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In 2018 alone, an estimated 20,000 new acute myeloid leukemia (AML) patients 11 

were diagnosed, in the United States, and over 10,000 of them are expected to 12 

die from the disease. AML is primarily diagnosed among the elderly (median 68 13 

years old at diagnosis). Prognoses have significantly improved for younger 14 

patients, but in patients older than 60 years old as much as 70% of patients will 15 

die within a year of diagnosis. In this study, we conducted stratified 16 

computational meta-analysis of 2,213 acute myeloid leukemia patients compared 17 

to 548 healthy individuals, using curated publicly available data. We carried out 18 

analysis of variance of normalized batch corrected data, including considerations 19 

for disease, age, tissue and sex. We identified 974 differentially expressed probe 20 

sets and 4 significant pathways associated with AML. Additionally, we identified 21 

70 sex- and 375 age-related probe set expression signatures relevant to AML. 22 

Finally, we used a machine learning model (KNN model) to classify AML patients 23 
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compared to healthy individuals with 90+% achieved accuracy. Overall our 24 

findings provide a new reanalysis of public datasets, that enabled the 25 

identification of potential new gene sets relevant to AML that can potentially be 26 

used in future experiments and possible stratified disease diagnostics. 27 

 28 

 29 

 30 

INTRODUCTION 31 

Acute myeloid leukemia (AML) is a heterogeneous malignant disease of the 32 

hematopoietic system myeloid cell lineage. AML is best characterized by the 33 

terminal differentiation in normal blood cells and excessive production and 34 

release of cells at various stages of incomplete maturation (leukemia cells). As a 35 

result of this faster than normal and uncontrolled growth of leukemia cells, 36 

healthy myeloid precursors involved in hematopoiesis are suppressed, and 37 

ultimately, can soar to death within months from diagnosis if untreated1,2. AML 38 

accounts for 70% of myeloid leukemia and nearly 80% of acute leukemia cases, 39 

making it the most common form of both myeloid and acute leukemia2,3. The 40 

number of new AML cases is increasing each year – in 2018 alone, there have 41 

been an estimated about 20,000 new diagnosed AML patients, over 10,000 of 42 

them will die from the disease4. 43 

 44 

According to the 2016 World Health Organization (WHO) newly revised myeloid 45 

neoplasms and acute leukemia classification system5, AML prognosis criteria for 46 
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classification is highly dependent on the presence of chromosomal abnormalities, 47 

including chromosomal deletions, duplications, translocations, inversions, and 48 

gene fusion. Mostly, AML is diagnosed through microscopic, cytogenetics, and 49 

molecular genetic analyses of patients’ blood and/or bone marrow samples. 50 

Microscopic examination is used to detect distinctive features (e.g. Auer rods) in 51 

cell morphology, cytogenetic analysis to identify chromosomal structural 52 

aberrations (e.g., t(8;21), inv(16), t(16;16), or t(9;11)), and molecular genetic 53 

analysis to identify gene fusion (e.g., RUNX1-RUNX1T1 and CBFB-MYH11), and 54 

mutations in genes frequently mutated in AML (e.g., NPM1, CEBPA, RUNX1, 55 

FLT3)6-8. These cytogenetic and molecular genetic analyses are used to identify 56 

prognosis markers that can be used to classify AML patients into three risk 57 

categories: favorable, intermediate, and unfavorable. The largest group of AML 58 

patients (almost 50%) however, present normal karyotype and lack genetic 59 

abnormalities7-10. These patients are classified as intermediate risk, and often 60 

have heterogeneous clinical outcome with standard therapy with risk of AML 61 

relapse11.  62 

 63 

Additionally, AML prognosis worsens as age increases, and older patients 64 

respond less to current treatments with poorer clinical outcomes than their 65 

younger counterparts12,13. AML can occur in people of all ages but is primarily 66 

diagnosed among the elderly (>60 years), with a median age of 68 year at 67 

diagnosis4. Recent advances in AML biology expanded our understanding of its 68 

complex genetic landscape and led to significant improvement in prognoses and 69 
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therapeutic strategy for younger patients13,14. However, in patients older than 60 70 

years old, prognoses remain grim and therapeutic strategy has been nearly the 71 

same for more than 30 years2,6,13-15. Approximately 70% of AML patients 65 72 

years of age or older die within a year following diagnosis16. While it is apparent 73 

that the nature of AML changes with age, still little is known about the extent of 74 

these associations and how they vary with patient’s age14,17,18. Taking into 75 

consideration age considerations in the identification of changes in AML global 76 

gene expression can lead to improved early diagnosis and improvement in 77 

treatment approaches for elderly patients. Further complicating, AML has 78 

multiple driver mutations and competing clones that evolve over time, making it a 79 

very dynamic disease19,20 80 

 81 

Multiple gene expression analyses of AML have been carried out, 25 of which  82 

these have been systematically compared by Miller and Stamatoyannopoulos21, 83 

who analyzed information on 4918 genes, and identified 25 genes reported 84 

across multiple, with potential prognostic features. In this study, we performed 85 

