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Abstract 36 

 37 

The immune system is increasingly being recognized for its untapped potential in being 38 

recruited to attack tumors in cancer therapy. The main challenge, however, is that most tumors 39 

exist in a state of immune tolerance where the patient’s immune system has become 40 

insensitive to the cancer cells. In order to investigate the ability to use chemotherapy to break 41 

immune tolerance, we created a mathematical modeling framework for tumor-immune 42 

dynamics. Our results suggest that optimal chemotherapy scheduling must balance two 43 

opposing objectives: maximal tumor reduction and preserving patient immune function. 44 

Successful treatment requires therapy to operate in a ‘Goldilocks Window’ where patient 45 

immune health is not overly compromised. By keeping therapy ‘just right’, we show that the 46 

synergistic effects of immune activation and chemotherapy can maximize tumor reduction and 47 

control.  48 

 49 

Statement of Significance 50 

 51 

In order to maximize the synergy between chemotherapy and anti-tumor immune response, 52 

lymphodepleting therapy must be balanced in a ‘Goldilocks Window’ of optimal dosing.  53 

 54 

  55 
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Introduction 56 

 57 
By the time a tumor is clinically detectable, it is no longer subject to significant anti-tumor response 58 
from the innate and acquired components of the host immune system. Mechanistically, this immune 59 
tolerance is the result of complex interactions among tumor cells, T cells, and secreted cytokines [1]. 60 
CD8+ effector T cells, also known as cytotoxic T lymphocytes (CTLs), are an important component of the 61 
adaptive immune system that responds to tumor antigens and induces cell death. 62 

A major barrier to effective CTL response in tumors is suppression by T regulatory cells (Tregs), 63 
which inhibit CTL cytotoxic activity via cell-cell contact ( [2], [3]) as well as through secreted factors such 64 
as TGF-beta ( [4] [5]). They have posed challenges for cancer immunotherapies as well as preventing the 65 
activation of the immune system during more traditional therapy approaches ( [3], [6]). Tregs also 66 
appear to play a critical role in limiting immune response in maternal tolerance of the fetus and 67 
protection of commensal bacteria from the host immune system [2].  68 

Multiple methods have been investigated to break the immune system from tolerance and 69 
revive anti-tumor immune activity. The initial focus of these approaches included activation of CTLs 70 
through immunostimulatory cytokines such as interleukin-2 (IL-2). More recently, lymphodepleting 71 
chemotherapy has been recognized to have paradoxical but important immunostimulatory effects. 72 
Heavy lymphodepletion has been reported to enhance the impact of adoptively transferred tumor-73 
specific T cells ( [7] ). This leads to the interesting question of whether or not lymphodepletion can also 74 
enhance the efficacy of existing T-cell populations to mount an anti-tumor response. While 75 
Gemcitabine, 5-Fluorouracil and other cytotoxic drugs can initially suppress immune subpopulations, 76 
notably B and T cells, the subsequent proliferation of the immune cells when therapy is completed 77 
provides a transient period in which immune response to tumor antigens can be restored. An obvious 78 
question then arises: is there a better chemotherapy schedule that could maximize tumor kill and also 79 
enhance immune response? 80 

To investigate the dynamics of this transient immune response following chemotherapy, we 81 
created a mathematical model of the complex tumor-immune dynamics that occur during multiple 82 
cycles of chemotherapy. In particular, we investigated three, clinically-relevant, therapeutic dynamics: 83 
immunodepletion, immunostimulation via vaccination, and immunosupportive prophylactics. We 84 
identified significant immune trade-offs during chemotherapy as well as the relevant patient metrics 85 
that determine the magnitude and severity of these compromises. Further, by exploring the impact of 86 
clinically-established, as well as more experimental treatment, decisions we illustrate a more complex 87 
interplay between chemotherapy and patient immune dynamics than has been previously investigated. 88 
Our results indicate that optimal chemotherapy requires identification of a ‘Goldilocks Window’ in which 89 
treatment can both induce cytotoxic effects in the tumor and enhance the immune response to tumor 90 
antigens. Therefore, instead of the one-size-fits-all paradigm of fixed therapy regimens, patient immune 91 
biology should be a key consideration when developing personalized chemotherapy strategies.   92 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495184doi: bioRxiv preprint 

https://doi.org/10.1101/495184
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Methods 93 

 94 
Quick guide to equations and assumptions: 95 
 96 

 97 

 98 
 99 
Our model assumes that tumor cells (T) grow unless checked by T effector cells (E). However, effector 100 
cells are themselves inhibited by T regulatory cells (R) that are recruited at a rate σ by tumor antigens. 101 
This leads to effector-cell-mediated tumor cell death being moderated by the quantity of T regulatory 102 

cells (
𝑅

𝑅+𝐸
). Effector cells exhibit different behaviors during immune expansion and immune contraction. 103 

This switching behavior is modeled with the Heaviside function (𝐻(𝑡𝑜𝑓𝑓 − 𝑡)). During the immune 104 

expansion phase, effector cells are recruited based on both available memory cells (M) and the tumor 105 

burden (
𝑇𝑀

𝑇+𝑀
). Memory cells are the pool of T cells from which effector cells are derived. During 106 

immune expansion, the antigenicity of the tumor (𝛼) induces differentiation to effector cells (
𝑇𝑀

