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Abstract: Lung cancer is the leading cause of cancer-related death and patients most commonly 

present with incurable metastatic disease. National guidelines recommend screening for high-risk 

patients with low-dose computed tomography (LDCT), but this approach has limitations 

including high false positive rates. Activity-based nanosensors (ABNs) detect dysregulated 

proteases in vivo and release a reporter to provide a urinary readout of disease activity. Here, we 

demonstrate the translational potential of ABNs by coupling ABN multiplexing with 

intrapulmonary delivery to detect early-stage lung cancer in an immunocompetent, genetically 

engineered mouse model (GEMM). The design of the multiplexed panel of sensors was informed 

by comparative transcriptomic analysis of human and mouse lung adenocarcinoma data sets and 

in vitro cleavage assays with recombinant candidate proteases. When employed in a Kras and 

Trp53 mutant lung adenocarcinoma mouse model, this approach confirmed the role of 

metalloproteases in lung cancer and enabled accurate early detection of disease, with 92% 

sensitivity and 100% specificity. 

Introduction 

Lung cancer is the most common cause of cancer-related death (25.3% of cancer deaths in the 

U.S), with dismal 18.6% five-year survival rates1. Key to this high mortality is the fact that 57% 

of lung cancer patients have distant spread of disease at the time of diagnosis1. Because patients 

with regional or localized disease have six- to 13-fold higher five-year survival rates than 

patients with distantly spread disease1, significant effort has been dedicated to improving 

diagnostic sensitivity. Screening with low-dose computed tomography (LDCT) is recommended 

in high-risk patients (adults aged 55 to 80 with a 30 pack-year smoking history2) and enables a 

relative reduction in mortality of 20% when compared to the previous standard, chest 

radiography3. However, these screening tests are expensive4, have high false positive rates 
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(~96%3) and potentially expose patients to biopsy-related complications, raising concern for 

overdiagnosis and increased healthcare-associated cost burden5,6. 

Great strides in the field of molecular diagnostics have yielded promising approaches that 

may be used in conjunction with LDCT for lung cancer screening. Circulating tumor DNA 

(ctDNA) has emerged as a promising tool for noninvasive molecular profiling of lung cancer7-10. 

However, the presence of ctDNA has been shown to scale with tumor burden and there are 

fundamental sensitivity limits for early stage disease7,10,11. To achieve high-sensitivity detection 

of ctDNA in stage I-II cancer patients, it is estimated that large (>80 mL) blood volumes would 

be needed with current methodologies, potentially limiting the widespread adoption of this 

approach12. Similarly, circulating tumor cells (CTCs) may be detected in patients with advanced-

stage non-small cell lung cancer (NSCLC), but the sensitivity of CTCs for detection of non-

metastatic disease remains low at present13-16. Finally, transcriptional profiling of bronchial 

brushings can enhance the diagnostic sensitivity of bronchoscopy alone, even for peripheral and 

early-stage pulmonary lesions, an approach that leverages the “field of injury” that results from 

smoking and other environmental exposures6,17. However, as with any invasive procedure, 

bronchoscopy carries the risk of attendant complications such as pneumothorax18. 

Rather than relying on imaging techniques or detection of endogenous biomarkers in 

circulation, we have developed a class of “activity-based nanosensors” (ABNs) that monitor for a 

disease state by detecting and amplifying activity of aberrant proteases to generate urinary 

reporters19-24. Protease activity is dysregulated in cancer, and proteases across catalytic classes 

play a direct role in all of the hallmarks of cancer, including tumor growth, angiogenesis, 

invasion, and metastasis25-30. ABNs leverage dysregulated protease activity to overcome the 

insensitivity of previous biomarker assays, amplifying disease-associated signals generated in the 
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tumor microenvironment and providing a highly concentrated urine-based readout. We have 

previously explored the sensitivity of this approach via mathematical modeling31 and cell 

transplant models23. However, to drive accurate diagnosis in a heterogeneous disease, a 

diagnostic must also be highly specific. Here, we explore the potential to attain both sensitive 

and specific early disease detection through multiplexing of 14 ABNs in an immunocompetent 

GEMM, which better recapitulates key aspects of human disease and allows for evaluation of 

diagnostic accuracy at the earliest stages of tumorigenesis. To this end, we established 

intrapulmonary ABN delivery as a means of eliminating activation in blood and off-target organs 

(reducing noise), while maximizing delivery to the target organ (increasing signal) (Fig. 1A-B). 

After cleavage of ABN substrates by proteases in the lung, reporters rapidly entered the urine via 

the blood, where they were quantified by mass spectrometry (Fig. 1C-D). Finally, we leveraged a 

machine learning classification algorithm, termed random forest, to achieve diagnostic sensitivity 

of 92% and specificity of 100% in detecting early-stage disease in a genetically engineered, Kras 

and Trp53 mutant mouse model of lung adenocarcinoma (Fig. 1E).  

Results 

Proteases are overexpressed in a Kras and Trp53 mutant mouse model of lung 

adenocarcinoma 

Common driver mutations of NSCLC in humans are those that activate KRAS (10-30%) or 

inactivate function of TP53 (50-70%)32. To examine the ability of ABNs to detect lung cancer in 

a relevant mouse model, we selected a genetically driven model of adenocarcinoma (a type of 

NSCLC that accounts for 38% of all cases of lung cancer33) that incorporates mutations in these 

genes. This extensively characterized model uses intratracheal administration of virus expressing  
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Fig. 1. Approach and overview. (A) ABNs are administered intratracheally and reach the lung 

epithelium. (B) At the tumor periphery, disease-associated proteases cleave protease substrates, liberating 

mass-encoded (MS) reporters from the PEG scaffold. (C) These reporters are small enough to diffuse into 

the bloodstream and passively filter into the urine for detection. (D) Synthetic disease reporters are 

detected in the urine by liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). (E) 

Random forest classification is performed on a training cohort of mice and subsequently tested on an 

independent validation cohort in order to provide a positive or negative diagnosis of malignancy. 
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Cre recombinase to activate mutant KrasG12D and delete both copies of Trp53 in the lungs of 

KrasLSL-G12D/+;Trp53fl/fl (KP) mice (fig. S1A), initiating tumors that closely recapitulate human 

disease progression from alveolar adenomatous hyperplasia to grade IV adenocarcinoma over the 

course of about 18-20 weeks (fig. S1B)34. 