comprehensive gene expression meta-analysis of 2213 acute myeloid leukemia 86 

patients and 548 healthy subjects using 34 publicly available gene expression 87 

microarray datasets (following strict inclusion criteria) to identify disease, sex- 88 

and age-related gene expression changes associated with AML. We identified 89 

sex- and age-related gene expression signatures that show similar alteration in 90 

gene expression levels and associated signaling pathways in AML and have 91 

used our results (gene sets) to predict AML or healthy status. We believe that our 92 
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results may lead to improved AML early detection and diagnostic testing with 93 

target genes, which collectively can potentially serve as sex- and age-dependent 94 

biomarkers for AML prognosis compared to healthy, as well as the identification 95 

of new treatment targets with mechanisms of action different from those used in 96 

conventional chemotherapy 97 

 98 

RESULTS 99 

Data curation and gene expression preprocessing. 100 

We searched the Gene Expression Omnibus (GEO) public repository, based on 101 

our systematic workflow and inclusion criteria, Fig. 1a-b. Overall, 2,132 datasets 102 

were screened, 643 selected (577 were excluded as non-Affymetrix, various 103 

platform arrays). From the 66 remaining, 34 studies were excluded due to lack of 104 

metadata, non-peripheral blood and non-bone marrow tissues, cell line or cell-105 

type specific, treated subjects). After this curation we obtained 34 age-annotated 106 

gene expression datasets from 32 different studies covering 2,213 AML patients 107 

and 548 healthy individuals. The sets were re-analyzed, starting from raw data, 108 

to perform a gene expression analysis of variance and functional pathway 109 

enrichment analysis (see online Methods). Table 1 provides a description on 110 

each dataset with a sub-table summary of all curated data used in our current 111 

study. After pre-processing each individual data set separately, Fig. 1b, we 112 

performed the statistical analysis on 44,754 probe sets which were common 113 

across all samples (Affymetrix expression array data). 114 

 115 
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Classification of missing metadata annotation. 116 

Following the data curation step, 805 arrays (802 AML and 3 healthy) of 2,761 117 

curated data were found to be missing sex annotation, and 737 arrays (all AML 118 

patients) were missing information regarding the sample source (i.e. tissue, 119 

either bone marrow [BM] or peripheral blood [PB] annotation). To predict the 120 

missing sex and sample source meta-data, we trained and validated various 121 

machine learning supervised models, including logistic regression (LR) 122 

classification models. The prediction of missing annotations for these arrays was 123 

essential in our study, to increase the sample size, and statistical power22. The 124 

models were trained and verified using our annotated preprocessed expression 125 

data. Model training, parameters used in training, validation for this analysis are 126 

discussed in the Methods. Results from model training and predictions, including 127 

confusion matrix, model accuracy, and error can be viewed in Supplementary 128 

Table S1 online and results from classification for missing annotation are 129 

presented in Supplementary files 1 and 2 for sample source and sex annotations 130 

respectively.  131 

 132 

Batch correction 133 

Our pre-processed data, AML and healthy, were processed using a “dataset-134 

wise” batch effect correction approach. The datasets used in this study did not 135 

include within-study healthy controls, which would limit analysis of variance, and 136 

particularly the ability to separate biological from batch effects. To address this, 137 

we implemented an iterative batch effect correction approach, essentially 138 
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employing a weight-based method for correcting batch effects. Assuming the 139 

batch effects due to each data set is a function of the number of samples in the 140 

data set (weight), normalizing sets of unevenly sized datasets may lead to 141 

unbalanced batch correction. We used 5 additional datasets as a reference set, 142 

which we refer to as “covariate” hereafter. Each of the covariate reference 143 

datasets included within study healthy controls. All 5 datasets together consisted 144 

of a total 613 arrays (455 AML and 158 healthy) (Table 2), and pre-processed 145 

exactly as our curated data sets. These were used together with each of the 146 

remaining datasets to batch correct each dataset with respect the covariate 147 

reference using ComBat23. After this dataset-wise correction, the 5 covariate 148 

reference datasets were removed, and our expression data were clustered using 149 

principal component analysis (PCA) to visually examine the effect of covariate 150 

reference datasets on distributing the batch weight during batch correction. The 151 

batch effect correction results were then compared to clustering results prior to 152 

batch effect correction (Supplementary Fig. 1) 153 

 154 

Analysis 1: Gene expression meta-analysis and enrichment analysis of 155 

AML disease state compared to healthy individuals 156 

 157 

Gene expression meta-analysis of AML disease state. 158 

Following batch correction, we performed an analysis of differential expression 159 

(DE) on 34 data sets including 2213 AML patients and 548 healthy controls. 160 

Analysis of Variance (ANOVA)24-26 was performed according to a linear model 161 
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(see method section Meta-analysis), including factors for age, sample source ( 162 

adjust for differences in tissue between AML and healthy), and sex, as well as 163 

binary interactions thereof. In the analysis we used probe sets to avoid 164 

assumptions on averaging over multiple probe sets corresponding the same 165 

gene symbol. 974 Statistically significant differentially expressed probe sets 166 

