0014 

Alpha TP7 FC2 3.88 0.0014 

Alpha TP7 FC6 3.88 0.0014 

Alpha FC4 POz 3.87 0.0014 

Alpha Pz CP5 3.86 0.0014 

Alpha CP4 F7 3.86 0.0014 

Beta CPz O2 -3.85 0.0014 

Alpha P2 F7 3.85 0.0014 

Alpha PO7 P2 3.84 0.0014 

Alpha P1 T7 3.83 0.0014 

Alpha AF4 Pz 3.83 0.0014 

Alpha CP4 F5 3.83 0.0014 

Alpha TP7 PO5 3.82 0.0014 

Gamma F5 CP6 3.82 0.0014 

Alpha Pz T7 3.81 0.0014 

Alpha P2 F3 3.81 0.0014 

Alpha TP7 FC6 3.79 0.0014 

Beta C2 Cz -3.76 0.0015 

Alpha TP7 FC2 3.76 0.0015 

Alpha FC1 17CP6 3.76 0.0015 

Alpha PO5 Pz 3.75 0.0016 

Alpha Pz F7 3.75 0.0016 

Theta T7 Fz 3.72 0.0017 

Theta C5 CP5 3.72 0.0017 

Beta C5 F5 -3.71 0.0017 

alpha P3 T7 3.71 0.0017 

alpha FC6 T7 3.71 0.0017 

Theta TP7 Fz 3.70 0.0017 

alpha FC2 T7 3.70 0.0017 

alpha TP7 P3 3.69 0.0017 

alpha P1 CP5 3.68 0.0017 

Theta T8 Fz 3.68 0.0017 

Beta O1 C3 -3.67 0.0017 

Alpha Pz P3 3.66 0.0018 
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Alpha P3 CP5 3.66 0.0018 

Alpha C4 T7 3.63 0.0019 

Alpha P7 F7 3.63 0.0019 

Alpha TP7 C4 3.63 0.0019 

Alpha T7 FC2 3.62 0.0019 

Alpha FC1 P4 3.62 0.0019 

Alpha P5 F7 3.62 0.0019 

Alpha CP2 F7 3.61 0.0019 

Alpha PO7 TP7 3.61 0.0019 

Alpha FT7 F4 3.61 0.0019 

Gamma T7 F8 3.61 0.0019 

Beta C1 O1 -3.60 0.0019 

Alpha AF3 P7 3.60 0.0019 

Alpha CP5 F8 3.59 0.0019 

Gamma FC1 F3 3.59 0.0019 

Alpha AF3 CP6 3.58 0.0019 

Alpha CPz T7 3.58 0.0019 

Alpha P1 Pz 3.57 0.0020 

Alpha Pz FC6 3.56 0.0020 

Theta PO8 FC1 3.55 0.0021 

Alpha AF3 P4 3.55 0.0021 

Theta C5 FC1 3.54 0.0021 

Alpha AF4 P3 3.53 0.0022 

Alpha PO7 FC1 3.50 0.0024 

Alpha TP7 FC4 3.49 0.0024 

Alpha PO5 T7 3.49 0.0024 

Alpha AF4 P4 3.48 0.0025 

Alpha C2 T7 3.47 0.0025 

Theta TP7 FC1 3.46 0.0025 

Beta O2 C4 -3.46 0.0025 

Alpha FT8 CPz 3.46 0.0025 

Theta FC2 T8 3.45 0.0025 

Alpha O2 POz 3.45 0.0025 

Theta PO4 T7 3.45 0.0025 

Beta C1 Oz -3.45 0.0025 

Beta Oz CP1 -3.43 0.0027 

Alpha FC2 FC6 3.42 0.0027 

Beta PO7 Pz -3.42 0.0027 

Alpha PO5 P4 3.42 0.0027 

Alpha PO8 POz 3.42 0.0027 

Alpha P1 C5 3.41 0.0027 

Alpha AF4 CP6 3.41 0.0027 

Theta FC1 CP5 3.41 0.0027 
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Beta CPz Oz -3.40 0.0027 

Alpha TP7 C6 3.38 0.0028 

Alpha Pz F8 3.37 0.0029 

Alpha PO5 F7 3.37 0.0030 

Alpha P2 AF3 3.35 0.0031 

Beta F5 Cz -3.35 0.0031 

Alpha PO3 P4 3.34 0.0031 

Alpha P2 CP6 3.33 0.0032 

Theta PO7 TP7 3.33 0.0032 

Alpha CP4 C6 3.32 0.0032 

Alpha P4 F3 3.32 0.0033 

Alpha F5 Pz 3.31 0.0033 

Beta O2 CP1 -3.30 0.0034 

Alpha FC2 Pz 3.30 0.0034 

Beta CPz CP1 -3.29 0.0035 

Theta FT8 Fz 3.28 0.0035 

Beta C2 F7 -3.28 0.0035 

Beta PO8 CPz -3.27 0.0036 

Beta O2 CP2 -3.26 0.0037 

Beta C1 AF4 -3.25 0.0037 

Alpha Pz Fz 3.25 0.0037 

Alpha PO4 P5 3.24 0.0038 

Beta FT7 FC2 -3.24 0.0038 

Alpha C6 P4 3.24 0.0038 

Alpha FT8 P2 3.23 0.0039 

Alpha FT7 C4 3.22 0.0040 

Alpha C5 FC6 3.21 0.0041 

Alpha TP7 P2 3.21 0.0041 

Beta C2 C1 -3.20 0.0041 

Beta FC6 Cz -3.20 0.0042 

Beta C5 F3 -3.19 0.0043 

Theta F8 Fz 3.18 0.0043 

Beta O1 Cz -3.17 0.0044 

Alpha FT7 P4 3.17 0.0044 

Theta TP7 O1 3.15 0.0046 

Theta FC1 T7 3.13 0.0050 

Theta FC2 T7 3.11 0.0052 

Theta FT7 POz 3.05 0.0061 

Alpha PO4 Fz 3.02 0.0068 
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