In anticipation of our use of the KP model to validate ABNs in vivo, we sought to 

characterize protease expression in tumor-bearing KP mice to nominate protease targets. To that 

end, we selected a recently published RNA-Seq dataset that profiled KP tumors across disease 

stages, and we used it to identify overexpressed secreted protease genes35. In this study, tumor 

cells expressing a fluorescent reporter had been isolated by FACS and profiled by RNA-Seq. We 

pooled samples from metastatic (Tmet, n = 9), non-metastatic (Tnon-met, n = 10), and early stage 

(KP-Early, n = 3) tumors, as well as Kras-mutant, Trp53-intact (K, n = 3) tumors and identified 

proteases that were overexpressed in tumor cells relative to normal lung cells (n = 2) (Fig. 2A). 

Because this dataset was derived from FACS-purified tumor cells, it failed to take into 

account contributions from the KP tumor microenvironment. In addition, it was limited in its 

representation of early-stage disease. We therefore analyzed an additional gene expression 

dataset profiling the K model36, which is transcriptionally similar to early-stage KP tumors and 

human lung adenomas35. Significance analysis of microarrays (SAM) was used to identify 

proteases with increased expression in K tumors relative to normal lungs37 (Fig. 2B). 

Proteases overexpressed in the KP mouse model are relevant to human lung adenocarcinoma 

To ensure that ABNs were tuned to address human lung adenocarcinoma (LUAD)-associated 

proteases38-40 in addition to proteases enriched in the KP model, we mined The Cancer Genome 

Atlas (TCGA) dataset, with mRNA sequencing (RNA-Seq) and clinical data collected from 527   
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Fig. 2. Proteases are overexpressed in lung cancer and enable classification of human disease. (A-C) 

Existing RNA-Seq (A,C) and microarray (B) datasets were analyzed to identify extracellular 

endoproteases overexpressed in human and murine lung cancer. Gene expression fold changes in lung 

cancer compared to control lung tissue were calculated by FPKM in the KP dataset (A), significance 

analysis of microarrays (SAM) in the K dataset (B), and DESeq2 in the human dataset (C). Protease genes 

in red are those that were selected for the “LUAD protease panel”. (D) Gene set enrichment analysis 

(GSEA) was performed in the TCGA (human) dataset using the top 20 overexpressed protease genes in 

KP tumors. Red bars are genes included in the “LUAD protease panel”. The maximum enrichment score 

was 0.455 (P = 0.0002). (E) A set of 15 proteases was selected as the “LUAD protease panel”. Red: 

FoldDisease  > 1. Grey: FoldDisease < 1. Black: Not included in dataset. (F) Generalized linear model 

classification was performed in the TCGA dataset using the 15 protease genes in the “LUAD protease 

panel” as features. Area under the receiver operating characteristic curve (AUC) for the validation cohort 

is shown as a function of the number of proteases included in the classifier (n = 50 combinations of 

protease genes for each point). Error bars represent SD.  
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LUAD patients41. We analyzed expression levels of 168 candidate human extracellular 

endoprotease genes in these patients using the DESeq2 differential expression analysis package 

(Fig. 2C)42. Of the 527 TCGA patients with RNA-Seq data for primary LUAD (294 stage I, 123 

stage II, 84 stage III, and 26 stage IV), 59 had matched normal adjacent tissue suitable for use as 

a comparison (Fig. 2C, top). Of the 20 most highly upregulated proteases, nine were 

metalloproteases, 11 were serine proteases, and several overlapped with proteases overexpressed 

in KP tumors (Fig. 2C, bottom). 

We then sought to assess whether proteases associated with benign lung diseases could 

confound the specificity of ABNs for lung cancer. To this end, we performed receiver operating 

characteristic (ROC) analysis on RNA-Seq data from interstitial lung disease (ILD) and chronic 

obstructive pulmonary disease (COPD), curated by the Lung Genomics Research Consortium 

(LGRC). In ROC analysis, the sensitivity and specificity of a given classifier (e.g. protease gene 

expression) in discriminating between two cohorts (e.g. disease and control) are assessed across 

a series of cutoff values. The area under the curve (AUC) is then calculated as measure of 

classification accuracy, where a perfect diagnostic has an AUC of 1 and a random diagnostic has 

an AUC of 0.5.  ROC analysis revealed that proteases overexpressed in LUAD were not 

increased in COPD or ILD (fig. S2A)43; none of the 10 proteases included in the analysis 

classified benign lung diseases from healthy lungs with an AUC greater than 0.6. In contrast, 

classification efficiency in LUAD reached above 0.9 in eight out of ten cases (fig. S2B-D). The 

finding that genes upregulated in LUAD are not overexpressed in COPD or ILD may be due to 

our use of NAT as “normal” tissue when nominating proteases for the panel, as NAT is known to 

harbor inflammatory gene expression changes that distinguish it from “true normal” tissue44. 
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Therefore, the genes of the LUAD protease panel are more likely to be specific to cancer, rather 

than inflammation or other nonspecific disease-associated processes. 