(DEPS) (with genes corresponding to 964 unique gene symbols) for AML versus 167 

healthy were selected based on a Bonferroni27 adjusted p-value < 0.01 168 

(accounting for multiple hypothesis testing), in conjunction with a two-tailed 5% 169 

quantile selection28 based on the mean difference distribution between AML-170 

healthy group comparisons (post-hoc analyses using Tukey’s Honestly 171 

Significant Difference (HSD). The heatmap (Fig. 2a) shows the hierarchical 172 

clustering of genee expression from the 974 DEPS, including 487 up- and 487 173 

down-regulated with respect to AML as compared to healthy. From this analysis, 174 

WT1 (Wilms tumor 1) with mean difference of 0.26 and adjusted p-value < 175 

4.11x10-11 was the most DE up-regulated gene while CRISP3 (cysteine-rich 176 

secretory protein 3) with mean difference of -0.52 and adjusted p-value < 177 

4.11x10-11 was the least DE gene. Figure 2b shows the top 10 up- and down-178 

regulated DEPS with corresponding gene symbols, that resulted from this 179 

analysis (also listed in Table 2, including mean difference and Bonferroni p-180 

adjusted values from post-hoc analysis using Tukey’s HSD tests). The entire list 181 

of all 974 DEPS can be found as Supplementary Table S2 online. 182 

 183 

 184 
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(ii) Gene enrichment analysis AML disease state DEPS. 185 

To identify signaling pathways associated DEPS in AML, gene enrichment 186 

analysis was performed on all 974 DEPS combined. Pathway over-187 

representation analysis in Kyoto Encyclopedia of Genes and Genomes 188 

(KEGG)29-31 signaling pathways, and Gene Ontology (GO) term32,33  were carried 189 

out using the Database for Annotation, Visualization and Integrated Discovery 190 

(DAVID)34,35. Four KEGG signaling pathways were identified as enriched 191 

(Benjamini and Hochberg36 adjusted p-value < 0.05), including Hematopoietic 192 

cell lineage, Cell cycle,  p53 signaling pathway, and  Transcriptional 193 

misregulation in cancer. The 4 KEGG signaling pathways are summarized in 194 

Table 3 (see also Supplementary Fig. 2a-d), including unadjusted p-values and 195 

Benjamini and Hochberg36 adjusted p-values. 56 DEPS including 27 up- and 29 196 

down-regulated (Fig. 2c) were associated these signaling pathways, and the 197 

heatmap of their mean differences is shown in Fig. 2d. From our gene 198 

enrichment analysis for overrepresented biological GO terms, 21 GO terms were 199 

statistically significant with 727 DE unique identities (335 up- and 392 down-200 

regulated). GO terms included protein and microtubule binding for the molecular 201 

function (MF) category, inflammatory and immune responses, mitotic nuclear 202 

division, and cell proliferation response for the biological process (BP) category, 203 

and finally, cytoplasm, extracellular exosome, cytosol, extracellular space, 204 

integral component of plasma membrane immune response, and others, for the 205 

cellular component (CC) category (Fig. 2e). The entire list of our enrichment 206 
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analysis results (statistically significant over-representation in KEGG and GO 207 

terms) can be found as Supplementary Table S3 online. 208 

 209 

Analysis 2. Gene expression meta-analysis and enrichment analysis of sex- 210 

and age-related DEPS in AML. 211 

Further analysis of gene expression and pathways enrichment were conducted in 212 

order to characterize sex- and age-specific gene expression changes in AML 213 

patients compared to healthy individuals, (i) Analysis 2a: “Sex-relevance 214 

differential gene expression meta-analysis and associated signaling 215 

pathways in AML”, and (ii) Analysis 2b: “Age-dependent differential gene 216 

expression meta-analysis and associated signaling pathways in AML”. We 217 

used the same filtering criteria in both analyses as those used in analysis 1 for 218 

significant DEPS and signaling pathways between AML patients and healthy 219 

controls. In addition, DEPS were regarded as statistically significantly (up- or 220 

down-regulated) for each factor, sex and age, if they displayed Bonferroni 221 

adjusted p-value from Tukey’s HSD < 2.2x10-7 (=0.01/44,754 probe sets tested). 222 

 223 

Analysis 2a. Sex-relevance differential gene expression meta-analysis and 224 

associated signaling pathways in AML. 225 

Gene expression meta-analysis was also used to identify DEPS that show sex 226 

differences between male AML patients as compared to female AML patients. 227 

266 DEPS were regarded statistically significant (p-value < 2.2x10-7). A list of all 228 

266 DEPS (including whether higher in either males or females, gene title and 229 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494948doi: bioRxiv preprint 

https://doi.org/10.1101/494948
http://creativecommons.org/licenses/by-nc/4.0/


11	 	

symbol, male-female mean difference, and Bonferroni corrected p-value) can be 230 

found as Supplementary Table S3 online. 70 DEPS were found to overlap 231 

between analysis 1 (AML disease state) and analysis 2 (Sex-relevance in AML). 232 