𝑇+𝑀
). 107 

However, as immune tolerance sets in, there is a contraction in the effector T cell population. This is 108 

caused by degradation of effector cells by T regulatory cells (1 + 𝑐
𝑅

𝑅+𝐸
). During immune contraction, 109 

there is also a small influx into the memory T cell compartment due to conversion of effector cells to 110 
memory T cells (𝜔𝐸). Finally, the total lymphocyte population is represented by naïve cells (N) which 111 

replicate in a logistic growth model (1 −
𝑀+𝑁

𝐾max
).  112 

 113 
Overall Model Design 114 
 115 

A central assumption of this work is that a clinically-detectable tumor has induced a tolerant 116 
state in which the immune system can no longer respond to tumor antigens. Chemotherapy temporarily 117 
removes this tolerance through lymphodepletion, which eliminates Tregs and allows a burst of immune 118 
response. However, the lymphodepletion itself also kills CTLs and therefore reduces the potential 119 
cytotoxic efficacy. This double-edged response to chemotherapy implies that there is an optimal 120 
therapeutic strategy. If the dose is too high, then the few remaining immune cells will not be able to 121 
take advantage of the tolerance breaking; if the dose is too low, then the immune depletion will be 122 
insufficient to break tolerance. In addition to these immune effects, the chemotherapy itself can induce 123 
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cancer cell death affecting both the tumor size directly and releasing tumor antigens, adding another 124 
layer of complexity to the tumor-immune dynamics. 125 

We develop a mathematical model that includes five major populations of cells: Tumor cells (T), 126 
T effector cells (also known as cytotoxic T lymphocytes, CTLs, and denoted as E), T regulatory 127 
cells (Tregs, R), Memory T cells (M), and Naive T cells (N). Immune function is separated into two distinct 128 
temporal stages relative to the time of application of each chemotherapy cycle: 1) a period of CTL 129 
expansion in a sensitized immune system, immediately following the application of chemotherapy 130 
(Figure 1, panel A), and 2) CTL contraction as tolerance returns (Figure 1, panel B). The transition 131 
between these expansion and contraction phases is governed by mechanisms that remain poorly 132 
characterized, but empirically occurs 5-10 days after the expansion starts [8]. In the model, the 133 
transition time is set to 5 days after the start of the immune expansion phase. Therefore, there is a 134 
window of 5 days immediately following each cycle of chemotherapy in which the immune system is 135 
sensitive, and outside of these periods, it is tolerant.  136 
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Figure 1: Tumor-immune dynamics during the sensitive (A) and tolerant (B) stages of the 138 
immune response. During antigen-sensitive immune expansion, CTLs are recruited from memory cells to 139 
attack tumor cells. Tregs are being recruited but have not yet started significantly inhibiting CTL 140 
responses. During immune contraction once tolerance sets in, Tregs exert an active inhibitory pressure 141 
on CTLs. Expansion of memory cells into CTLs ceases. Both stages of the immune response are 142 
characterized by competition between memory and naïve immune cells for common cytokine pools as 143 
well as homeostatic proliferation and lymphopoiesis. 144 

 145 
 146 
During the phase in which the immune system is sensitive to the tumor, a few key processes 147 

occur. CTLs, which target and kill the tumor, are recruited from a memory cell population due to 148 
detection and response to tumor antigens [8]. These memory cells are constantly undergoing a low level 149 
of replenishing proliferation, but they only convert to CTLs during the sensitive expansion phase 150 
following lymphodepletion. During this phase, there is also tumor-mediated recruitment of Tregs. This 151 
eventually causes a significant shift in immune dynamics, leading to a contraction of the effector 152 
compartment during the tolerized phase. Under tolerance, there is no longer a significant recruitment of 153 
effector cells from the memory cell compartment. Instead, while the existing effector cells do carry out 154 
some tumor-killing function, the Tregs decrease the CTL number.  155 
 156 
Tumor dynamics 157 

 158 
Tumor growth dynamics are approximated via a combination of exponential growth for smaller tumors 159 
and power law growth for larger tumors, as shown in the first term on the right hand side of Eq. (1). The 160 
transition between these growth dynamics is governed largely by the T* term as defined in equation (2), 161 
following the implementation of tumor-immune growth dynamics described in [9].  162 

 163 
T* employs the method of modeling tumor growth in [9] (specifically the first term on the right 164 

hand side of equation 1) by having tumor populations transition from exponential to power law growth. 165 
As the authors note, tumors are not able to sustain early exponential growth due to physical and 166 
nutrient limitations. A more appropriate model is where there is exponential growth early which then 167 
transitions to a power law growth at larger tumor sizes. The size at which this transition in growth occurs 168 
is Ttrans and the smoothness of this transition is governed by the exponent P. The growth term rT 169 
represents the growth rate and how aggressively the tumor is developing.  170 

The second term of Eq. (1)  on the right hand side represents the tumor loss due to killing by 171 
CTLs. The parameter k0 represents the CTL cytotoxic efficacy, with the actual tumor kill rate being 172 

dependent upon the relative numbers of tumor and effector cells (
𝑇𝐸

𝑇+𝐸
). However, this rate is mitigated 173 

by the presence of Tregs, with B representing their inhibition efficacy. As Tregs increase in density, the 174 
CTL-mediated tumor death rate decreases.  175 

 176 
Effector T cell dynamics 177 
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 178 

 179 
CTL dynamics are modeled in two phases, expansion (terms 1-3) and contraction (terms 4-6), as 180 

described above. Terms 1 and 4 switch between these phases via the Heaviside function, with time toff 181 
being the length of the expansion phase (5 days) immediately following each round of chemotherapy. 182 
Terms 2 and 3 chiefly govern the growth of CTLs during immune sensitivity to the tumor. CTLs are 183 
generated based upon the antigenicity of the tumor (α) as well as the number of tumor and memory T 184 
cells. The antigenicity describes how much of an immune response is promoted by the tumor. 185 
Modulating this is an amplification rate, γ, since one memory cell can yield multiple effector cells. Term 186 
2 represents a moderating term where there is a maximum number of memory and naïve lymphocytes 187 
that can be supported by the cytokine pool. This general paradigm of effector cell function being limited 188 
by cytokine availability has been supported by lymphodepletion studies that have shown increased CTL 189 
activity when IL-7 and IL-15 cytokine-responsive cells were removed. With fewer cytokine sinks, CTL 190 
activity was increased [10]. When the immune compartment is full and in homeostasis, this term will be 191 
near zero, effectively shutting down CTL recruitment; however, immediately after a dose of 192 
chemotherapy, memory and naïve T cells are depleted, which promotes CTL expansion. Term 5 193 
represents the contraction of the effector cell compartment that occurs due to immune tolerance. There 194 

is a death rate of CTLs, δE, which is increased by the relative fraction of Tregs that are present, 
𝑅