To assess whether the proteolytic landscape of the KP model recapitulates that of human 

lung cancer, we performed gene set enrichment analysis (GSEA)45 in the TCGA dataset using 

the top 20 overexpressed proteases in the KP model (Fig. 2D). GSEA assesses the extent to 

which a particular gene set (S) is enriched in a gene expression dataset by rank-ordering all genes 

in the dataset and iterating through the list, increasing the enrichment score each time a gene in S 

is encountered, and decreasing it otherwise. This approach revealed significant enrichment of 14 

of the top 20 KP-expressed protease genes in human lung adenocarcinoma, yielding a maximum 

enrichment score of 0.455 (P = 0.0002).   

A panel of proteases overexpressed in human and mouse lung adenocarcinoma enables robust 

classification of human disease  

A set of 15 proteases overexpressed across all or a subset of the mouse and human datasets was 

then selected as a “LUAD protease panel”, consisting of six metallo-, seven serine, and two 

aspartic proteases (Fig. 2E, and indicated in bold red text in Fig. 2A-C). We next returned to the 

TCGA dataset and evaluated the performance of this panel in classifying human lung cancer 

from healthy lungs on the transcriptional level. Generalized linear model classification was 

performed using the Caret package, using the 15 LUAD proteases as features. ROC analysis 

revealed that the AUC increases with increasing information (i.e. number of proteases), 

achieving nearly perfect classification in the validation cohort with all 15 proteases (Fig. 2F).  
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Cleavage of multiplexed substrate panel follows class-specific patterns  

We have previously designed and validated hundreds of peptide sequences as protease 

substrates, leveraging known catalytic specificities of different protease families, published 

datasets, and substrate sequences in databases like cutDB and MEROPS46,47. We nominated 14 

of these substrates in an effort to encompass the cleavage preferences of metalloproteases (MP), 

serine proteases (SP), and aspartic proteases (AP), all of which were included in our LUAD 

protease panel, and characterized the catalytic reactivity of each protease-substrate pair. We 

synthesized quenched probes that incorporated the 14 peptide substrates (PPQ1-14), such that 

they fluoresce upon proteolytic cleavage to enable real-time monitoring of protease activity in 

vitro (Fig. 3A and table S1). We incubated each individual probe with each protease in the 

LUAD panel and measured protease activity by monitoring fluorescence increase over the course 

of 45 minutes. Shown are sample kinetic plots monitoring proteolytic dequenching of the 14 

FRET-paired probes when incubated with (above) and without (below) recombinant matrix 

metalloprotease 3 (MMP3) (Fig. 3B). We found that hierarchical clustering of fluorescence fold 

changes of each substrate led to the separation of proteases of different classes (Fig. 3C). We 

also found that while certain probes were cleaved selectively by individual classes of protease 

(e.g. PPQ2 and PPQ11 for MP and SP, respectively), others were cleaved well by proteases of 

multiple classes (e.g. PPQ3, PPQ12 for MP/AP and MP/SP, respectively) (fig. S3). Overall, the 

dequenching panel results indicated that the set of 14 probes provided robust coverage of the 

cleavage profiles of all three classes represented by the LUAD protease panel. 
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Fig. 3: LUAD substrate panel cleavage patterns are driven by protease class. (A) All 15 proteases in 

the “LUAD protease panel” were screened against a panel of 14 FRET-paired (quenched) protease 

substrates and fluorescence activation was monitored over 45 minutes. (B) Kinetic fluorescence curves 

are shown for 14 FRET-paired substrates with (upper panel) and without (lower panel) addition of 

MMP3. (C) Fluorescence fold changes at 45 minutes (average of 2 replicates) were tabulated and 

hierarchical clustering was performed to cluster proteases (vertical) by their substrate specificities and 

substrates (horizontal) by their protease specificities. Proteases labeled in green, orange or blue represent 

metallo, serine or aspartic proteases, respectively. 
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Pulmonary-delivered nanoparticles distribute throughout the lung and reach the tumor 

periphery 

The lung efficiently and rapidly exchanges compounds with the bloodstream owing to high 

surface area and very thin barriers; human adult lungs have an area of ~100 m2 and, in alveoli, 

type I cells can be <0.1 µm thick48. Inhaled molecules and particles cross into the bloodstream by 

passive diffusion, transcytosis, or paracytosis, with rate and route of transit largely dependent on 

size and hydrophobicity48. 

To adapt the ABN platform for highly sensitive and specific detection of early-stage lung 

cancer, we sought to circumvent background protease activity present in the blood and off-target 

organs, which can nonspecifically liberate reporters, by administering the nanosensors via 

localized intrapulmonary, rather than systemic intravenous, delivery. We built ABNs using a 40 

kDa eight-arm poly(ethylene glycol) (PEG-840kDa) nanoparticle coupled to protease substrates 

bearing terminal mass-encoded reporters (Fig. 1B). Similarly sized PEG particles have been 

shown to remain in the lung with half-lives of several hours and relatively little phagocytosis49; 

consequently, we anticipate that the ABNs are largely free to sample extracellular lung protease 

activity over the time period during which we monitor urinary reporter accumulation. To assess 

biodistribution of ABNs following intrapulmonary delivery, we labeled the PEG-840kDa scaffold 

with a near-infrared dye, VivoTag750, delivered the nanoparticles to mice by intratracheal (IT) 

intubation or intravenous (IV) injection, and collected organs after 60 minutes (Fig. 4A). 