Figure 3a shows these 70 DEPS with gene symbol annotations, and their mean 233 

difference values in the heatmap, which displays differences in significance for a 234 

common DEPS in both analyses 1 and 2. Figure 3b shows the hierarchical 235 

clustering of the 70 DEPS (rows) on sex and disease state of all 2,213 AML and 236 

548 healthy subjects (columns) indicated by color bars above the heatmap. The 237 

top 10 DEPS higher in either males or females from this analysis are shown in 238 

Figure 3c. 239 

 240 

For enrichment analysis, we searched for common intersections in KEGG 241 

pathways and GO terms between the sex meta-analysis and the 974 DE probe 242 

sets from disease state in AML meta-analysis. Sex-relevant DEPS were found in 243 

3 different signaling pathways, including, genes higher expressed in males FLT3 244 

and CD34 in Hematopoietic cell lineage, FLT3 in Transcriptional misregulation in 245 

cancer 1, and PMAIP1 in p53 signaling pathway 1, and MS4A1 was higher in 246 

females and found in Hematopoietic cell lineage pathway (Table 3). Figure 3d 247 

shows GO analysis results, where 15 overrepresented biological GO terms were 248 

overlapped, including terms for extracellular space, immune response, protein 249 

binding, spindle, and midbody. The entire list of our enrichment analysis 250 

(statistically significant KEGG and GO terms) can be found as Supplementary 251 

Table S4. 252 
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 253 

Analysis 2b. Age-dependent differential gene expression meta-analysis and 254 

associated signaling pathways in AML. 255 

The subjects were binned in 8 age-groups: 0-19, 20-29, 30-39, 40-49, 50-59, 60-256 

69, 70-79, and 80-100 years old. From this meta-analysis, 1395 unique probe 257 

sets across all age-groups were identified as statistically significant (Bonferroni 258 

adjusted p-value < 2.2x10-7) (Supplementary Table S5). From these 375 unique 259 

DEPS (372 unique gene symbols) were found to overlap with the 974 DEPS 260 

probe sets from our AML disease state meta-analysis, accounting for an overall 261 

1400 binary comparisons between the multiple age groups deemed statistically 262 

significant, based on Tukey HSD tests between age-group pairs. The entire list of 263 

1400 identified pairwise differences between age groups and associated probe 264 

set/gene information can be found as Supplementary Table S6 online. The top 265 

10 up- and down- regulated DEPS (labeled with gene symbols) from this analysis 266 

are shown in Fig. 4a. Additionally, Fig. 4b shows 75 DEPS with gene symbols 267 

identified to have appeared specifically in one age-group comparison. Utilizing 268 

results for KEGG analysis for signaling pathways from analysis 1, Fig. 4c shows 269 

17 DE genes identified in all 4 KEGG pathways according to age groups (see 270 

also Table 4).  271 

 272 

To investigate further the progression with age, pairwise correlations between 273 

age-groups were computed. The 0-19 age-group was used as a common 274 

comparison reference with respect to other groups. Using this 0-19 group as a 275 
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baseline, Figure 4d shows the mean difference of 25 DEPS with respect to the 0-276 

19 baseline across all other groups. The mean difference values between AML 277 

and healthy are shown in the right-most column of Fig. 4a, b and d for reference. 278 

 279 

AML Classification Machine Learning Model 280 

We used the 974 DEPS to train a k-nearest neighbor (KNN) algorithm in 281 

ClassificaIO37. All 34 datasets (16 AML and 18 healthy) were used for training, 282 

and testing was done on all 5 covariate reference datasets, include AML and 283 

healthy subjects. The KNN algorithm trained was 98% accurate, and >90% 284 

accurate in testing results (see online Methods for parameters and also details in 285 

Supplementary File 3). 286 

 287 

DISCUSSION 288 

In the present study, we aimed to establish, disease sex-linked and age-289 

dependent biomarkers from genes with similar changes in gene expression 290 

levels and associated signaling pathways relevant to AML. Utilizing microarray 291 

gene expression data and combined with various machine learning models, 292 

respectively, our biomarkers were indicative of prognostic signature for AML 293 

prediction compared to healthy with 90+% achieved accuracy. We re-analyzed 294 

data aggregated from our curation of 34 publicly available microarray gene 295 

expression datasets covering 2213 AML patients and 548 healthy individuals to 296 

identify changes in AML gene expression associated with disease state (AML 297 
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compared to healthy), sex-linked (male compared to female), and age-dependent 298 

(across age-groups compared to baseline).  299 

We performed 3 differential probe set (gene) expression and gene enrichment 300 

analyses, as discussed below. We note here that our study identified multiple 301 

potentially significant DEPS, with age and sex related differences associated with 302 

