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Abstract

Humans and animals are remarkable at detecting stimuli that predict rewards. While the underlying neural mecha-
nisms are unknown, reward influences plasticity of sensory representations in early sensory areas. The underlying
changes in excitatory and inhibitory circuitry are however unclear. Recently, experimental findings suggest that
the inhibitory circuits can regulate learning. In addition, the inhibitory neurons in superficial layers are highly
modulated by diverse long-range inputs, including reward signals. We, therefore, hypothesise that plasticity of in-
terneuron circuits plays a major role in adjusting stimulus representations. We investigate how top-down modulation
by rewards can interact with local excitatory and inhibitory plasticity to induce long-lasting changes in sensory cir-
cuitry. Using a computational model of layer 2/3 primary visual cortex, we demonstrate how interneuron networks
can store information about the rewarded stimulus to instruct long-term changes in excitatory connectivity in the
absence of further reward. In our model, stimulus-tuned somatostatin-positive interneurons (SSTs) develop strong
connections to parvalbumin-positive interneurons (PVs) during reward presentation such that they selectively dis-
inhibit the pyramidal layer henceforth. This triggers plasticity in the excitatory neurons, which leads to increased
stimulus representation. We make specific testable predictions in terms of the activity of different neuron types. We
finally show that this two-stage model allows for translation invariance of the learned representation.
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Introduction

Animals learn better when it matters to them. For example, they learn to discriminate sensory stimuli when they
receive a reward. As a result of learning, neural responses to sensory stimuli are adjusted even in primary sensory
areas, such as primary visual cortex (V1, Goltstein et al., 2013; Khan et al., 2018; Poort et al., 2015). When mice
consistently receive a reward after seeing a grating of a given orientation, the tuning preference of layer 2/3 neurons
for this rewarded orientation is increased (Goltstein et al., 2013; Poort et al., 2015). It is thought that behaviourally
relevant contexts, such as rewards, trigger an internal top-down signal available to these early sensory circuits. This
could be mediated by cholinergic inputs from the basal forebrain, for example (Chubykin et al., 2013; Letzkus
et al., 2011). By top-down signal, we mean any long-range input to the superficial layers that delivers behaviorally
relevant information to the local circuit.

Pyramidal cells in primary sensory cortices are embedded in a canonical microcircuit motif with different types of
inhibitory interneurons. The main inhibitory types are the PVs, the SSTs, and the VIPs. Top-down inputs project to
superficial layers (Atallah et al., 2012; Fu et al., 2014; Lee et al., 2013; Petro et al., 2014; Pi et al., 2013; Zhang et al.,
2014). They target multiple cell types. For example, VIPs in the primary auditory cortex are activated when a reward
is present (Pi et al., 2013). Inhibitory synapses are plastic (see (Vogels et al., 2013) for a review) and perturbation
of interneurons impairs learning (Letzkus et al. (2011), see (Lucas and Clem, 2018) for a recent review).

We hypothesised that the inhibitory circuitry in layer 2/3 mediates the top-down instructions (e.g triggered by a
reward) to guide slow plastic changes in the circuit beyond the presence of reward. We wanted to test whether in-
terneurons can learn from a top-down signal. The inhibitory connectivity structure could then instruct the excitatory
cells in the absence of top-down modulation. To test this, we built a biologically constrained computational model
of layer 2/3 primary visual cortex. We simulated a rewarded phase in which the presentation of one stimulus is
paired with a reward signal, which excites VIPs. We then simulated a second refinement phase, where the sensory
stimuli were presented without the reward. During the first rewarded phase, connections between SSTs and PVs
developed a specific connectivity structure. This structure triggered disinhibition of the excitatory neurons even in
the absence of reward. Plasticity in the excitatory neurons, therefore, shaped the microcircuit during the second
refinement phase. It led to an increased stimulus preference of the previously rewarded stimulus. Our model offers
testable predictions on the activity of different cell types during and after the reward presentation. We also propose
that this two-stage mechanism allows for learned representations to generalise across different parts of the visual
space.

Results

Hypothesis: Two-stage model of top-down guided microcircuit plasticity

Neural responses to visual stimuli in V1 are not a simple function of bottom-up sensory inputs. They are additionally
modulated by various inputs from other areas (Khan and Hofer, 2018; Pakan et al., 2018) and by recurrent local
excitatory and inhibitory neurons (especially in layer 2/3, Cossell et al., 2015). We hypothesised that top-down
inputs can induce changes in sensory representations via changes in recurrent connections in two stages.

(i) The rewarded phase. A specific stimulus (e.g. a vertical bar) is paired with a reward-mediated top-down signal
which excites VIPs (triple arrow in Fig. 1a top). The VIPs inhibit the SSTs, which we assume are stimulus-tuned
(Cottam et al., 2013; Ma et al., 2010). At the same time, the VIPs disinhibit the PVs, which we model as untuned
(Cottam et al., 2013; Ma et al., 2010). Activity-dependent plasticity then increases the connections between SSTs
which are tuned to the rewarded stimulus (here the vertical bar, vertSSTs) and PVs (Fig. 1b top). The inhibitory
motif now carries information about the reward. In addition, this inhibitory structure disinhibits the excitatory
neurons (Fig. 1b bottom).

(ii) The refinement phase. In the second phase, the reward and therefore also the top-down input is absent (Fig.
1b top). As the inhibitory (SST-PV) motif disinhibits the PCs (Fig. 1b top), it opens a window for plasticity at the
excitatory synapses. This will result in a refinement of the excitatory connectivity. Strong recurrent connections
from PCs coding for the vertical bar (vertPC) to other excitatory neurons will develop. All PCs will, therefore, have
an increased response to the vertical bar stimulus.