𝑅+𝐸
. Tregs 195 

have been shown to inhibit CTLs through a variety of mechanisms, including both depriving cytokines 196 
necessary for CTL sustenance as well as direct cytolysis of CTLs  [11]. Parameter c represents the 197 
suppression efficacy of Tregs. Lastly, term 6 represents the rate of conversion of effector cells back into 198 
memory cells, which is an active mechanism during immune contraction [12]. 199 
 200 
Memory T cell dynamics 201 
 202 

 203 
Memory cells continually replenish themselves through homeostatic growth in term 1. Parameter rM is 204 
the maximum memory T-cell growth rate, which is decreased as the memory and naïve cell numbers 205 
reach their carrying capacity, Kmax. During the immune expansion phase (terms 2-4), there is memory cell 206 
loss as they are converted to CTLs. The conversion rate is governed in term 4 by the relative abundances 207 

of tumor and memory cells, 
𝑇𝑀

𝑇+𝑀
, as well as the antigenicity, α, as mentioned above. As described in 208 

Eq. (3), the rate of recruitment is moderated by the relative homeostasis level of the overall immune 209 
system. During the contraction phase, memory cells are replenished from the CTL compartment. A 210 
fraction (ω) of the CTL are successfully converted back to memory cells [12]. Due to some loss and 211 
inefficiency of conversion, the fraction, ω, is less than the loss from the effector cell compartment, ρ > 0 212 
[13].  213 
Regulatory T cell and naïve T cell dynamics 214 
 215 

 216 
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Tregs are recruited due to secretion of factors such as TGF-beta from peripheral precursor cells by 217 
tumor cells with recruitment rate σ, and decay with a rate δR  [14].  218 
 219 
 220 

 221 
Naive T cell dynamics are largely the result of homeostatic proliferation up to a common carrying 222 
capacity of Kmax, which is the maximum number of memory and naïve T cells in the immune system [15]. 223 
The naive cell replenishment rate is determined by rN.  224 
 225 
The model was parameterized based on literature sources when possible, as shown in Table 1. For many 226 
cases there was evidence of variation in parameters, as well as no clear study of each individual 227 
parameter in our model. This is, in part, due to approach to simplify, mathematically, certain processes 228 
in favor of focusing on the tumor-immune dynamics. Where possible, we have tried to make a 229 
biologically reasonable order-of-magnitude approximation. In order to address this parameter 230 
uncertainty we explicitly consider the impact of parameter variation on model results.  231 

Parameter Symbol Value Literature reference 

Tumor Growth Coefficient rT 1000 cells-1 day-1 Robertson-Tessi et al., 
2012 

Effector cell kill rate k0 1 day-1 Diefenback et al., 2001 

Regulatory cell suppression efficacy B 0.75 Robertson-Tessi et al., 
2012 

Tumor growth transition size Ttrans 106 cells Robertson-Tessi et al., 
2012 

Power-Law growth exponent m 0.5 Robertson-Tessi et al., 
2012 

Exponential to power smoothing term P 3.0 Robertson-Tessi et al., 
2012 

Time till immune contraction toff 5 days Althaus et al., 2007 

Maximum sustainable number of 
effector, naïve, and memory cells 

Emax 1012 cells Bains et al., 2009 

Tumor antigenicity α 1* Robertson-Tessi et al., 
2012 

Effector cell death rate (expansion) ρ 0.0-0.1* Vignali et al., 2008 

Effector cell death rate (contraction) δE 0.13 Althaus et al., 2009 

Effector cell death rate due to 
regulatory T cells 

c 0.01* Robertson-Tessi et al., 
2012 

Memory cell expansion factor γ 100* Althaus et al., 2007; 
Arstila et al., 1999  

Tumor-mediated regulatory cell 
recruitment rate 

σ 0.01 Antony et al., 2005; 
Robertson-Tessi et al., 
2012  

Regulatory cell death rate δR 0.1* Robertson-Tessi et al., 
2012 

Memory cell growth rate rM 0.01 day-1* Bains et al., 2009 

Memory cell reconversion rate ω 0.01* Bains et al., 2009 
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Naïve cell growth rate rN 0.1 day-1 Bains et al., 2009 

Maxmimum number of naïve T cells Kmax 1012 cells Lythe et al., 2016 

Baseline chemotherapy strength C0 Varied in simulation  

    

Table 1: Model parameters were estimated based upon both pre-existing models, chiefly Althaus et al., 232 
2007 and Robertson-Tessi et al., 2012, as well as experimental studies. For most of the parameters, the 233 
literature often indicated significant variation and so order-of-magnitude approximations were made. 234 
Similarly, certain parameters were not succinctly captured in literature studies and were therefore 235 
estimated (*). We have addressed the impact of potential parameter variation through sensitivity 236 
studies (see Results).  237 
 238 
Simulating chemotherapy and evaluating outcomes 239 
 240 
To establish tolerance in the system and allow transients from initial conditions to dampen before 241 
applying therapy, the simulation was started with a tumor size of 107 cells. Chemotherapy was started 242 
when the tumor reached 108 cells and was simulated as periodic doses of cytotoxic therapy at 14 day 243 
intervals (a standard cycle length). In total, 10 cycles of chemotherapy were applied. At the time of each 244 
treatment cycle, all cell populations (immune and tumor) were instantaneously reduced by a fraction 245 
representing the cytotoxic effect of chemotherapy. Immune cells were reduced by the same baseline 246 
fraction (C0) on each cycle. To account for tumor resistance to therapy, the fractional tumor reduction 247 
for cycle i (Ci) was linearly reduced with each cycle, such that the cytotoxic fraction on the last cycle was 248 
75% of C0. Approximating the impact of chemoresistance on drug efficacy is challenging since values 249 
vary for different classes of drugs. To further complicate resistance impacts, Hao et al. in [16] noted 250 
dose-dependent differences between resistant and resensitized prostate cancer cell populations to 251 
docetaxel (Figure 2, Panel A). The relative advantage of resistant to sensitive cells varied from almost 252 
nothing (at very low doses) to a 400% difference. The value of 75% chemotherapy efficacy at resistance 253 
represents a 33% advantage of survivorship for a resistant population versus a susceptible population. It 254 
is a conservative estimate of the impact of resistance, but we believe it is reasonable given that tumor 255 
populations are unlikely to be entirely homogeneously resistant. Varying this range is a relevant 256 
question for future research. For our purposes, Ci is given by:  257 
 258 