AML. While our findings may generate further hypothesis-driven investigations, 303 

we need to also identify the study’s limitations: primarily the analysis of AML and 304 

healthy subjects involved bone-marrow and blood samples respectively in each 305 

disease group. We tried to account for this utilizing tissue as an effect in our 306 

linear model, and including multiple interactions. Other limitations include an 307 

unbalanced AML/healthy ratio, as well as the lack of in-study healthy controls. To 308 

address these we attempted to account for batch effects using a dataset-wise 309 

iterative batch correction transformation, as discussed in the methods. Finally, 310 

we also included binary interactions between the factors in the analysis to 311 

account for interaction-related confounding effects. 312 

 313 

i) Analysis 1: Gene expression meta-analysis and associated signaling 314 

pathways of AML disease state compared to healthy individuals, was carried out 315 

to identify DEPS in AML disease state. The results from this analysis were then 316 

used as baseline indicator for AML disease state. 974 DEPS (487 up- and 487 317 

down-regulated) were identified as significantly differentially expressed between 318 

AML patients and healthy individuals (Bonferroni adjusted p-value < 0.01). 319 

Among these 6 genes are known to be involved in AML functional pathways, 320 
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including 4 up-regulated, JUP, CCNA1, FLT3, PIK3R1, and 2 down-regulated, 321 

CD14, CEBPE. The top 10 up- and down-regulated genes from this analysis are 322 

listed in Table 2 with their respected Tukey’s HSD mean difference and 323 

Bonferroni p-adjusted values. As shown in Figure 2b of the top 10 up- and down-324 

regulated DEPS and corresponding gene annotations -- WT1 (Wilms tumor 1) 325 

was found to be the most expressed and CRISP3 (cysteine-rich secretory protein 326 

3) was the most under-expressed gene. WT1 is a transcriptional regulatory 327 

protein essential to cellular development and cell survival, and it has been known 328 

to be highly expressed with an oncogenic role in AML38,39, in agreement with our 329 

findings. However, CRISP3’s direct role in AML is still under investigation. 330 

CRISP3 is a member of the cysteine-rich secretory protein CRISP family with 331 

major role in female and male reproductive tract, and is mainly expressed in 332 

salivary gland and bone marrow40. Recently, 80 genes were reported as 333 

“extracellular matrix specific genes” in leukemia, and CRISP3 was among the 334 

downregulated DE genes reported41. CRISP3 associations with AML merit further 335 

investigation. 336 

 337 

The enrichment analysis for GO terms of the 974 DE probe sets (Fig. 2c) results 338 

showed 727 identifiers (335 up- and 392 down-regulated) enriched for 21 GO 339 

terms. 592 of these (257 up- and 335 down-regulated) were enriched in the 340 

cellular component (CC) categories mainly associated with cytoplasm, 341 

extracellular exosome, cytosol, and extracellular space. These terms are rather 342 

generic, but may still reflect relevance to AML development and progression42,43. 343 
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Biological process (BP) category, GO terms included inflammatory and immune 344 

responses, and cell proliferation, which are expected as AML is characterized by 345 

terminal differentiation of normal blood cells and excessive proliferation and 346 

release of abnormally differentiated myeloid cells, and likely affects many 347 

biological processes associated to the immune system. The four statistically 348 

significant KEGG pathways identified in the pathway enrichment analysis 349 

encompassed 56 DEPS (Table 3). Transcriptional misregulation in cancer was 350 

the most up-regulated pathway in AML (13 up-regulated DE genes, while 351 

Hematopoietic cell lineage, and Cell cycle pathways were mostly down-352 

regulated, and the p53 signaling pathway was balanced in terms of 353 

up/downregulated DE genes (Fig. 2c). The enriched pathways Fig. 2d shows the 354 

mean difference values of the 56 DE pathway-associated genes, including 27 355 

genes up- and 29 down-regulated. These KEGG pathways are known to be 356 

involved in tumorigenesis. Additionally, the majority of the associated DE genes 357 

from AML meta-analysis with the identified signaling pathways are known to be 358 

abnormally expressed in AML. These findings are consistent with findings from 359 

other studies and our current understanding of AML pathogenesis. 360 

 361 

The DEPS overlap with the 25 genes reported by Miller and 362 

Stamatoyannopoulos that were reported in at least 8 studies21, namely HOXA10, 363 

CD34, MEIS1,VCAN, RBPMS and MN1. In terms of the genes reported in the 364 

same study for poor progression we also consistently identified as upregulated 365 