In summary, we hypothesised that learning can happen in two stages. To test this, we simulated a mechanistic model
of the layer 2/3 microcircuit.
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Figure 1: The two-stage model of top-down guided plasticity a: Before the rewarded phase. We assume the SSTs
and PCs to be stimulus-tuned and PVs to be untuned. During the rewarded phase, the top-down signal activates
VIPs when the rewarded stimulus is present (vertical bar). This triggers plasticity at the SST-to-PV connections. b:
At the end of the rewarded phase and at the beginning of the refinement phase, there are strong connections from the
SSTs tuned to the vertical bar to PVs (green, top). The PV activity is therefore low for the vertical bar (bottom). The
excitatory neurons coding for the vertical bar are disinhibited (middle). During the refinement phase, the inhibitory
motif guides plasticity at the excitatory neurons. c: At the end of the refinement phase, strong connections from the
excitatory neurons coding for the vertical bar to the other excitatory neurons have developed (red, top). This results
in an increased activity of excitatory neurons towards the vertical bar (red line, middle) beyond that resulting from
reduced inhibitory PV activity (blue line, middle, and bottom).

Top-down signal triggers plasticity in the inhibitory circuit

We simulated a spiking neural network model of the canonical microcircuit of layer 2/3 mouse primary visual cortex
(Pfeffer et al. 2013). Neurons were modelled as integrate-and-fire neurons (Pfeffer et al., 2013). VIPs inhibited the
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SSTs, which in turn inhibited the PVs and the PCs. The PVs inhibited the PCs. The PCs were recurrently connected
(Fig. 1) (Pfeffer et al., 2013). PCs and SST were tuned to orientation (Cottam et al., 2013; Ma et al., 2010, but
see Kerlin et al. (2010)). Recurrent excitatory connections and those from SSTs to PVs were plastic according to
the classical spike-timing-dependent plasticity (STDP) model. All other connections were fixed (see methods for
details).

Before we tested our hypothesis, we needed to bring our model from random initial connectivity to a set of weights
that corresponds to adult V1 connectivity. We call that the developmental phase. During this phase, we randomly
presented inputs to our network corresponding to oriented gratings. Excitatory neurons that code for the same
orientation were coactive. Therefore, they formed strong clusters due to Hebbian learning (Clopath et al., 2010; Ko
et al., 2013) (Fig. 2f developmental phase, Fig. 2e level middle). The SST-to-PV weights did not form a specific
structure during the developmental phase (Fig. 2b developmental phase) consistent with experimental literature
(Guan et al., 2017).

We then simulated a rewarded phase (grey background in Fig. 2b and f). A reward signal excited the VIP population
when the vertical bar stimulus was present. This top-down signal was in itself untuned. However, the temporal
coincidence with the vertical bar made it stimulus-specific. Connections from the vertical-bar tuned SSTs (vertSST)
to PVs increased (purple line in Fig. 2b, rewarded phase). The resulting SST-to-PV structure (Fig. 2d) carried infor-
mation about the identity of the rewarded stimulus. Hence, the PVs became less responsive to the rewarded stimulus
(vertical bar, Fig. 2c). Notably, no significant stimulus-specific structure arose between excitatory connections (Fig.
2e and f). Accordingly, the tuning of excitatory populations did not change.

In summary, unspecific top-down signals can induce an inhibitory connectivity structure without changing excitatory
connectivity.

Figure 2: Top-down signal triggers fast plasticity in the inhibitory circuit a: Illustration of changes in the in-
hibitory structure during top-down modulation (cyan arrow). b: Evolution of the inhibitory SST-to-PV connections,
grouped according to SST tuning preference (colours match the connections in a, shown are the mean and standard
deviation). c: Tuning of PVs after the rewarded phase. d: SST-to-PV weights (mean and standard deviation) at
the end of the rewarded phase averaged over SST tuning preference. e: Recurrent excitatory weights at different
time points in the simulation (initial random condition, after the developmental phase, after the rewarded phase).
f: Evolution of excitatory connections (mean and standard deviation). Vertically tuned PCs to vertically tuned PCs
(vertPC-vertPC green), vertically tuned PCs to non-vertically tuned PCs (vertPC-nvert-PC, purple), non-vertically
tuned PCs to non-vertically tuned PCs (nvertPC-nvert-PC, yellow).
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Inhibitory structure guides excitatory plasticity in the absence of reward

We then tested whether the interneuron structure can guide plasticity in the excitatory neurons in the absence of
reward. After the rewarded phase, the inhibitory structure effectively disinhibited all PCs when a vertical bar was
present (corresponding to the previously rewarded stimulus). The vertically tuned PCs fired a few milliseconds
before the other PCs because they received additional feedforward inputs. STDP, therefore, led to a strengthening
of the connections from the vertically tuned PCs to the other PCs (Fig. 3b purple line). Accordingly, connections in
the reverse direction were depressed (Fig. 3b green line; see Fig. S1 for spiking details). As a result of the excitatory
connectivity structure (Fig. 2c), all PC populations showed an increased response to the vertical bar (Fig. 3d). Since
PCs are driving the PVs, PVs became tuned to the vertical bar (Fig. 3h). Synergistically, SST-to-PV connections
were strengthened even further (Fig. 3f).

Note, the excitatory structure was stable even if we artificially deleted the inhibitory structure (Fig. S6). The total
effect on the PCs depended on the comparative strength of SST-PC and SST-PV-PC pathways. Indeed, we found
that the degree to which excitatory structure developed depended on the strength of SST-to-PC connections (Fig.
S3f). Finally, we also showed that precise spike timing was not necessary for our two-stage model (see a rate-based
implementation in suppl. mat Fig. S7).