Fluorescence imaging revealed deep delivery of nanoparticles to all lung lobes in mice receiving 

IT particles, but negligible delivery to other organs (Fig. 4B-C). In contrast, only 14% of organ 

fluorescence was confined to the lung in the IV-delivered group. In terms of absolute delivery of 

ABNs, lung fluorescence in the IT group was 263 times greater than liver fluorescence (P <  
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Fig. 4: Intrapulmonary-administered nanoparticle scaffolds penetrate deep within the lung and 

reach the periphery of KP tumors. (A) Wild-type mice were treated intratracheally (IT) or 

intravenously with VT750-labeled PEG-840kDa and biodistribution was assessed. (B) Fluorescent imaging 

of organs was performed 60 min post-IT delivery. Clockwise from top-left: lung, spleen, heart, liver, 

kidneys. (C) Organ-specific biodistribution was quantified (n = 4 each condition). Error bars represent 

SD. (D) Healthy mice were either untreated (above, n = 1) or treated with IT administration of biotin-

labeled PEG scaffold (below, n = 2), followed by excision of lungs and immunohistochemical staining for 

biotin (brown). (E) Advanced-stage (16.5 week) KP mice were either untreated (top, n = 3) or treated 

with IT administration of biotin-labeled PEG scaffold (bottom, n = 3), followed by excision of lungs and 

immunohistochemical staining as in (D). 
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0.0001), while lung fluorescence was 30% lower than liver fluorescence in the IV group. As 

blood is a rich, non-specific proteolytic matrix and achieving organ-specific biodistribution of 

systemically delivered nanoparticles remains difficult, IT ABNs offer distinct advantages over 

IV-delivered variants. 

To assess microscopic distribution of the ABN scaffold within the lung following IT 

delivery, we labeled the PEG-840kDa scaffold with biotin and administered the nanoparticles to 

healthy mice by intratracheal intubation. Lungs were collected from mice 20-30 minutes post-IT 

delivery, fixed, and stained for biotin. While lungs from untreated mice were negative for biotin 

(Fig. 4D, top), lungs from mice that received the scaffold demonstrated broad distribution of 

nanoparticles throughout the lung (Fig. 4D, bottom left) and specifically within terminal alveoli 

(Fig. 4D, bottom right).  

We then administered biotin-labeled PEG-840kDa scaffold in high grade KP tumor-bearing 

mice, by intratracheal intubation, to assess whether these particles are able to reach the site of 

disease. Again, while lungs from untreated KP mice were negative for biotin (Fig. 4E, top), lungs 

from KP mice that received intrapulmonary delivery of the biotinylated scaffold demonstrated 

presence of nanoparticles at the margin of tumors where protease activity is relevant to disease 

growth and invasion28-30 (Fig. 4E, bottom). 

Mass-encoded reporters filter from the lung to the urine via the blood and are detectable by 

mass spectrometry 

In order to enable multiplexed detection of a broad spectrum of disease-associated proteases via 

a single in vivo administration of nanosensors, we conjugated each member of the LUAD 

substrate panel to a uniquely identifiable mass-encoded reporter (PP1-14; Table 1). Following 
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Table 1. Reporter and substrate sequences for in vivo urinary diagnostics. ANP, 3-Amino-3-(2-nitro-

phenyl)propionic Acid; Cha, 3-Cyclohexylalanine; Cys(Me), (methylsulfanyl)propanoic acid; lowercase 

letters, D-amino acids 

  

Name Reporter Photolabile  
Group Substrate Nanocarrier 

PP1 e(+2G)(+6V)ndneeGFFsAr ANP GGPQGIWGQC PEG8-40kDa 
PP2 eG(+6V)ndneeGF(+1F)s(+1A)r ANP GGPVGLIGC PEG8-40kDa 
PP3 e(+3G)(+1V)ndneeGFFs(+4A)r ANP GGPVPLSLVMC PEG8-40kDa 
PP4 e(+2G)Vndnee(+2G)FFs(+4A)r ANP GGPLGLRSWC PEG8-40kDa 
PP5 eGVndnee(+3G)(+1F)Fs(+4A)r ANP GGPLGVRGKC PEG8-40kDa 
PP6 e(+2G)(+6V)ndnee(+3G)(+1F)(+1F)s(+1A)r ANP GGfPRSGGGC PEG8-40kDa 
PP7 eG(+6V)ndnee(+3G)(+1F)Fs(+4A)r ANP GGLGPKGQTGC PEG8-40kDa 
PP8 e(+3G)(+1V)ndneeG(+10F)FsAr ANP GGGSGRSANAKGC PEG8-40kDa 
PP9 eGVndneeGF(+10F)s(+4A)r ANP GGKPISLISSGC PEG8-40kDa 
PP10 e(+2G)(+6V)ndneeG(+10F)(+1F)s(+1A)r ANP GGILSRIVGGGC PEG8-40kDa 
PP11 e(+3G)(+1V)ndnee(+2G)(+10F)Fs(+4A)r ANP GGSGSKIIGGGC PEG8-40kDa 
PP12 eGVndneeG(+10F)(+10F)sAr ANP GGPLGMRGGC PEG8-40kDa 
PP13 e(+2G)(+6V)ndnee(+3G)(+10F)(+1F)s(+4A)r ANP GGP-(Cha)-G-Cys(Me)-HAGC PEG8-40kDa 
PP14 e(+3G)(+1V)ndnee(+2G)(+10F)(+10F)sAr ANP GGAPFEMSAGC PEG8-40kDa 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495259doi: bioRxiv preprint 

https://doi.org/10.1101/495259


 16 

substrate proteolysis, the encoded reporters diffuse away from the nanoparticle scaffold and, due 

to their small size, efficiently cross into the bloodstream and are subsequently concentrated into 

the urine by glomerular filtration (Fig. 1B). As previously described19, we used variable labeling 

of the 14-mer Glu-Fibrinopeptide B (Glu-Fib) with stable isotope-labeled amino acids to 

uniquely barcode each of the 14 peptide substrates. Multiple reaction monitoring via a liquid 

chromatography triple quadrupole mass spectrometer (LC-MS/MS) enables quantitative 

assessment of peptide-liberated urinary reporter concentration within a broad linear range (1-