HOXA10, RBPMS, CD34, GNAI1, CLIP2, DAPK1, GUCY1A3, ANGPT1 and 366 
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FLT3, and as downregulated UGCG. While these are known markers, with 367 

consistent expression differences, our additional results need to be investigated 368 

further and experimentally validated, including mechanistic considerations. 369 

 370 

ii) Analysis 2a: Sex-dependent gene expression meta-analysis and associated 371 

signaling pathways in AML compared to healthy individuals, was performed to 372 

explore the relevance of patients’ sex on gene expression and to identify sex-373 

linked genes and associated signaling pathways in AML. A total of 266 DEPS 374 

were found statistically significant in this analysis, with 70 found to overlap with 375 

the DEPS from Analysis 1 (Fig 3a-b). The top10 up- and down-regulated DE 376 

genes with respect to females include (Fig. 3c) – DDX3Y (DEAD-Box Helicase 3 377 

Y-Linked), EIF1AY (Eukaryotic Translation Initiation Factor 1A Y-Linked), 378 

KDM5D (Lysine Demethylase 5D), RPS4Y1 (Ribosomal Protein S4 Y-Linked 1) 379 

with higher expression in males compared to females, and XIST (X Inactive 380 

Specific Transcript), TSIX (TSIX Transcript, XIST Antisense RNA), and PRKX 381 

(Protein Kinase X-Linked) were as higher in females. These genes are known to 382 

be sex-specific and show such differences and sex separation within the AML 383 

and the healthy groups respectively (Fig. 3d). The role of these genes as positive 384 

controls in studies with AML needs to be investigated further. We also reported 385 

sex and AML known genes that were statistically significant in our analysis, 386 

including FLT3 and MAL. 387 

 388 
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iii) Analysis 2b: Age-dependent gene expression meta-analysis and associated 389 

signaling pathways in AML compared to healthy individuals, was carried out to 390 

identify common set of age-dependent genes and associated signaling pathways 391 

and to explore age-dependent trends in gene expression in AML. The age-392 

dependent meta-analysis in AML using ANOVA, identified 1,395 DEPS 393 

(Bonferroni adjusted p-value <0.01). To identify age-related DEPS in AML we 394 

overlapped the 1,395 DEPS to our findings of 974 DEPS in AML disease state 395 

(Analysis 1) (Fig. 4a), and identified an overlap of 375 DEPS (Bonferroni 396 

adjusted p.value <0.01). As shown in Figure 4b, the top 10 most and least DE 397 

age-associate genes in AML according to the mean difference values in seven 398 

age-groups, including their corresponding values from AML disease state in 399 

column “AML - healthy” for comparisons. Interestingly, CRISP3 was among the 400 

down regulated genes specifically and involved in this analysis as well, 401 

specifically associated with differences in younger age groups, 20 to 49 years of 402 

age as compared to 0 to 19 age group. Other genes showing age-specific 403 

differences included HOXA3, HOXA5 and HOXA10-HOXA9, which belong to the 404 

homeobox genes (HOX) family of transcription factors, essential to embryonic 405 

development and hematopoiesis, and associated with chromosomal 406 

abnormalities translocation and over-expression in AML44,45. Also identified with 407 

age-specific DE, was ORM1, which in Analysis 1 was among the top-10 most 408 

under-expressed genes, and was also among the 70 DE genes in analysis 2a. 409 

ORM1’s direct role in AML also merits further investigation, given ORM1 410 

involvement in immunosuppression and inflammation46. Finally, we have 411 
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identified 75 DEPS that show association with only one age-group, exclusively 412 

from all other age-groups, suggestive of potential age-specific differential gene 413 

expression signature. 414 

 415 

In summary, our study successfully integrated multiple datasets to perform a 416 

study of gene expression in AML, across multiple factors that included disease, 417 

sex and age considerations, and identified interesting genes, both known and not 418 

previously reported as differentially expressed in each factor. We identified 974 419 

DEPS and 4 associated significant pathways involved in AML, and 70 sex- and 420 

375 age-related DE signatures. Using the 974 DEPS, a KNN model allowed AML 421 

with 91.7% accuracy. We hope that these findings may provide additional 422 

relevant targets for further experimental mechanistic studies, and to help identify 423 

new markers and therapeutic targets for AML. 424 

  425 
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METHODS 426 

The generalized workflow consisted of five main steps: i) Curation of microarray 427 

gene expression data, ii) Preprocessing of raw data files followed by batch effect 428 

correction, iii) Predictions of missing annotation data using supervised machine 429 

learning, iv) Differential gene expression analysis, and v) Gene enrichment for 430 

pathway analysis that includes gene annotation, and finally gene expression-431 

based prediction of AML (Fig. 1a). 432 

 433 

Gene expression data curation and screening criteria. 434 

Datasets used in this study were selected from the GEO public repository, 435 

maintained by the National Center for Biotechnology Information (NCBI)47 436 

(https://www.ncbi.nlm.nih.gov/geo/). To facilitate speed of search and keep up-to-437 

date with possible new and relevant datasets, as soon as they were released, a 438 

Python script was used that utilized functions from the Entrez Utilities from 439 