In summary, the inhibitory network structure can induce changes in sensory representation by guiding excitatory
plasticity.

Figure 3: Inhibitory structure guides excitatory plasticity in the absence of reward. a: Illustration of changes
in the excitatory structure. b: Evolution of excitatory connections. Mean and standard deviation of the connections
from the vertically tuned PCs to PCs tuned to other orientations (vertPC-nvertPC, purple), from PCs tuned to other
orientations to the vertically tuned PC population (nvertPC-vertPC, green), and from others to others (nertPC-
nvertPC, yellow). c: Final excitatory weight matrix. Neuron 1-100 are tuned to the vertical bar, 100 to 200 to
an angled bar, etc. d: Tuning of excitatory populations before the rewarded phase (black) and at the end of the
refinement phase (red) (number of spikes during 50 ms after stimulus onset averaged over all occurrences of that
stimulus in 1 s of simulation). e: Illustration of the inhibitory structure after the rewarded phase. f: Evolution of
the SST-to-PVs connections (mean and standard deviation), grouped according to SST tuning (colours match the
colours of the connections in e). g: SST-to-PV connections after the refinement phase, grouped by SST tuning (error
bars -standard deviation). h: Tuning of PVs after the refinement phase.
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Experimentally testable predictions

Our model makes eight precise experimentally testable predictions. (1) PCs and (2) PVs become more tuned to the
rewarded stimulus (Fig. 2d, g). (3) SSTs and (4) VIPs do not change their tuning (Fig. S2). (5) Both PC and (6) PV
firing rate responses to the rewarded stimulus increase relative to other stimuli (Fig. 4a, b). (7) Excitatory currents
increase during the rewarded stimulus (Fig. 4d, S7g), (8) but not the E/I ratio (Fig. 4e, S7i).

Figure 4: Predictions of the model. a: Firing rate of 20 sample excitatory neurons (5 from each population)
before the rewarded phase as a function of after the refinement phase. b: Firing rate of sample PV interneurons. c:
Excitatory currents (E), d: Inhibitory currents (I) and e: E/(E+I) ratio of the same 20 sample excitatory neurons.

Functional implication: Translation invariance of learned representations

Most excitatory neurons in layer 2/3 are simple cells (Niell and Stryker, 2008), which respond to dedicated visual
field locations. Changes in connectivity between these cells will hence only affect the representation of a stimulus
at that visual field location. Therefore, we were wondering whether and how the increased representation of the
rewarded stimulus could generalise to visual field locations that were not rewarded. In particular, we asked whether
learning the inhibitory structure can lead to enhanced stimulus representations that are invariant to the visual field
location. This so-called translation invariance is a general property of the visual system. For example, how we
perceive an edge should be independent of where in the visual field it occurs.

To test this, we expanded our model to include another set of PCs, tuned to the same orientations but to a different
visual location. All PCs in the model were innervated by the same set of interneurons, which were tuned to both
locations (Fig. 5a) (assuming inhibition with broader spatial receptive fields, Liu et al., 2009). As before, SST-to-PV
structure developed during the rewarded phase (Fig. 5e). In the refinement phase, the excitatory structure emerges in
both PC subnetworks (Fig. 5b, h, and c, i), leading to an increased representation of the stimulus for both visual field
locations (Fig. 5d and j). In summary, our two stage-model allows for a generalisation of the learned representation
to other visual field locations.

Discussion

We propose that a memory of the rewarded stimulus is stored in the inhibitory structure. It can instruct excitatory
plasticity in the absence of reward via a disinhibition mechanism. The PCs then increase their tuning to the rewarded
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Figure 5: Translation invariance of learned representations. a: Illustration: Two excitatory networks with differ-
ent visual receptive field locations (white circles) share the same interneuron network. The interneurons are broadly
tuned, and receive input from both visual field locations. Only one visual field location is rewarded during the
rewarded phase (rewarded location). b: Evolution of excitatory weights for the rewarded location. c: Final exci-
tatory weights for the rewarded location 1. d: Tuning curves of excitatory populations with a receptive field at the
rewarded location at the beginning (before) and at the end of the simulation (after the refinement phase; measured
as the number of spikes during 50 ms after stimulus onset averaged over all occurrences of that stimulus in 1 s of
simulation). e: Evolution of inhibitory synaptic weights. f: Final inhibitory weights. g: PV tuning at the beginning
and after the refinement phase. h: Evolution of excitatory weights for the non-rewarded location. i. Final excitatory
weights for the non-rewarded population. j: Tuning curves of excitatory populations with a receptive field at the
non-rewarded location (as in d).
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stimulus because they receive strong connections from PCs coding for the rewarded stimulus, regardless of their
initial tuning.

Top-down signals

We show that an unspecific top-down reward signal is sufficient to create a specific circuit structure owing to the
temporal coincidence between reward signals and stimulus-evoked activity. Where does the top-down signal come
from? One candidate is cholinergic fibres from the forebrain, which has been shown to modulate activity in V1
(Chubykin et al., 2013; Shuler and Bear, 2006). In addition, the nucleus basalis in the basal forebrain, which sends
widespread cholinergic projections to all sensory areas, has long been known to play a role in plasticity, learning,
and memory. Lesioning and applying cholinergic antagonists impair learning and memory (Butt and Hodge 1995).
Nucleus basalis stimulation and local ACh administration alter auditory receptive fields (Metherate and Ashe, 1991;
Metherato and Weinberger, 1989). Finally, cholinergic inputs are involved in experience-dependent plasticity of
visual cortex (Bear and Singer, 1986). Cholinergic inputs target many interneuron cell types (Muñoz et al., 2017).
Here we focused on top-down modulation of VIPs, as VIPs (i) directly respond to reinforcement signals (Pi et al.,
2013), (ii) inhibit other interneurons during learning (Fu et al., 2014; Letzkus et al., 2011), and (iii) are diversely
modulated by glutamatergic, cholinergic, and serotonergic inputs (Lee et al., 2013; Prönneke et al., 2015).