1000 ng/mL, fig. S4A). To assess the efficiency of urinary accumulation of reporters after 

liberation from the PEG scaffold (termed “free reporters”), we administered mass-encoded free 

reporters by IT and IV administration, collected urine, and performed LC-MS/MS. We found 

that urinary accumulation scaled linearly with input doses between 2.5 ng and 25 ng for both 

routes of delivery (slopeIT = 0.075 ng-1, slopeIV = 0.077 ng-1; fig. S4B). We also investigated 

pharmacokinetics of the free reporter by administering a Cy7-labeled version of Glu-Fib (the 

cleavage product after liberation from the PEG scaffold) both IT and IV. Pharmacokinetic data 

revealed characteristic single-exponential concentration decay following intravenous injection 

(fig. S4C). In contrast, the pharmacokinetic behavior of the free reporter following IT 

administration is suggestive of an initial phase of partitioning from the alveoli into the blood 

(peaking at 1 to 2 hours after delivery), followed by renal filtration from the blood. 

Early-stage lung tumors in the KP model are detectable by ABNs 

With the observation that IT delivery of mass-encoded reporters leads to their partitioning from 

lung to circulation and subsequent concentration in the urine, we sought to longitudinally 

monitor disease progression in KP mice with ABNs and benchmark their diagnostic performance 

against microCT. After initiating disease via administration of adenovirus, we monitored 
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development of tumor burden by performing microCT at 5 weeks, 7.5 weeks, and 10.5 weeks 

(Fig. 5A, representative microCT slice at each time point, with arrow indicating development of 

a single nodule over time). At 5 weeks, only grade 1 tumors are present in the KP model, while 

at 7.5 and 10.5 weeks, grade 2 disease is expected (fig. S1B)34. Tumor burden was quantified on 

microCT by a blinded radiation oncologist at each time point (maximum nodule size shown in 

bar graph form to the right of each image). Median nodule multiplicity by microCT was 0 (range 

0-3) at 5 weeks, 2 (range 0-6) at 7.5 weeks, and 4 (range 1-8) at 10.5 weeks. The sensitivity of 

microCT at 100% specificity was 27.3% at 5 weeks, 72.7% at 7.5 weeks, and 100% at 10.5 

weeks. 

To characterize ABN performance relative to microCT in vivo, we administered all 14 

protease-sensitive ABNs to the lungs of KP mice and healthy, age and sex-matched controls at 5, 

7.5, and 10.5 weeks after tumor initiation. Mouse bladders were voided one hour after 

intrapulmonary delivery and all fresh urine produced during the subsequent hour (from 60-120 

minutes after ABN administration) was pooled and collected. LC-MS/MS was performed and 

peak area ratios (defined as peak area of urinary reporter divided by peak area of spiked-in 

internal standard) of protease-sensitive reporters were mean-normalized within each urine 

sample to reduce mouse-to-mouse variation. Several reporters differentiated KP mice from the 

healthy control group, with some reporter differences becoming amplified over time (e.g. PP07, 

PP11) (Fig. 5B). At 7.5 weeks and 10.5 weeks, 5/14 reporters were significantly different 

between KP and healthy mice (Padj < 0.05), while none of the reporters differed at 5 weeks (fig. 

S5). Three of the 5 reporters enriched in KP urine were the same at 7.5 and 10.5 weeks (PP02, 

PP03, and PP09), and these corresponded to peptides cleaved by metallo or both metallo and 

aspartic proteases in vitro. However, the most significantly enriched reporter in the urine of KP 
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Fig. 5: ABNs distinguish between diseased and healthy mice. (A) Tumor development was monitored 

by microCT in healthy (left, n = 11) and KP mice at 5 weeks (n = 11), 7.5 weeks (n = 11), and 10.5 weeks 

(n = 11) after tumor induction. Right three panels represent time series of a single mouse, with arrow 

indicating development of a single nodule over time. Size of the largest tumor nodule was assessed by a 

blinded radiation oncologist (quantification at right of each image). (B) ABNs were administered to KP 

and control animals at 5 weeks (KP: n = 11; Control: n = 9), 7.5 weeks (KP: n = 11; Control: n = 12), and 

10.5 weeks (KP: n = 12; Control: n = 12) after tumor initiation, bladder was voided at 1 hr, and urine was 

collected and pooled over the following 1 hour interval. LC-MS/MS was performed, peak area ratio 

(PAR, peak area of reporter divided by peak area of spiked-in internal standard) was calculated, and all 

reporters were mean normalized within each sample. Y axis represents !"#$%&'()*+,-
!"#$%&'()*+./012/3

 for each 
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reporter at each time point. For clarity, PP06 is presented on a larger scale y axis. Asterisks indicate 

significant differences from 5 weeks. * Padj < 0.05, ** Padj < 0.01; by two-tailed t-test with adjustment for 

multiple hypotheses using the Holm-Sidak method. Error bars represent SEM. (C-E) Unsupervised 

clustering by principal component analysis (PCA) was performed on mean normalized MS data for KP 

mice and controls at 5 weeks (C), 7.5 weeks (D), and 10.5 weeks (E). 
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mice at 10.5 weeks (PP11) corresponded to a peptide cleaved only by serine proteases in vitro. 

Unsupervised clustering by principal component analysis (PCA) succeeded in separating most 

KP and control mice at the 7.5 week and 10.5 week time points, but not at 5 weeks (Fig. 5C-E).  