Biopython48. We used the script to navigate the GEO records, and download 440 

microarray gene expression datasets up to 10/18. We additionally utilized Python 441 

packages, including Pandas, NumPy, and Matplotlib for data structure, numerical 442 

computing for data processing, and data visualization respectively. We used 443 

strict inclusion criteria to maintain consistency in each dataset selection, screen 444 

for availability of both raw and meta-data annotation files provided, human 445 

samples used from untreated subjects, and that the sample source was from 446 

either bone marrow (BM) and/or peripheral blood (PB). Array platform was 447 

restricted to Affymetrix, which was found to have the most available data, and to 448 
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avoid cross-platform normalization issues. Inclusion criteria and the data curation 449 

workflow are illustrated in Fig. 1 a-b. 450 

 451 

Gene expression data sets used in our analysis. 452 

The curation method is summarized in the Supplementary File 4 flowchart and in 453 

the Results section. For our analysis we included 34 age-dependent datasets 454 

from 32 different studies, 16 included AML and 18 healthy subjects respectively. 455 

From the 34 datasets, 32 were produced from Affymetrix GeneChip Human 456 

Genome U133 Plus 2.0 (GPL570) and 2 conducted on Affymetrix GeneChip 457 

Human Genome U133 Array Set (GPL96 & GPL97) arrays. Table 1 provides 458 

detailed information about each data set, including the number of samples used 459 

from each dataset, sample tissue source, as well as the total number of AML 460 

patients and healthy subjects. Two studies, GSE1241749 and GSE3764250-53, 461 

were originally conducted on two different Affymetrix array types (GPL570, and 462 

GPL96 & GPL97), so each was separated into two subgroups and each 463 

subgroup was considered as individual dataset in our meta-analysis, data set 464 

GSE12417: (i) subgroup 1 included 73 BM and 5 PB samples, and (ii) subgroup 465 

2 included 160 BM and 2PB. For dataset GSE37642 (i) subgroup 1 included 140 466 

BM and (ii) subgroup 2 422 BM samples (Table 1). 467 

 468 

Dataset annotation and preprocessing. 469 

Figure 1b outlines the workflow of our preliminary data analysis including 470 

preprocessing. For each dataset used in our analysis, raw microarray CEL files 471 
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were downloaded from GEO, metadata was reviewed, and the data was 472 

manually curated to guarantee that and each array, which corresponded to either 473 

an AML patient or healthy individual, was verified and correctly annotated for 474 

sample source (BM or PB), platform technology used, age, sex, and disease 475 

state (AML or healthy). Raw CEL files from individual datasets were individually 476 

pre-processed using the RMA (Robust Multi-Array Average) algorithm54-56. 477 

Datasets with mixed sample source, i.e both BM and PB, were pre-processed 478 

together irrespective of sample source. Preprocessing consisted of correction for 479 

background noise using RMA background correction on perfect match (PM) raw 480 

intensities, quantile normalization to obtain the same empirical distribution of 481 

intensities for each array, median polish summarization of probes into probe sets 482 

to estimate gene-level expression value, and logarithm base-2 transformations of 483 

gene expression values to facilitate data interpretation (normal distributions) and 484 

comparisons between arrays. Additionally, our expression data were first 485 

reduced to 44,754 probe sets that are common to and appeared in all data. Data 486 

sets were z-score standardized across all probe sets and arrays. 487 

 488 

Prediction of missing sex- and sample source annotations from curated 489 

data sets. 490 

805 arrays (802 from AML patients and 3 were healthy subjects) of curated data 491 

were not annotated for sex, while 737 arrays (all AML patients) were missing 492 

sample source information. Without these metadata, we would have to discard 493 

the data, which in turn would limit the statistical power for the study, and our 494 
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ability to correct for biases stemming from individual datasets22. To address this, 495 

we used supervised machine learning classifiers to predict metadata. For all 496 

prediction, we used ClassificaIO37, a machine learning for classification user 497 

interface, which we recently developed, to carry out the machine learning 498 

classification analyses utilizing the sklearn package in Python57 499 

 500 

To predict sex pre-processed data sets, 1956 arrays (including both healthy and 501 

AML), that include 44,754 probe sets and their annotated sex information were 502 

used to train logistic regression (LR) classification models, and to predict 805 sex 503 

annotations. Additionally, 2024 arrays were used to train for sample source, and 504 

the prediction was performed on 737 arrays.  505 

 506 

The supervised machine learning LR classifier we used with the following 507 

parameters: 508 

 509 

random_state = None, shuffle = True, penalty = l2, multi_class = ovr, solver = 510 

liblinear, max_iter= 100, tol = 0.0001, intercept_scaling = 1.0, verbose = 0, 511 

n_jobs = 1, C = 1.0, fit_intercept = True, dual = False, warm_start = False, 512 

class_weight = None 513 

 514 

The trained models for classification of missing sex and sample source 515 

annotation from curated data achieved > 95% classification accuracy with ~ 3-5% 516 

classification errors. Confusion matrix details, model accuracy and error for 517 
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training and testing are presented in Supplementary Table S1 online, and results 518 

in Supplementary files 1 and 2. To account for training overfitting, we used 10-519 

fold cross-validation on all 1,956 gene expression data arrays for training and 520 

validation. 521 

 522 

Dataset-wise correction approach for batch effects correction. 523 

Batch correction was done using a dataset-wise correction. Here we refer to the 524 

term “dataset-wise correction,” to indicate performing batch correction iteratively 525 

on one dataset at a time, against a reference set of datasets chosen to account 526 

for variability. We used this approach to account for the lack within-study healthy 527 

controls in the curated gene expression datasets. To address this issue, we used 528 