Experimental evidence demonstrating increased representation of rewarded stimuli

In Poort et al. (2015), the majority of cells increased their selectivity for one stimulus by selectively suppressing
their response to the other stimuli. In Goltstein et al. (2013) on the other hand, cells increased their response to
the rewarded stimulus by broadening their tuning curves. The possible discrepancy may arise from the design of
the two studies. Whereas Poort et al. (2015) quantified responses to the two task-relevant stimuli, Goltstein et al.
(2013) calculated tuning curves for a range of orientations including two task-relevant orientations. In our model,
we captured the increased stimulus representation by an increase of responses to the rewarded stimulus, which was
observed in both experimental studies (Goltstein et al., 2013; Poort et al., 2015). Additionally, PVs were also shown
to increase their selectivity with learning (Khan et al., 2018).

Limitations

Our point model does not capture the fact that SSTs and PVs target different dendritic regions. We do not expect our
results to change if we include dendrites in our model, as the PV-disinhibition projects somatically. In our model,
PC-to-SST connections and PV-to-PV connections were not necessary. Including them, however, yields similar
qualitative results (Fig. S4), provided a homeostatic mechanism to prevent this positive feedback loop. It would be
interesting to study the effect of multiple modulatory inputs, such as long-range glutamatergic, serotonergic, and
cholinergic inputs. How do these inputs interact? Do they interfere with each other? How are different signals
distinguished? For instance, both learning and attention affect the selectivity of responses of neurons in the circuit
(Khan et al., 2018; Poort et al., 2015).

Alternative implementations

We list below alternative mechanisms, but we argue that our model is the one most in line with experimental data
from the visual cortex.

(i) Vertically tuned PCs may develop strong connections to VIPs. It will inhibit SSTs and therefore disinhibit PCs.
This motif, however, will cause VIPs to become more tuned during learning, which was not observed experimentally
(Khan et al., 2018).

(ii) Vertically tuned PCs may develop strong connections to SSTs. It will inhibit PVs and therefore disinhibit PCs.
This motif will result in a tuning increase of SSTs, which was also not observed experimentally (Khan et al., 2018).

(iii) Vertically-tuned PCs may reduce their inhibition of PVs, thereby increasing the activity of all PCs. This can
lead to instability and contradicts the finding that PCs and PVs increase their effective connectivity during learning
(Khan et al., 2018).

(iv) SSTs may decrease their response to the rewarded stimulus more than to other stimuli. This motif predicts a
change in the tuning of SSTs, which does not seem to be the case in Khan et al. (2018).
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Functional relevance

We propose three benefits of an intermediate inhibitory structure over direct changes in recurrent excitatory con-
nectivity. (i) Bridging timescales: The reward is only present for a short amount of time, but plasticity can be slow.
These two timescales can be bridged because the inhibitory and excitatory structure mutually reinforce each other.
Therefore, a strong excitatory structure can emerge beyond the presence or even in the absence of reward. Without
the inhibitory structure, the excitatory structure develops more slowly and the reward phase has to be longer (Fig.
S5). Additionally, high inhibitory firing rates, typical of PVs, could effectively increase the inhibitory learning
rate, allowing for a rapid development of the inhibitory structure. (ii) Translation invariance: We showed that the
inhibitory structure allows for the increased representation to generalise across visual locations. Interestingly in
machine learning, translation invariance which improves generalisation is achieved by weight sharing. The same
weight vector (filter) is applied to different regions of the input space. This has been considered biologically implau-
sible, as synaptic weights of far-away synapses are not locally available to each synapse. Broadly tuned interneuron
networks that are shared across functional excitatory clusters may be a biologically plausible way to implement
weight sharing. (iii) Stability of representations: Excitatory responses did not change during the rewarded phase.
Therefore, the mechanism ensures a stable representation during relevant behaviour despite learning a structure
between the inhibitory neurons.

Conclusion

Interneuron circuits form canonical motifs across cortical areas. They integrate modulatory and long-range signals
from higher cortical areas with activity in the local circuit. They are hence well-suited to adjust local circuits
according to behaviourally-relevant signals. We proposed that interneuron circuits enable reward-dependent changes
in sensory representations in a two-stage process. It can bridge timescales between stimulus-reward experience and
synaptic plasticity. Finally, it allows for generalisation of the learned association.
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Methods

Network model

The network consisted of 400 PCs grouped into four subpopulations of 100 neurons each. Each subpopulation
coded for a given orientation. We simulated 120 PVs, 120 SST-positive interneurons (30 in each subpopulation),
and 50 VIP interneurons.

Neuron model

Neurons were modelled as conductance-based spiking leaky integrate-and-fire neurons. Their membrane potential
evolves according to:

Cm
dvi
dt

= gl(vi − Vl)− (gE(vi − VE) + gI(vi − VI)) +

√
2σ2

τ
ξ(t) (1)

where Cm is the membrane capacitance, vi is the membrane potential of neuron i, Vl is the leak reversal potential.
VE and VI are the excitatory and inhibitory reversal potentials. gl, gE , and gI are the leak, excitatory and inhibitory
conductances. gE and gI are increased by Wij upon a spike event in a pre-synaptic excitatory or inhibitory neuron
j, and decay exponentially with time constants τE and τI , respectively. ξ is zero-mean Gaussian white noise.
Parameters defining the Ornstein-Uhlenbeck process are σ = 3 mV and correlation time τ = 5 ms.

dgE
dt

= −gE
τE

(2)

dgI
dt

= −gI
τI

(3)

When the membrane potential reaches a threshold vθ, a spike event is recorded and the membrane potential is reset
to its resting value Vl.