Machine learning classification enables sensitive and specific disease diagnosis 

As a step toward clinical translation of ABNs as a prospective diagnostic tool, we sought to 

demonstrate that a classifier could be trained on a subset of healthy and tumor-bearing mice and 

validated on an independent cohort. We trained a random forest classifier using the ABN 

reporter output from 50% of control mice tested at 5 weeks, 7.5 weeks, and 10.5 weeks, as well 

as from 50% of the KP mice tested at 7.5 weeks (Fig. 6A). Random forest is a high-performance 

classifier, applicable to a wide variety of classification tasks, that generates a collection of 

decision trees (a “forest”) that are sampled to produce classification results50. The classifier 

assigned a probability that each mouse belonged to either the KP cohort or the healthy control 

cohort (Fig. 6B, “Training” panel), achieving perfect separation of control and KP mice. We then 

locked and tested the classifier on an independent validation cohort consisting of classifier-naïve 

KP mice assayed at 5 weeks, 7.5 weeks, and 10.5 weeks post-induction, as well as the remaining 

control mice from each time point. KP mice were significantly more likely to be classified as 

“KP” than were control mice at 7.5 weeks and 10.5 weeks but not at 5 weeks (Fig. 6B, 

“Validation” panel). Accordingly, ROC analysis on the validation subset of this probability data 

revealed no classification power at 5 weeks (AUC5wks = 0.58, P = 0.7) but significant 

classification at 7.5 weeks and 10.5 weeks (AUC7.5wks = 0.96, P = 0.02; AUC10.5wks = 0.95, P = 

0.0005) (Fig. 6C). With 100% specificity, ABNs exhibited sensitivity of 80% at 7.5 weeks and 

92% at 10.5 weeks, outperforming microCT in the detection of millimeter-scale tumors at 7.5  
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Fig. 6. ABNs enable highly sensitive and specific detection of early-stage lung cancer.  (A) Schematic 

of approach. Random forest classifier was trained on mean normalized urinary reporters from KP mice at 

7.5 weeks, as well as control mice at 5 weeks, 7.5 weeks, and 10.5 weeks. Classifier was validated on KP 

mice and control mice at all 3 time points. (B) Random forest classifier returned the probability that each 

mouse was either “Control” or “KP”. ** P < 0.01, **** P < 0.0001; by two tailed t-test. Error bars 

represent SEM. (C) ROC analysis was performed on probability data to generate AUC values for the 

validation cohorts at 5 weeks (AUC = 0.58), 7.5 weeks (AUC = 0.96), and 10.5 weeks (AUC = 0.95). 
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weeks (Fig. 5A). Together, these data illustrate the power of multiplexed, lung-specific ABNs to 

intercept lung tumors early in disease development. 

Discussion 

In this work, we present an advance toward clinical translation of a new class of biomarkers, 

ABNs. We found that multiplexed ABNs, when delivered by intratracheal instillation, performed 

with diagnostic sensitivity of up to 92% and specificity of 100% for local, early-stage disease in 

an immunocompetent, genetically engineered, Kras and Trp53 mutant lung adenocarcinoma 

model (Fig. 6C). Importantly, this model recapitulates the proteolytic landscape of human lung 

cancer (Fig. 2D) and is notable for overexpression of key enzymes associated with human 

disease, including MMP13 and several kallikreins (Fig. 2A, C). Our approach overcomes the 

intrinsic sensitivity limitation of blood-based diagnostic assays for early-stage disease by 

profiling disease activity directly within the tumor microenvironment and providing multiple 

steps of signal amplification31. We further ensure, by delivery via intratracheal instillation, that 

virtually all ABNs reach the lung and bypass nonspecific activation in off-target organs (Fig. 4B-

C).  

Improved diagnostic tools are needed for lung cancer, as most patients present to the 

clinic when their disease has reached too advanced a stage for potentially curative therapy (e.g. 

surgical resection and/or chemoradiation) to be administered1. Screening by LDCT results in 

high false positive rates, leading many healthy patients to undergo unnecessary follow-up 

procedures that are costly and invasive4. Though there exist no widely accepted endogenous 

biomarkers for lung cancer51, several recently reported molecular diagnostic strategies hold 

promise. Multiplexed ctDNA profiling may be combined with protein biomarkers (as in 

CancerSEEK) to improve diagnostic accuracy for early-stage disease52. However, while the 
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sensitivity of this approach is high for certain cancer types, it is modest at 60% for lung cancer. 

Analysis of volatiles in exhaled breath (by mass spectrometry or nanosensor arrays) has been 

shown to distinguish lung cancer patients from healthy controls, but further validation is needed 

to verify the specificity of these volatiles for malignant, rather than benign, pulmonary 

diseases53,54. Combining ABNs with orthogonal diagnostic approaches that leverage ctDNA, 

protein biomarkers, CTCs, and/or volatiles may enhance diagnostic accuracy over any one 

modality alone.  

This study represents a significant step toward clinical implementation of ABNs, 

validating the efficacy of the tool in an early-stage, immunocompetent GEMM, rather than a 

flank xenograft model. Though a preclinical model cannot fully recapitulate the heterogeneity of 

human lung cancer, a GEMM offers several advantages over a cell transplant model. In addition 

to its genetic and phenotypic homology to human lung cancer, the KP model enables evaluation 

of immune cell-associated protease activity, as well as assessment of stage-specific differences in 

proteolytic signatures. For instance, though metalloprotease-sensitive ABNs are, as expected, 

preferentially cleaved in KP lungs at both 7.5 and 10.5 weeks, the activation of PP11 (a serine 

protease-sensitive substrate, fig. S3) in KP mice 10.5 weeks after disease induction could point 

to an unexpected role of serine protease activity in tumor progression at this disease stage (fig. 

S5). An intriguing hypothesis is that endogenous serine protease inhibitors may be 

downregulated during the maturation of primary tumors. Indeed, maspin is a serine protease 

inhibitor known to inhibit the metastatic and angiogenic potential of tumor cells55,56 and its 

transcript (Serpinb5) is significantly downregulated in pleural, soft tissue, and liver metastases 

relative to primary tumors in the KP model35. Dysregulated coagulation, which is driven by a 

cascade of serine proteases, has also been implicated in tumorigenesis and could drive ABN 
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activation in vivo57. Transcriptomic, proteomic, and ex vivo protease activity assays could be 

leveraged to rigorously define the mechanistic underpinnings of such stage-specific differences 

in ABN cleavage patterns. 