 259 
The final tumor size after 10 cycles of chemotherapy was compared to the tumor size at the 260 

start of treatment (108 cells) and evaluated according to RECIST categories. Specifically, a total loss of 261 
tumor (<-99% change in size) is a complete response (CR). A change between -30% and -99% is 262 
considered a partial response (PR). Tumor changes between -30% and +20% are classified as stable 263 
disease (SD) and changes of greater than +20% are seen as progressive disease (PD) [17]. While there 264 
are many different methods of measuring therapy efficacy impact on disease, RECIST categories were 265 
chosen here since they have correlated well with overall survival in patients across a variety of cancers.  266 

 267 
Simulation environment 268 
The model was programmed in the Python language (ver. 2.7.11). The open-source packages Scipy (ver. 269 
0.17.0), Numpy (ver. 1.10.4), and Matplotlib (ver. 1.5.1) were used for simulation of the ODEs as well as 270 
visualization of the results. The platform for the program was both an Intel(R) Core (TM) i7-6820 HQ 271 
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processor as well as the high performance computing cluster at Moffitt Cancer Center, Tampa, Florida, 272 
USA. 273 

Results 274 

 275 
Influence of patient memory cell populations 276 
 277 
To analyze the effect of the memory T-cell population on therapy, varying doses of chemotherapy were 278 
simulated for a range of memory cell population sizes. The size of the memory T-cell population at the 279 
time of therapy was a significant factor affecting the optimal therapeutic response. Memory cell 280 
population sizes are variable among patients; Arstila et al. (1999) have estimated there to be 106 – 107 281 
memory T cell clones in the human body with approximately 105 memory T cells per antigen [9, 18]. 282 
However, due to antigen responses being polyclonal, this suggests multiple orders of magnitude of 283 
potential variation in memory T-cell numbers. Patient memory-cell numbers influence the maximum 284 
chemotherapy dose strength before treatment failure (Figure 2). Generally, there is a minimum 285 
memory-cell population size that is necessary for any given strength of chemotherapy to be successful. 286 
Above this threshold, the more memory cells there are, the better the improvement with stronger doses 287 
of therapy. Conversely, this means that when memory-cell populations are close to the minimum 288 
threshold, chemotherapy should be similarly weak if a more favorable treatment outcome is desired. If 289 
memory cells are below the minimum threshold, then the optimal strategy is to use strong 290 
chemotherapy (Figure 2, panel A and B). This treatment solely relies on chemotherapeutic cytotoxicity 291 
with no immune stimulation. 292 