Table 1: Parameters of the leaky integrate-and-fire neuron model.
Parameter Value Parameter Value
Cm 200 pF VE 0 mV
Vl -60 mV VI -80 mV
gl 10 nS τE 5 ms
vθ -50 mV τI 10 ms

Connectivity

The synaptic weightsWIJ from a neuron j in population J to a neuron i in population I , where I, J ∈ {E,P, S, V }
(E: PC, P : PV, S: SST, V :VIP), determine how much the synaptic conductances gE and gI increase upon a spike
in neuron j. We initialised the synaptic weights as

W =

 WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WV V

 =

 N (.01, .01) .25 .3 0
.1 0 N (.1, .1) 0
0 0 0 .1
0 0 0 0

 (4)

Inputs

PCs and SSTs received one of four inputs (corresponding to layer 4 (L4) inputs coding for 4 different orientations).
Each L4 input produced a Poisson-distributed spike train with a rate of 4 kHz during its preferred stimulus, and 0 Hz
otherwise. One of four stimuli was shown for 50 ms followed by a stimulus gap of 20 ms. During the stimulus gap,
all L4 inputs produced spikes at the same rate of 1.6 kHz. The conductance of synapses from L4 to PCs was .25 nS.
The conductances of synapses from L4 to SSTs was .2 nS during the stimulus and .22 nS during the stimulus gap.
Additionally, PCs and PVs received a baseline input from a Poisson process with a rate of 4 kHz. The weights to
PCs weights were .06 nS and to PVs were .01 nS.
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Plasticity

For both excitatory and inhibitory plasticity we chose the simple classical STDP model (Bi and Poo, 1998; Gerstner
et al., 1996; Markram et al., 1997)

∆w =

{
−A− exp(∆t

τ−
) if ∆t < 0

A+ exp(−∆t
τ+

) if ∆t ≥ 0
(5)

where ∆t = tpost - tpre is the difference between pre- and postsynaptic spike time, τ+ = τ− = 20 ms, for excitatory
plasticity A+ = .005 nS and A− =1.05A+, for inhibitory plasticity A+ = .015 nS and A− =1.05A+. This rule leads
to synaptic potentiation when the presynaptic neuron spikes before or simultaneously with the postsynaptic neuron,
and to depression otherwise.

In the online implementation of this rule, the synaptic weight wij from neuron j to neuron i is updated when either
the pre- or the postsynaptic neuron spikes according to:

wij → wij − ηapost(t) for presynaptic spikes at time t (6)
wij → wij + ηapre(t) for postsynaptic spikes at time t (7)

where apost(t) is the postsynaptic trace and apre(t) is the presynaptic trace. The traces are updated by a constant
value at the time of a postsynaptic or presynaptic spike respectively, and decay exponentially with a time constant
τ− or τ+.

dapost

dt
= −

apost

τ−
(8)

dapre

dt
= −

apre

τ+
(9)

Excitatory and inhibitory weights were constrained to be positive and had an upper bound at 0.25 nS for excitatory
weights and 1 nS for inhibitory weights.

Simulation

All spiking simulations were done with the Brian 2 simulator (Stimberg et al., 2013), using a time step of 0.1 ms.
The model was simulated for 1.4 s without plasticity to measure tuning curves. Then plasticity was switched on.
The model was simulated for 42 s during the developmental phase, followed by a 24.5 s during the rewarded phase,
and 45.5 s during the refinement phase. Finally, the model was simulated for 1.4 s without plasticity to measure final
tuning curves again.

Translation invariance

To adjust for the increased number of excitatory neurons in the network, the connection strength from PCs to PVs
was decreased to WPE = .06 nS.

Data availability

All simulation code used for this paper will be made available on ModelDB.
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Cottam, J. C. H., Smith, S. L., and Häusser, M. (2013). Target-specific effects of somatostatin-expressing interneurons on
neocortical visual processing. Journal of Neuroscience, 33(50):19567–19578.

Fu, Y., Tucciarone, J. M., Espinosa, J. S., Sheng, N., Darcy, D. P., Nicoll, R. A., Huang, Z. J., and Stryker, M. P. (2014). A
cortical circuit for gain control by behavioral state. Cell, 156(6):1139–1152.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal
coding. Nature, 383:76.

Goltstein, P. M., Coffey, E. B. J., Roelfsema, P. R., and Pennartz, C. M. A. (2013). In vivo two-photon Ca2+ imaging reveals
selective reward effects on stimulus-specific assemblies in mouse visual cortex. Journal of Neuroscience, 33(28):11540–
11555.

Guan, W., Cao, J.-W., Liu, L.-Y., Zhao, Z.-H., Fu, Y., and Yu, Y.-C. (2017). Eye opening differentially modulates inhibitory
synaptic transmission in the developing visual cortex. eLife, 6:e32337.

Kerlin, A. M., Andermann, M. L., Berezovskii, V. K., and Reid, R. C. (2010). Broadly tuned response properties of diverse
inhibitory neuron subtypes in mouse visual cortex. Neuron, 67(5):858–871.

Khan, A. G. and Hofer, S. B. (2018). Contextual signals in visual cortex. Current Opinion in Neurobiology, 52:131–138. Systems
Neuroscience.