In this work, we have demonstrated the sensitivity of intrapulmonary ABNs for local, 

early-stage lung cancer, but a challenge to overcome prior to clinical implementation is ensuring 

the specificity of ABNs for cancer over benign lung diseases. Though we provide preliminary 

evidence that proteases associated with lung cancer are not overexpressed in COPD or ILD on 

the RNA level (fig. S2), further validation in mouse models and human samples will be needed. 

We can further improve the specificity of ABNs for malignancy by screening a large, diverse 

panel of peptide substrates, via high throughput methods like substrate phage58 or CLiPS59 

display, against ex vivo biospecimens from patients with LUAD, COPD, ILD, granulomas, and 

hamartomas60. Substrates can then be downselected on the basis of preferential cleavage by 

LUAD tissue to yield a highly specific panel. In parallel, we will also explore the compatibility 

of ABNs with pulmonary delivery systems like dry powder inhalers and nebulizers, with an eye 

toward clinical implementation. 

In summary, intrapulmonary ABNs perform with high sensitivity and specificity for 

detection of local, early-stage lung cancer in a GEMM, via a non-invasive urine test. This 

performance is enabled by integrating across gene expression datasets of human and mouse lung 

adenocarcinoma to identify candidate proteases, screening these candidates against FRET-paired 

peptide substrates in vitro, and directly delivering ABNs incorporating these substrates into the 

lungs of mice. Future efforts will center on exploring protease biology at the earliest stages of 

lung cancer development in humans, designing ABNs that are highly specific for these proteases 

via high throughput screening methods, and evaluating their responsiveness in human 
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biospecimens. Clinically, ABNs may be used in conjunction with LDCT to enhance specificity 

and reduce the number of patients referred for invasive follow up procedures. With further 

optimization and validation studies, ABNs may one day provide an accurate, noninvasive, and 

radiation-free strategy for screening. 

Materials and Methods 

Study design 

The goal of this study was to determine whether intrapulmonary administration of a multiplexed 

library of ABNs could be used to detect localized, early-stage, lung cancer. All mouse studies 

were approved by the MIT committee on animal care (protocol 0414-022-17) and were 

conducted in compliance with all MIT ethical policies. Experiments involving intrapulmonary 

delivery of ABNs in KP mice consisted of 12 KP mice and 12 healthy control mice, and these 

mice were monitored, by intratracheal ABN administration and microCT, at 5 weeks, 7.5 weeks, 

and 10.5 weeks after tumor induction. Sample size was selected to ensure a sample size greater 

than or equal to five for both training and validation groups at each time point and for each 

treatment group. Urine samples with peak area ratio (PAR) values of zero for two or more 

analytes were excluded, as these samples represented failed ABN deliveries and would confound 

analysis. For differential expression analysis of protease genes in KP mice, genes for which 

neither normal lung sample was nonzero were excluded, as calculation of fold changes 

(Tumor/Normal) would otherwise yield undefined values. For AUROC analysis in the LGRC 

dataset, genes for which greater than half of the samples had FPKM values of zero were 

excluded. During selection of KP and healthy control mice from the Jacks Lab breeding colony, 

we were blinded to all characteristics but age, sex, and genotype. For random forest 
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classification, mice were randomly assigned to the training and validation cohorts using a 

randomly generated seed. 

Gene expression analysis 

Human RNA-Seq data was generated by the TCGA Research Network 

(http://cancergenome.nih.gov; all 527 primary lung adenocarcinoma cases41) and the Lung 

Genomics Research Consortium (LGRC; all 89 patients43). The list of human extracellular 

protease genes was obtained from UniProt using the following query: (keyword:"Protease [KW-

0645]") locations:(location:secreted) AND reviewed:yes AND organism:"Homo sapiens 

(Human) [9606]". Differential expression analysis on the TCGA data was performed using the 

DESeq2 differential expression library in the R statistical environment42,61. Area under the 

receiver operating characteristic curve (AUROC) analysis was performed for the TCGA and 

LGRC datasets using FPKM values from disease samples (LUAD, ILD, and COPD) and their 

respective controls (NAT for LUAD, normal lung for ILD and COPD), using GraphPad Prism 

version 7.0a for Mac OS X, GraphPad Software, La Jolla California USA, www.graphpad.com. 

Genes in the LGRC dataset for which at least half of the samples had FPKM values greater than 

zero were included in the AUROC analysis, but all zero values were excluded. FPKM values for 

the KP model35 were downloaded from GEO. Top 20 extracellular endoproteases were identified 

by averaging FPKM values across all tumor bearing mice (K, KP-Early, Tnon-met, and Tmet) and 

dividing by the average FPKM values for normal mice. Genes for which neither of the two 

normal lung samples had nonzero FPKM values were excluded. Microarray counts for the K 

dataset36 were downloaded from GEO. Gene expression fold changes were determined by 

performing quantitative significance analysis of microarrays (SAM) using the “Standard” 

regression method, 100 permutations, and 10 neighbors for KNN37.  
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Pre-ranked gene set enrichment analysis (GSEA) was performed on the LUAD gene 

expression dataset from TCGA, using a gene set containing the top 20 overexpressed proteases 

in the KP model35. The pre-ranked list of log2(Fold Change) was generated previously by 

DESeq2. 10000 permutations by gene set were performed to calculate the P value. GSEA was 

performed via the GenePattern online software62. 