 293 
Figure 2: Interaction of memory-cell populations and chemotherapy strength on treatment outcomes. 294 
RECIST outcomes are shown in panel A with progressive disease (red), stable disease (yellow), partial 295 
response (light blue) and complete response (dark blue). (B) Finer grade responses are shown as percent 296 
changes in tumor size after therapy versus the initial starting size (108 cells). The underlying dynamic 297 
reasons for these differences can be seen in the memory populations during low (C) and high dose 298 
chemotherapy (D). Low dose chemotherapy allows memory populations (light blue) to be sustained for 299 
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longer and generate larger CTL responses (green). High dose chemotherapy, however, depletes memory 300 
cells faster and leads to declining CTL responses and concurrent tumor escape.  301 
 302 
The double-edged nature of chemotherapy on the immune system can be better understood through 303 
the transient dynamics during therapy (Figure 2, panel C and D). In cases with stronger chemotherapy 304 
dosing, there is an early decrease in tumor population levels as the cytotoxic strength of the therapy 305 
comes to bear on cancer populations. However, we observe a trend in that these therapies tend to lead 306 
to failure and larger final tumor sizes than if treated with a 'weaker' chemotherapy regimen. Weaker 307 
chemotherapy regimens exert lower cytotoxic burdens on the tumor but maintain tumor size reduction 308 
for the duration of therapy.  309 
 310 
This counterintuitive result stems from the fact that cytotoxicity alone is insufficient for suppressing 311 
tumor growth, especially due to the accumulating chemoresistance. Rather, it is the synergistic effect of 312 
cytotoxicity as well as the breaking of immune tolerance and consequent recruitment of CTLs that keeps 313 
tumor populations in check. Our in silico treatments consistently show that there is an inherent 314 
disadvantage to high-dose chemotherapy. There is a gradual decrease in the CTL population over 315 
multiple rounds of treatment due to the net loss that stronger dosing causes in memory T-cell 316 
populations. It is these memory cells that are affected the most by chemotherapy since they can only 317 
recover relatively slowly. If the cytotoxic pressure on memory cells is greater than the recovery rate of 318 
that compartment, then even with a resensitized immune system, expansion will lead to fewer CTLs and 319 
ultimate treatment failure. In contrast, if the immunodepleting side effects of chemotherapy can be 320 
balanced with immune recovery, then more sustainable treatment responses are possible. In short, 321 
there is a tradeoff between having chemotherapy strong enough to sufficiently break tolerance, but 322 
mild enough to leave sufficient memory T cells for adequate CTL expansion. Akin to the story of 323 
Goldilocks and the three bears, the balancing of these two immunological goals leads to an intermediary 324 
chemotherapy strength that is ‘just right’. In silico simulation shows that this “Goldilocks Window” is 325 
highly dependent upon patient-specific, pre-existing memory T-cell populations. 326 
 327 
 328 
The impact of CTL efficacy 329 
 330 
We sought to identify other relevant patient-specific immune parameters by studying the effect of CTL 331 
killing efficacy (k0). With memory-cell sizes set at 106 cells, the cytotoxicity rate was varied around the 332 
biologically realistic parameter of 0.9 per day [19]. Unsurprisingly, CTL efficacy is a significant 333 
determinant of treatment success (Fig. 1). Furthermore, CTL efficacy dramatically impacts optimal 334 
chemotherapy dosing. Lower rates of CTL-mediated tumor cell death require weaker chemotherapy for 335 
more favorable treatment outcomes. As before, the underlying dynamics demonstrate the importance 336 
of a large enough memory-cell pool over the course of therapy to supply the CTL pool in sufficient 337 
numbers. With a lower value of k0, more CTLs are necessary to exert the same degree of immune 338 
control over the tumor. This in turn, necessitates a larger pool of memory T cells. Strong chemotherapy 339 
on a system with lower k0 values would prevent sufficient CTL expansion by rapidly diminishing the 340 
memory-cell populations. This is counterintuitive since an initial motivation may suggest that, in a 341 
situation where a patient has a weaker immune system to combat the cancer, the chemotherapy should 342 
be increased in order to compensate. However, our model suggests that the lymphodepleting impact of 343 
heavy chemotherapy on an already weaker immune system will only worsen outcomes. 344 
 345 
Impact of tumor growth rates 346 
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Tumor growth rates are variable, and in the model we used a value of rT = 1000 cell-1 per day, putting 347 
growth at a doubling time of 1 day during the fastest exponential growth phase. Experimental and 348 
model analyses have shown that selection pressures on growing tumors can lead to significant 349 
heterogeneity in metabolism and growth rates [20]. Analysis of the model with different tumor growth 350 
rates revealed that optimal dosing was dependent on this variation (Fig. 3). For slower growing tumors, 351 
greater doses can be used because chemotherapeutic cytotoxicity is sufficient for controlling tumor 352 
growth. For faster growing tumors (larger rT) it becomes necessary to decrease chemotherapeutic 353 
strength in order to achieve optimal outcomes; chemotherapeutic cytotoxicity is insufficient alone and 354 
so CTL-mediated tumor death is necessary. Greater CTL involvement, though, imposes the same trade-355 
off as above, in that dosing must be weakened in order to sustain memory cell populations. Importantly, 356 
for the most aggressively growing tumors, there is actually a 'worst-case scenario' of intermediary 357 
chemotherapy strength. Here, the worst chemotherapy is not, in fact, the strongest possible dose and is 358 
instead a 'mid-range' strength in treatment. At this chemotherapeutic strength, the drug alone is 359 
insufficient to cause a reduction in tumor size. However, the dose is still strong enough to lead to severe 360 
memory cell population depletion and undermines any immune efforts at constraining tumor growth. 361 
These considerations demonstrate how the tumor growth rate is a primary determinant of tumor 362 
control and, depending on the individual patient’s tumor, determines which dynamics are capable of 363 
leading to successful treatment responses.  364 

 365 
Figure 3: Treatment outcomes for variation in CTL efficacy (A and B) and tumor growth rate (C and D). 366 
Panels A and C represent RECIST outcomes. Red is progressive disease (PD), dark blue is complete 367 
response (CR), light blue is partial response (PR) and yellow is stable disease (SD). As CTLs become more 368 
efficient at killing tumor cells, there is a dramatic reduction in final tumor size and a significant 369 
improvement in outcome. However, below a threshold efficacy, chemotherapy has a much more 370 
important role in impacting the role of therapy. Weaker chemotherapy leads to better outcomes. A 371 
similar pattern is shown in response to variation in tumor growth rates. Faster growing tumors lead to 372 
significantly poorer treatment outcomes. This trend is most observable when, for chemotherapy values 373 
below 0.4, the range of tumor growth rates and CTL efficacies where tumor reduction is possible 374 
significantly increases. Chemotherapy plays an important modulating role in these faster growing 375 
tumors, however, with optimal treatment coming from weaker chemotherapy. 376 
 377 
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In short, patient immune biology determines optimal chemotherapy strength by determining which 378 
immune dynamics can be taken advantage of to control tumor growth. Low dose therapy is optimal in 379 
situations where the patient immune response is robust enough to control tumor growth. This requires 380 
both a sufficient memory-cell population as well as sufficiently high efficacy in CTL cytotoxicity. In 381 
contrast, high-dose chemotherapy is optimal to control tumor growth when either the immune system 382 
is unable to generate a sufficient CTL response, or when the tumor is slow-growing. However, in many 383 
situations where the immune system is able to enhance the effect of chemotherapy, dosing must be 384 
moderated so that it does not impose an overly large recovery burden and impede immune effects. 385 
 386 
Improvements to therapy outcomes from immunostimulatory vaccines: The Goldilocks Window 387 
 388 
Patient-specific vaccines have become a recent hallmark in personalized cancer therapy. One of the first 389 
to acquire FDA approval was Sipuleucel-T, for treating metastatic castrate resistant prostate cancer [21]. 390 
Each vaccine is tailored to a specific patient by culturing dendritic cells from patient serum samples 391 
(taken roughly 72 hours before vaccine administration). The goal is to activate dendritic cells in vitro 392 
with a specific tumor protein target. These cultured antigen-presenting cells are then injected into the 393 
patient in order to stimulate an antitumor immune response. Three doses were administered in 2 week 394 
intervals with significant clinical responses being observed. Vaccination led to a 22% reduction in the 395 
relative risk of death, although there was no noticeable decrease in the rate of progression of disease 396 
[21]. The specific effect on T cells has been quantified by looking at T-cell receptor changes in response 397 
to vaccination. Subjects that received the vaccine saw a change in abundance and diversity of T-cell 398 
receptors in tumor-infiltrating lymphocytes. Certain receptor sequences were enriched, while others 399 
were significantly decreased [22], suggesting that the vaccine promoted an antigen-specific immune 400 
response against the tumor.  401 
To study the effects and potential synergy of chemotherapy with this method of T-cell stimulation, we 402 
simulated a vaccine regime similar to that used for Sipuleucel-T (3 doses, spaced 14 days apart), with 403 
different vaccine strengths. Mathematically, this was modeled by modifying the ODEs that govern CTL 404 
expansion. The antigenicity parameter of the tumor, α, was changed from a constant coefficient to a 405 
variable, time-dependent function, αv(t):  406 