Khan, A. G., Poort, J., Chadwick, A., Blot, A., Sahani, M., Mrsic-Flogel, T. D., and Hofer, S. B. (2018). Distinct learning-induced
changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience,
21(6):851–859.

Ko, H., Cossell, L., Baragli, C., Antolik, J., Clopath, C., Hofer, S. B., and Mrsic-Flogel, T. D. (2013). The emergence of
functional microcircuits in visual cortex. Nature, 496:96.

Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G., and Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the
somatosensory cortex. Nature Neuroscience, 16(11):1662–1670.

Letzkus, J. J., Wolff, S. B. E., Meyer, E. M. M., Tovote, P., Courtin, J., Herry, C., and Lüthi, A. (2011). A disinhibitory
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Supplementary Material

Spiking information

To understand the sources of the synaptic changes, we analysed the spike timing of the different neuron types. (i) During the
rewarded phase, VIPs were excited when the vertical bar was shown. As VIPs suppress SSTs, SSTs fired only briefly to the
stimulus before they were silenced by VIPs. The lack of SST inhibition caused an increase in PV firing after the SSTs fired
(Fig. S1b middle), such that spikes in SSTs preceded spikes in PVs during the vertical bar (Fig. S1d vertical SST - PV). As a
consequence, connections from vertically tuned SSTs to PVs increased (Fig. 2b). (ii) During the refinement phase, the strong
vertically tuned SST to PV connections led to increased inhibition of PVs. This disinhibited the PCs when a vertical bar was
shown. As a result of this disinhibition, they increased their response towards the vertical bar and their likelihood to fire together.
Additionally, vertically tuned PCs fired before the others as they received additional feedforward sensory input (Fig. S1c top and
Fig. S1e vertical PC - angled PC). Therefore, vertically tuned PCs to other PCs connection strengthened. At the same time, the
increased firing of PCs to the vertical bar increased PV firing just after vertically tuned SSTs responded. The vertically tuned
SST-to-PV connections hence further strengthened (Fig. 3f).

Figure S1: Spiking information a-c: Spike raster plots of PCs (top), PV interneurons (middle) and SSTs (bottom)
during different stages of the simulation: at the beginning of the rewarded phase (a), during the rewarded phase (b,
grey background), and in the end of the rewarded phase (c). Sensory inputs are presented for 50 ms, followed by a
20 ms stimulus gap. Changes of stimulus are indicated by vertical lines. d,e: Cross-correlograms for pairs of cells
from different cell classes during (d) and after (e) the rewarded phase. Top: vertically tuned PC and PV. Middle:
vertically tuned SST and PV. Bottom: vertically tuned PC and angled tuned PC.
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SST tuning properties do not change

Figure S2: SST tuning in spiking model do not change Tuning of SST populations before the rewarded phase
(black) and at the end of the refinement phase (red, number of spikes during 50 ms after stimulus onset averaged
over all occurrences of that stimulus in 1 s of simulation). Tuning preference of each population is indicated above
each panel.
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The two-stage model is robust across several implementations

Figure S3: Spiking model with strong initial recurrent connectivity. Inhibitory and excitatory structure also
developed with strong recurrence: WEE = N (µ = .1, σ = .01). SST-to-PC connections needed to be strong to
keep the network stable: WPC,SST = .5 nS a: Evolution of excitatory connections (mean and standard deviation).
Non-vertically tuned PCs to vertically tuned PCs (green), vertically tuned PCs to non-vertically tuned PCs (purple),
non-vertically tuned PCs to non-vertically tuned PCs (yellow). b: Recurrent excitatory weights at the end of the
refinement phase. c: Evolution of the inhibitory SST-to-PV connections, grouped according to SST tuning prefer-
ence (colours as in Fig.2b, vertical in purple), shown are the mean and standard deviation. d: SST-to-PV weights
(mean and standard deviation) at the end of the refinement phase averaged over SST tuning preference. e: Tuning
of excitatory populations before the rewarded phase (black) and at the end of the refinement phase (red, number
of spikes during 50 ms after stimulus onset averaged over all occurrences of that stimulus in 1 s of simulation). f:
Excitatory structure index (see methods) as a function of SST-to-PC synaptic strength.
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Figure S4: Spiking model with PC-to-SST and PV-to-PV connections. Introducing PC-to-SST connections can
lead to a strong disinhibition via the SST-PV-PC pathway, which can be counteracted by PV-to-PV connectivity.
PV-to-PV self-inhibition effectively weakens the SST-PV-PC pathway. The relative increase in SST-PC strength
(and hence stronger disinhibition during the reward) is reflected by the development of excitatory connectivity
during the rewarded phase. Instabilities introduced by recurrent loops (here PC-SST-PV-PC) can alternatively be
accounted for by homeostatic mechanisms that regulate connectivity strengths to keep the network in its operating
mode. WSST,PC = .13 nS and WPV,PV = .06 nS. a: Evolution of excitatory connections (mean and standard
deviation). Non-vertically tuned PCs to vertically tuned PCs (green), vertically tuned PCs to non-vertically tuned
PCs (purple), non-vertically tuned PCs to non-vertically tuned PCs (yellow). b: Recurrent excitatory weights at the
end of the refinement phase. c: Evolution of the inhibitory SST-to-PV connections, grouped according to SST tuning
preference, shown are the mean and standard deviation. d: SST-to-PV weights (mean and standard deviation) at the
end of the refinement phase averaged over SST tuning preference (colours as in Fig.2b, vertical in purple). e: Tuning
of excitatory populations before the rewarded phase (black) and at the end of the refinement phase (red, number of
spikes during 50 ms after stimulus onset averaged over all occurrences of that stimulus in 1 s of simulation).
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With the development of inhibitory structure, shorter reward duration is needed for the development of
excitatory structure