Fluorogenic substrate characterization 

Fluorogenic protease substrates were synthesized by CPC Scientific. Recombinant proteases 

were purchased from Enzo Life Sciences, R&D Systems, and Haematologic Technologies. For 

recombinant protease assays, fluorogenic substrates PPQ1-14 (1 µM final concentration) were 

incubated in 30 µL final volume in appropriate enzyme buffer, according to manufacturer 

specifications, with 12.5 nM recombinant enzyme at 37°C. Proteolytic cleavage of substrates 

was quantified by increases in fluorescence over time by fluorimeter (Tecan Infinite M200 Pro). 

Enzyme cleavage rates were quantified as relative fluorescence increase over time normalized to 

fluorescence before addition of protease. Hierarchical clustering was performed in GENE-E, 

using fluorescence fold changes at 45 minutes.  

Biodistribution studies 

For all mouse experiments, anesthesia was induced by isofluorane inhalation (Zoetis) and mice 

were monitored during recovery. Biodistribution studies were performed in C57BL/6 mice. 

VT750-NHS Ester (PerkinElmer) was coupled to 8-arm 40 kDa PEG-amine (PEG-840kDa-amine, 

JenKem) at a 4:1 molar ratio, reacted overnight, and purified by spin filtration. Mice were lightly 

anesthetized via isoflurane inhalation and PEG-840kDa-VT750 (50 uL volume, 5 uM 

concentration by VT750 absorbance) was administered by passive inhalation following 
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intratracheal intubation with a 22G flexible plastic catheter (Exel), as described elsewhere34. 

Mice in the IV cohort were intravenously administered an equal dose of PEG-840kDa-VT750. 

Animals were sacrificed by CO2 asphyxiation 60 min post-inhalation/injection and organs were 

removed for imaging (LICOR Odyssey). Organ fluorescence was quantified in Fiji63 by 

manually outlining organs, using the “Measure” feature, and taking the mean intensity. 

Blood for pharmacokinetics measurements was collected using retro-orbital bleeds with 

15 µL glass capillary collection tubes. Blood was diluted in 40 µL PBS with 5 mM EDTA to 

prevent clotting, centrifuged for 5 min at 5,000 x g, and fluorescent reporter concentration was 

quantified in 384-well plates relative to standards (LICOR Odyssey). 

For immunohistochemical visualization of nanoparticles following IT administration, EZ-

Link NHS-Biotin (Thermo Scientific) was coupled to PEG-840kDa-amine at 2:1 molar ratio and 

reacted overnight, followed by spin filtration. Pulmonary delivery (50 uL volume, 10 uM 

concentration) was performed by intratracheal intubation. Fixation was performed 20-30 minutes 

later by inflating lungs with 10% formalin. Lungs were excised, fixed in 10% formalin at 4°C 

overnight, and embedded in paraffin blocks. 5 µm tissue slices were stained for biotin using the 

streptavidin-HRP ABC kit (Vector Labs) with DAB. Slides were scanned using the 20x objective 

of the Pannoramic 250 Flash III whole slide scanner (3DHistech). 

Mouse model and in vivo characterization 

Male B6/SV129 KrasLSL-G12D/+; Trp53fl/fl (KP) mice between 18 and 30 weeks old were used for 

lung adenocarcinoma experiments. Tumors were initiated, as described previously34, by the 

intratracheal administration of 50 µL of adenovirus-SPC-Cre (2.5 x 108 PFU in Opti-MEM with 

10 mM CaCl2) under isoflurane anesthesia. Control cohorts consisted of age and sex-matched 
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mice that did not undergo intratracheal administration of adenovirus. Tumor growth was 

monitored by microCT imaging (General Electric) and was scored by a blinded radiation 

oncologist. Each cage consisted of a combination of KP and control animals. 

ABN constructs (GluFib-Substrate-PEG-840kDa) for urinary experiments were synthesized 

by CPC Scientific (Sunnyvale, CA). ABNs were dosed (50 µL total volume, 20 µM 

concentration per ABN) by intratracheal intubation, as described above. All ABN experiments 

were performed in the morning at the Koch Institute animal facility. Bladders were voided 60 

minutes after ABN administration and all urine produced 60-120 min after ABN administration 

was collected using custom tubes in which the animals rest upon 96-well plates that capture 

urine. Urine was pooled and frozen at -80°C until analysis by LC-MS/MS. 

LC-MS/MS reporter quantification 

Liquid chromatography/tandem mass spectrometry was performed by Syneos Health (Princeton, 

NJ) using a Sciex 6500 triple quadrupole instrument. Briefly, urine samples were treated with 

UV irradiation to photocleave the 3-Amino-3-(2-nitro-phenyl)propionic Acid (ANP) linker and 

liberate the Glu-Fib reporter from residual peptide fragments. Samples were extracted by solid-

phase extraction and analyzed by multiple reaction monitoring by LC-MS/MS to quantify 

concentration of each Glu-Fib mass variant. Analyte quantities were normalized to a spiked-in 

internal standard and concentrations were calculated from a standard curve using peak area ratio 

(PAR) to the internal standard. Mean normalization was performed on PAR values to account for 

mouse-to-mouse differences in ABN inhalation efficiency and urine concentration.  
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Statistical analysis 

For all urine experiments, PAR values were mean normalized across all reporters in a given urine 

sample prior to further statistical analysis. Significantly different reporters were identified by 

unpaired two tailed t-test followed by correction for multiple hypothesis using the Holm-Sidak 

method. Principal component analysis (PCA) was performed on mean normalized PAR values in 

the R statistical environment61 using the prcomp function. Binary classification was performed 

using the Caret package64 in the R statistical environment. Generalized linear model was used for 

RNA-seq data and random forest50 was used for ABN classification of urine samples. Pre-

specified training and validation cohorts were randomly assigned (75% training/25% validation 

for RNA-seq data, 50% training/50% validation for urine data). Classifiers used cross-validation 

on the training cohort and were trained with optimization for AUC. 
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