 407 
Total antigenicity is modeled as the result of both the constant, baseline antigenicity of the tumor, α, 408 
and the exponentially decaying vaccine-augmented component, v. Vaccine-augmented antigenicity  409 
decays with a half-life, thalf, of 3 days, a biologically realistic timespan in line with the short half-lives of 410 
dendritic cells [23]. This model of dynamic antigenicity can be expanded for multiple vaccinations, as 411 
used in the clinical protocol (eq. 10). 412 

𝛼𝑣(𝑡) = 𝛼 + ∑ 𝐻(𝑡 − 𝑡𝑛)𝑣 (
1

2
)

𝑡−𝑡𝑛
𝑡ℎ𝑎𝑙𝑓

                                         (10)

𝑛𝑣𝑎𝑐

𝑛=1

 

 413 
Here, H(t) is again the Heavyside function. nvac represents the total number of vaccine injections and tn 414 
represents the time of the nth vaccination.  415 
The ODEs used for the simulation of immune and tumor cell populations are then dependent on the 416 
instantaneous current value of αv(t) throughout the course of simulated therapy. 417 
Under this scheme, results show that vaccine therapy can improve outcomes, but only within a specific 418 
range of chemotherapy strengths (Fig. 4). For very high chemotherapy doses, the beneficial effects of a 419 
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vaccine are diminished. As before, the underlying cause for decreasing efficacy is the persistent 420 
lymphodepletion of memory cells due to the chemotherapy. Antigenicity augmentation due to vaccine 421 
stimulation is offset by reduced CTL expansion. However, very low-dose chemotherapy poses its own 422 
challenges, because with insufficient lymphodepletion, tolerogenic mechanisms and greater Treg 423 
recruitment inhibit any CTL response augmented by the vaccine. The immune system remains closer to 424 
tumor-tolerized homeostasis, and as a result vaccine stimulation is mitigated because the immune 425 
system is already suppressed.  426 
 427 

 428 
Figure 4: Improvements in tumor reduction due to vaccine application. Panel A shows the RECIST 429 
responses achieved for different vaccine strengths and chemotherapy strengths with black being the 430 
non-vaccine baseline. Vaccine strengths (v) are 1 (blue), 10 (green), 100 (red), 1000 (light blue). Larger 431 
vaccine strengths lead to more successful RECIST responses for stronger chemotherapy doses. When 432 
looking at the absolute number of improvement in cellular reduction (B), a window of optimal 433 
chemotherapy ranges appears. Only when chemotherapy is in this range can vaccines provide a 434 
significant additional benefit. 435 
  436 
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 437 
Therefore, there exists an optimal dosing window for chemotherapy, a “Goldilocks” window. 438 
Quantitatively, we define this window to be the region in which a therapy dose can offer at least a 20% 439 
reduction in tumor size since this is the necessary amount for disease to become classified as a partial 440 
response. In order for there to be this maximized benefit from vaccine application, the chemotherapy 441 
regimen must be ‘just right’. Chemotherapy must have sufficient lymphodepletion to resensitize the 442 
immune system, but must leave enough immune cells such that vaccine stimulation leads to a large CTL 443 
response. Similar to the results of chemotherapy without the vaccine, the specific range of this 444 
Goldilocks window depends upon the initial patient memory cell (M0) numbers (not shown). More 445 
memory cells mean a system able to tolerate a larger dose of chemotherapy and still lead to a large 446 
vaccine-triggered CTL response. In contrast, fewer memory cells requires weaker chemotherapy doses 447 
to derive a maximum benefit from vaccine administration.  448 
 449 
Impact of variation in immune support 450 
 451 
Chemotherapeutic lymphodepletion in the clinical setting can pose a serious threat to the safety of the 452 
patient through neutropenia [24], which commonly leads to dose reductions and disruptions to the 453 
standard schedule of therapy for patients. Consequently, multiple tools have been developed to help 454 
mitigate the effects of chemotherapy on the immune system. For example, it was recognized that 455 
dexamethasone treatment before carboplatin and gemcitabine could not only increase chemotherapy 456 
efficacy but also reduce the lymphodepleting effects by preventing uptake in the spleen and bone 457 
marrow [25]. In contrast, other aspects of cancer therapy can potentially hamper CTL responses to 458 
tumor insults. For example, G-CSF application has been shown to reduce CD8+ T cell activation and could 459 
conceivably impede the impact of lymphodepletion as a break from immune tolerance [26]. More 460 
generally, however, the broader impact of immune system augmentation or suppression during therapy 461 
remains unexamined.  462 
In order to examine the effect of attenuated or augmented lymphodepletion on therapy outcome, we 463 
allowed for variable chemotherapeutic toxicity to immune populations, as compared to the tumor 464 
population. Mathematically, this simply means modifying the chemotherapy dose by a scaling factor h. 465 
The effect of chemotherapy on immune cell populations at a given treatment time is: 466 