Figure S5: Spiking model without inhibitory plasticity. Excitatory structure develops more slowly without in-
hibitory plasticity. For a fair comparison, we used the model in which excitatory structure already develops during
the rewarded phase shown in Fig. S4 with WSST,PC = .13 nS and WPV,PV = .06 nS. a: Evolution of excitatory
connections (mean and standard deviation). Development of connections from vertically tuned PCs to non-vertically
tuned PCs in the model without inhibitory plasticity (black) compared to the model with inhibitory plasticity (pur-
ple). b: Recurrent excitatory weights at the end of the refinement phase in the model without inhibitory plasticity.
c-f: Model without inhibitory plasticity and a longer reward phase. c: Evolution of excitatory connections (mean
and standard deviation) in the model without inhibitory plasticity: non-vertically tuned PCs to vertically tuned PCs
(green), vertically tuned PCs to non-vertically tuned PCs (purple), non-vertically tuned PCs to non-vertically tuned
PCs (yellow). d: Recurrent excitatory weights at the end of the refinement phase in the model without inhibitory
plasticity. e: Evolution of the inhibitory SST-to-PV connections, grouped according to SST tuning preference,
shown are the mean and standard deviation. f: SST-to-PV weights (mean and standard deviation) at the end of the
refinement phase averaged over SST tuning preference (colours as in Fig.2b, vertical in purple).
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Our two-stage model is robust to perturbations: excitatory structure remains although the inhibitory
structure is artificially reset.

Figure S6: Excitatory structure is stable without inhibitory structure. Simulation with same parameters as Fig.
2, but SST-to-PV connections were reset to their initial values at time 113.4 s. The excitatory structure remained
stable. a: Evolution of excitatory connections (mean and standard deviation). Non-vertically tuned PCs to vertically
tuned PCs (green), vertically tuned PCs to non-vertically tuned PCs (purple), non-vertically tuned PCs to non-
vertically tuned PCs (yellow). b: Recurrent excitatory weights at the end of the refinement phase. c: Evolution of
the inhibitory SST-to-PV connections, grouped according to SST tuning preference (colours as in Fig.2b, vertical
in purple), shown are the mean and standard deviation. d: SST-to-PV weights (mean and standard deviation) at the
end of the refinement phase averaged over SST tuning preference. e: Tuning of excitatory populations before the
rewarded phase (black) and at the end of the refinement phase (red) (number of spikes during 50 ms after stimulus
onset averaged over all occurrences of that stimulus in 1 s of simulation).
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Precise spike timing is not necessary: The two-stage model can be implemented in a rate coding scheme

Although precise spike timing (Tiesinga et al., 2008) and spike-timing based plasticity rules (Sjöström et al., 2001) have been
reported in the primary visual cortex, it is unknown whether they play a role in enhancing stimulus representations. We hence
investigated whether our two-stage model can also be implemented in a rate-based framework. Our network was in the inhibition-
stabilized regime (ISN, Tsodyks et al. (1997), recent experimental support: Moore et al. (2018)) and the learning rule was a BCM
type. In this regime, PC firing ’paradoxically’ increases with increased PV activity. This is due to strong recurrent excitatory
connections balanced by strong inhibition. Suppression of the inhibitory population in an ISN leads to an immediate increase in
excitatory activity, which in turn drives the inhibitory population.

We implemented excitatory and inhibitory rate-based plasticity rules such that weight changes resembled those in the spiking
implementation. (i) Excitatory plasticity favoured connections from high firing neurons to low firing neurons and depressed the
reverse (see supplementary methods). The SST-to-PV plasticity potentiated synapses active while PVs fired above a threshold
θIBCM , reminiscent of the BCM learning rule (Bienenstock et al., 1982).

During the rewarded phase, the SST-to-PV connectivity developed akin to the spiking model. In particular, connections from
the vertically tuned SSTs to PVs strengthened, while the other connections weakened (Fig. S7b bottom, grey background).
Additionally, the connection from the non-rewarded PCs to the rewarded vertically tuned PCs decreased (green line in Fig. S7b
top).

During the refinement phase, PVs received more inhibition during the vertical stimulus (due to the strong connection from the
vertically tuned SSTs). Nevertheless, PV firing rate was higher during the vertical bar than during the horizontal stimulus (Fig.
S7f around reward end). This reflects the ISN property of the network. Hence, the connection from the vertically tuned SST
population continued to increase and remained stronger (Fig. S7b bottom) than the connection from the other SSTs. With the
inhibitory structure in place, the vertically tuned PCs to horizontally tuned PCs connection strengthened (purple line in Fig.
S7b top). Hence, the inhibitory structure remained stable and excitatory structure developed during the refinement phase. The
resulting excitatory connectivity resembles that in the spiking model (Fig. S7c).

As in the spiking model, both PCs and the PVs became more tuned to the rewarded stimulus (Fig. S7d and e). The excitatory
populations simply increased their firing rate towards the rewarded stimulus (Fig. S7d). The PVs, however, increased their
tuning by firing less towards the non-rewarded stimulus (Fig. S7e). The decrease in PV firing towards the non-rewarded stimulus
resulted from an increased SST-to-PV connectivity from both SST populations.

Even though the spiking implementation yields similar results for weak and strong initial connectivity (Fig. S3), the rate imple-
mentation requires strong recurrent connectivity. To conclude, the proposed two-stage model can be realised even if only rate
information is available. This happens provided that the network exhibits a counterintuitive increase of inhibitory firing rates, a
property of inhibition-stabilised networks (Tsodyks et al., 1997).

In the spiking model, inhibitory currents increase during the rewarded stimulus (Fig. 4d), whereas in the rate model inhibitory
currents decrease during the non-rewarded stimulus (Fig. S7h). To delineate the spiking implementation from the rate coding
implementation, the spiking model makes further predictions: (i) PVs fire more in synchrony (Fig. S1c middle), (ii) SSTs fire
before PVs during the rewarded stimulus (Fig. S1d), (iii) PCs tuned to the rewarded stimulus fire before others during the
rewarded stimulus after the task (Fig. S1e).

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494989doi: bioRxiv preprint 

https://doi.org/10.1101/494989
http://creativecommons.org/licenses/by/4.0/


Figure S7: The two-stage model of microcircuit plasticity can be realised in a rate coding scheme a: Illustration
of changes in inhibitory and excitatory connectivity. Snapshots of connectivity at the beginning (left), after the
rewarded phase (middle) and at the end of the refinement phase (right). b: Top: Evolution of excitatory connections
from the vertically tuned PC population to itself and to the horizontally tuned PCs, and from horizontally tuned
PCs to horizontally tuned PCs (grey) and to vertically tuned PCs (green). Bottom: Evolution of connections from
the vertically tuned SSTs to PVs (purple) and from the horizontally tuned SSTs to PV (green). Grey background
highlights rewarded phase. C: Final excitatory connectivity matrix. d: Tuning curves of excitatory populations at
the beginning and at the end of the simulation. e: Tuning curves of PV population at the same time points as in
d. f: Firing rates of excitatory (top) and inhibitory (bottom) populations at the beginning of the simulations, during
the rewarded phase, towards the end of the rewarded phase, and at the end of the simulation (from left to right).
g-i: Excitatory (g), inhibitory (i), and E/(E+I) ratio (i) in excitatory populations (circles: vertically tuned, triangles:
horizontally tuned) of rate model during the two different stimuli (purple: vertical stimulus, green: horizontal
stimulus) before and after learning.
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Supplementary Method

Excitatory structure index

The excitatory structure index is defined as the difference between the mean weight from vertically tuned PCs to all other neurons
and the mean weight from PCs not coding for vertical bars to vertically tuned PCs, normalised by the maximum weight:( 1

P (N − P )

∑
i

∑
j

Wij −
1

(N − P )(N − 2P )

∑
k

∑
l

Wkl

)
/maxW (10)

with j indexing vertically tuned PCs (1 < j < P ), and i indexing other PCs (i > P ). If k ∈ K then l /∈ K, and k, l > P , where
P is the number of PCs in one population, and N is the total number of PCs.

Rate model

The activity of a population of neurons i is described by their firing rate ri, which evolves over time according to:

τi
dri
dt

= −ri + φ(Iexti +
∑
j

Wijrj) (11)

where i, j ∈ {E1, E2, P, S1, S2, V } and τi is the time constant of population i. Iexti = Ibaseline + Istimulus +
Ineuromodulation,

∑
j Wijrj is recurrent input. φ(x) is the activation function given by

φ(x) =

{
0 if x < 0

(rmax − r0)tanh(x/(rmax − r0)) if x ≥ 0
(12)

Each of the PCs and SSTs receive an input current Istimulus upon presentation of their preferred stimulus. PCs also receive
a constant baseline current input Ibaseline. The VIPs receive a neuromodulatory current Ineuromodulation when the rewarded
stimulus (vertical bar) is present. r0 and rmax denote the minimum and maximum firing rate, respectively.

Connectivity

The initial connectivity is taken such that the network is in the ISN regime.

W =

 WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WV V

 =

 .5 .5 .5 0
2.2 .5 .2 0
.1 0 0 .3
0 0 0 0

 (13)

Plasticity rules

Excitatory Plasticity For excitatory connections, we used a BCM-like rule (Bienenstock et al.1982), where the sign of
synaptic change depends on whether the activity of the postsynaptic neuron exceeds a threshold. The rule is Hebbian as the
weight change depends on the product of pre- and post-synaptic activity. The weight change follows

dwE

dt
= αErpost(rpre − θBCM )rpre (14)

where αE is the excitatory learning rate, rpre is the presynaptic firing rate, rpost the postsynaptic firing rate, and θEBCM is the
sliding threshold. The threshold is sliding and changes according to:

τEBCM
dθBCM

dt
= −θEBCM + rpost

rpost
θtarget

(15)

where θtarget is the target firing rate and τEBCM the time constant.

Inhibitory Plasticity For inhibitory connections, we used:

dwI

dt
= αIrpre(rpost − θIBCM )r2post (16)

where αI is the learning rate, rpre is the presynaptic firing rate, rpost the postsynaptic firing rate, and θIBCM is the inhibitory
sliding threshold. It changes according to:

τ IBCM
dθIBCM

dt
= −θIBCM + rpost

rpost
θItarget

(17)

where θtarget is the target firing rate and τ IBCM the time constant.
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Table S1: Parameters of the rate model.
Parameter Value Parameter Value
τi 1.0 αE 5.0e-4
r0 1.0 τEBCM 1/1.0e-2
rmax 20.0 θtarget 1.5
Istimulus 1.0 WI

maxsum 5.0
Ibaseline 1.0 WI

max 3.0
Ineuromodulation 2.5 αI 1.0e-4
Wmax .8 τ IBCM 1/1.0e-3
Wmaxsum 1.2 θitarget 3.2

Simulation

All rate model simulations were done with a time step of 0.1 [arb. unit]. First, the model was simulated for 500 [arb. unit] without
plasticity to measure the tuning properties. Then plasticity was switched on, and the rewarded phase started. The rewarded phase
ended at time 5000 [arb. unit]. The refinement phase ended at time 30000 [arb. unit].
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