 467 
where I1 is the immunological population size after application of chemotherapy, I0 is the population size 468 
before therapy, and 0 < C < 1 is the dose strength. The specific numerical range in which h falls 469 
represents either attenuated or augmented chemotherapeutic toxicity. For values of 0 < h < 1, this 470 
represents an attenuated toxicity relative to the toxicity on the tumor. In contrast, values of h > 1 471 
represent higher toxicity on patient immune populations than on the tumor. This could be due to 472 
patient-dependent increased sensitivity to chemotherapy. However, this is really beyond the scope of 473 
our model, especially since mathematically I1 could become negative. This is clearly an area where our 474 
model may not accurately capture the dynamics. Therefore, we have restricted hC such that hC < 1. For 475 
our in silico therapies, h was varied across these ranges where I1 > 0 for three different strengths of 476 
treatment. Values of C were chosen to represent lower (C= 0.25), middle (C= 0.6), and higher (C = 0.9) 477 
dose chemotherapy.  478 

Outcomes of therapy due to variation in h depended upon the strength of chemotherapy. 479 
Interestingly, the results suggest that immune-supporting combination therapy has essentially no 480 
benefit when given with low dose chemotherapy. As shown in Figure 5, similar tumor reduction 481 
occurred for a wide range of values of h around h=1 (which represents no immune support). 482 
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Furthermore, outcomes were worse when h was very low or very high. In situations where it was very 483 
low, final tumor sizes were large because a lack of lymphodepletion did not sufficiently break immune 484 
tolerance. In contrast, for larger h values, there was over-depletion which prevented an effective T-cell 485 
response despite significant tolerance breaking.  486 

In contrast, high dose chemotherapy saw treatment failure or success highly dependent upon 487 
the amount of immune support. Similar to low dose therapy, a small value of h that mitigated the 488 
depleting effects of chemotherapy led to the best possible outcomes in terms of tumor shrinkage. Final 489 
tumor sizes were, in fact, multiple orders of magnitude lower than was possible with low-dose 490 
chemotherapy. As h increased (representing less toxicity mitigation) treatment outcomes rapidly 491 
worsened. The transition value h*, where the clinical outcome rapidly shifts, indicates a threshold effect 492 
with regard to immune support. For high chemotherapy doses, immune support treatments must have a 493 
significantly large mitigation (h < h*) of immunodepletion in order for successful treatment responses to 494 
occur. 495 

Interestingly, the moderate strength chemotherapy regimen yielded only partial benefits of 496 
either extreme. The greatest tumor reduction possible, with immune support, yielded tumors that were 497 
smaller than those achievable with low dose chemotherapy. However, these tumors were still multiple 498 
orders of magnitude larger than those achievable with high dose chemotherapy. For treatment failure at 499 
lower immune support (h > h*) tumor sizes were actually larger than when high dose chemotherapy 500 
failed.  501 

Clinically, the results suggest that chemotherapy dose strength can be used to mitigate 502 
uncertainty regarding the amount of immune support a certain treatment will give to a specific patient. 503 
Low dose therapy offers a wide range of potential immune support in which treatment can successfully 504 
reduce tumor sizes. The disadvantage is that the maximum tumor size reduction still leaves larger 505 
tumors than are possible using higher doses of chemotherapy. While our model has not analyzed this, a 506 
potential impact is that larger tumor sizes could lead to more heterogeneous populations and thus lead 507 
to a higher likelihood of resistant or metastatic populations. However, higher doses have a narrower 508 
range of immune support in which they are successful. Chemotherapy can be balanced, then, against 509 
how certain the clinician is of the benefit that G-CSF (or other immune supporting drug) will give. For 510 
patients where there is high certainty of a significant benefit due to the drug, high dose therapy is 511 
optimal. In contrast, lower dosing should be used when the drug may have lower or variable efficacy.  512 

 513 
Variable Immune Support and Impacts on Observed Cohort Responses 514 
 515 

Finally, we sought to investigate how variation in the effectiveness of these immune adjuvants 516 
might impact treatment outcomes in a group of patients. Chemotherapy treatment leads to a wide 517 
range of responses, both successful and unsuccessful, across multiple types of cancer [17]. This variation 518 
has been attributed to both disease variation, patient variation, and interactions between the two. 519 
However, less attention has been given to variable patient responses to secondary drugs – such as G-CSF 520 
– and how they impact therapy. Patient responses to these secondary drugs are currently poorly 521 
measured and could have significant implications for therapy outcomes. 522 

To better explore the effect of variable patient responses to immune support drugs, cohorts of 523 
500 patients were randomly generated from a normal distribution with a mean immune support 524 
response value of h = 0.8 and variance of 0.2. These values were chosen to center the distribution 525 
around the model-derived threshold value h* = 0.8. Similar to our previous investigations, cohorts were 526 
then subjected to regimens of low (C = 0.4) and high (C = 0.8) chemotherapy strengths. Percent changes 527 
in tumor size after therapy were displayed for each individual patient in the cohort to generate a 528 
waterfall plot. In doing so, we used our model to simulate cohort responses as is commonly measured in 529 
aggregated studies of patient data [17]. The waterfall plots (Fig. 5) illustrate that chemotherapy strength 530 
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can significantly change the proportion of successfully responding patients in a population with variable 531 
responses to immune prophylactics. This is significant since the proportion of successful responses is 532 
often an important criterion for judging therapeutic efficacy. The simulated waterfall plots show how 533 
clinical outcomes could not only be the result of therapy, but also due to inherent immune variation 534 
within the cohort.  535 
 536 
  537 
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Figure 5: Therapeutic effects of differential response to immune prophylactics. (A) Final tumor 539 
sizes are shown for three different chemotherapy regimes for a range of immune modifier efficacies (h). 540 
The asterisk denotes that simulations were only run up to this h value for the highest dose 541 
chemotherapy. (B) Cohorts are treated with these differing regimes of high and low chemotherapy, 542 
showing significant differences in the proportion of successful versus unsuccessful responders.  543 

 544 

Discussion 545 

A major barrier to success for immunotherapy in cancer is tolerogenic mechanisms that reduce the 546 
immune response to tumor antigens ( [27], [3], [6]) . A potential solution has come from observations 547 
that lymphodepletion stimulates homeostatic proliferation in the immune system which can transiently 548 
restore immune response. This has led to increasing efforts to selectively apply chemotherapy to 549 
improve outcomes from immunotherapy [28].  550 
 551 
To better understand this potential synergy, we constructed a mathematical model to frame these 552 
complex dynamics and identify critical parameters that govern the clinical outcomes. Our studies 553 
focused on three clinically-observed dynamics of immunodepletion, immunostimulatory vaccination, 554 
and immunosupportive prophylactics. With regard to immunodepletion, we demonstrated that 555 
chemotherapy results in a trade-off. At very high doses, chemotherapy has a maximal cytotoxic effect on 556 
the tumor but also maximally depletes memory T cells such that no effective CTL response can be 557 
mounted despite the transient loss of tolerance during re-expansion of the immune cells after 558 
completion of chemotherapy. Similarly, low doses of chemotherapy are insufficient to produce the post-559 
treatment immune cell expansion that is necessary for reversal of immune tolerance.  560 
Importantly, however, we find there is a “Goldilocks” range of chemotherapy doses in which 561 
lymphodepletion causes adequate immune resensitization, but does not impose an overly large 562 
recovery burden. This window is governed by the patient-specific quantity of memory T cells so that 563 
larger pre-treatment T-cell populations allow more favorable outcomes with higher doses of 564 
chemotherapy. In contrast, fewer pretreatment CTLs can limit the immune response even in the 565 
“Goldilocks“ range of chemotherapy. Thus, there is a necessary 'minimum efficacy' of effector cells for 566 
successful stimulation of immune response by chemotherapy. Below this threshold of immune activity, 567 
the benefit of chemotherapy is almost solely dependent on its inherent cytotoxicity (Fig. 6) 568 
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 569 
Figure 6: A diagram explaining tumor outcomes at varying chemotherapy strengths and immune support 570 
doses. If therapy is too weak, then immune stimulation cannot be maximally effective and direct 571 
chemotherapy-mediated tumor cell death is also low. This yields a suboptimal tumor reduction. When 572 
chemotherapy is too strong, there may be more tumor cell death due to the drug, but insufficient 573 
immune activation due to over depletion of T cells. There is a moderate dose, however, that represents 574 
a Goldilocks window of maximizing both T-cell activation as well as drug-induced tumor cell death. This 575 
range of dosing provides at least a 20% reduction in tumor size (relative to the initial tumor size of 108 576 
cells).  577 
 578 
Our model also provides insight into the potential effects of variation in the tumor growth rate. In 579 
slower growing tumors, chemotherapy alone can be sufficient to achieve optimal treatment response. 580 
Treatment of faster growing tumors, however, is best when the chemotherapy is administered to 581 
enhance the immune response. Unfortunately, if the pre-treatment population of CTLs is small, we find 582 
chemotherapy for rapidly growing tumors will be ineffective if it is both highly lymphodepleting and 583 
insufficiently cytotoxic to significantly reduce tumor growth. Assessing the clinical importance of this 584 
question is challenging because it remains unclear from the literature as to the actual size of the 585 
population of tumor-specific T cells that are present during treatment. In spite of these difficulties, the 586 
impact and existence of anti-tumor immunity has been bolstered by recent immunotherapies which act 587 
to remove inhibitions to T-cell action [29].  588 
 589 
Chemotherapy is increasingly being used in concert with vaccines to help stimulate the patient immune 590 
system. We investigated the interactions between vaccines and lymphodepletion and found that, as 591 
before, there is a window of chemotherapy ranges in which vaccines can improve outcomes versus 592 
chemotherapy alone. At very high doses, however, the resulting lymphodepletion substantially reduces 593 
benefits of immune stimulation by vaccination. More broadly, other novel immunotherapies could also 594 
potentially be hampered by over-depletion of the immune system.  595 
 596 
To further investigate the potential impact of this interaction, we modeled the effect of differential 597 
responses to immune prophylactics. G-CSF and other drugs have become common recourses in 598 
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chemotherapy for mitigating the immunodepletion effects on patients [30]. However, recent studies 599 
have suggested that T cell response is hampered by G-CSF administration [26]. While G-CSF may help 600 
prevent neutropenia and cytopenia for patients, it may impede the ability of retolerized T cells to mount 601 
an anti-tumor response. In addition, responses to prophylactics are not constant but the significance of 602 
this variation remains relatively uninvestigated. Our model suggests that inter-patient variation in 603 
prophylactic response can lead to drastically different outcomes for the same dosing of chemotherapy. 604 
Across larger samples, this variation can further interact with chemotherapy to be a significant 605 
determinant of whether the chemotherapy dose leads to more success or failure across a range of 606 
patients.  607 
  608 
In conclusion, our results suggest opportunities to increase the efficacy of immunotherapy with precise 609 
application of chemotherapy. Our model affirms the importance of effector and memory T-cell 610 
expansion following chemotherapy to reduce immune tolerance to tumor antigens. However, we 611 
demonstrate that optimal chemotherapy requires identification of a Goldilocks Window in which 612 
treatment can both induce cytotoxic effects in the tumor and enhance the immune response to tumor 613 
antigens. Identifying optimal strategies for chemotherapy in each patient will likely benefit from the 614 
application of mathematical models which are parameterized by patient data pre-treatment to generate 615 
an optimal treatment strategy for that patient. Importantly, these predicted strategies would most likely 616 
need to change as patient responses diverge from those predicted, leading to an iterative loop of 617 
‘predict-apply-refine’. With the growing drive towards precision medicine, we believe that mathematical 618 
models are critical for the future of truly personalized therapy, where no two patients will receive the 619 
same therapeutic regimen, and where treatments adapt a change based on patient responses. The 620 
model presented here is a step towards describing the complex landscape of treatment decisions 621 
regarding dosing and combination of different therapies, and we have shown how these decisions can 622 
be sensitive to patient-specific parameters and guide clinical intuition. 623 
  624 
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