5 additional datasets the included within-study controls, GEO accessions: 529 

GSE107968, GSE6817258, GSE1705459, GSE3322360, and GSE1506161 (Table 530 

1B). We refer to the latter datasets hereafter as “covariate” reference datasets, 531 

as they were as the reference datasets in the batch correction. Our approach 532 

aimed to balance/distribute the weight of batch effects exerted by each dataset, 533 

as this is dependent on the number of observations within a given dataset. 534 

Combined, the covariate reference datasets included 613 total arrays, totaling 535 

455 AML and 158 healthy controls. We used ComBat23 to correct for study batch 536 

effects, as its empirical Bayes-based algorithm uses both scale and mean center 537 

based methods, providing an appropriate algorithm23. Covariate reference 538 

datasets were treated as the covariate for batch during batch correction, to 539 

improve performance in correcting for batch effects rather than biological 540 
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variation. After batch correction, we used principal component analysis (PCA), 541 

visualizing components in both 2 and 3 dimensions, to compare the clustering 542 

results for corrections. Covariate reference datasets were removed after the 543 

batch correction step and were not part of our downstream meta-analysis. 544 

(Supplementary Fig. S1). 545 

 546 

Gene expression meta-analysis. 547 

After batch correction step, we performed gene expression meta-analysis for 548 

differential expression on the merged datasets (34 data sets, 16 AML and 18 549 

healthy), where the expression values for all 44,754 common probe sets were 550 

aggregated. The effects of patients’ age, sex, and sample source, including their 551 

pairwise interactions were investigated using an analysis of variance (ANOVA)8,62 552 

. For each gene i, where i=[1,…44,754], the gene expression probe set Yi was 553 

modeled computationally as a linear model: 554 

Yi ~ (a + s + d + t) + (a:s + a:d + a:t) + (s:d + s:t) + (d:t) + ε, 555 

where d is the disease state (AML or healthy), a is age (between 0 to 100 years), 556 

s is sex (female or male), t is sample source (BM or PB), and ε is a random error 557 

term. We note that the model includes sample source and its interactions to 558 

address comparisons involving different tissues in AML and healthy subjects (BM 559 

or PB respectively). 560 

 561 

From the ANOVA analysis, genes were deemed to be disease state statistically 562 

significant (differentially expressed) if they displayed ANOVA Bonferroni-adjusted 563 
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p-value < 0.01. Post-hoc analysis for significant genes was conducted for 564 

comparisons (between groups) using Tukey’s Honestly Significant Difference 565 

(HSD) tests. Additionally, we performed a quantile-based effect filter, were genes 566 

were deemed to show biological effects in our analysis if they displayed mean 567 

difference values in the <5% and/or > 95% quantiles of the mean difference 568 

distributions of the binary group comparisons. Based on the post-hoc analysis, 569 

genes were deemed to be statistically significantly (up- or down-regulated) if they 570 

displayed Tukey HSD using a Bonferroni adjusted cutoff for p-value < 571 

0.01/44,754.  572 

 573 

Functional and pathway enrichment analysis 574 

We carried our enrichment analysis for DEPS using the Database DAVID34,35, the 575 

KEGG database29-31 for signaling pathways, GO terms functional annotation for 576 

over representation of biological function 32,33 were utilized and signaling 577 

pathways were deemed significant based on Benjamini-Hochberg adjusted p-578 

value < 0.05. 579 

 580 

Using a k-nearest neighbor model to predict AML 581 

Before gene expression data passed to the k-nearest neighbor (KNN) algorithm 582 

to train, gene expression signatures resulted from our meta-analysis were used 583 

to extract expression values. KNN in ClassificaIO37 was used to carry out this 584 

analysis. All 34 data sets (16 AML and 18 healthy) were used for training, and 585 

testing was done on all 5 covariate data sets, include AML and healthy subjects. 586 
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Dependent, target , and testing data files were prepared in accordance with 587 

ClassificaIO37 user guide. The KNN model used the following parameters 588 

(Supplementary File 3): 589 

 590 

random_state = None, shuffle = True, metric = minkowski, weights = uniform, 591 

algorithm = auto, n_neighbors = 5, leaf_size = 30, n_jobs = 1, p = 2, 592 

metric_params = None 593 

 594 

The trained model was 98% accurate, while testing was 91.7% accurate (details 595 

of training and testing are given in Supplementary File 3. 596 

 597 

DATA AVAILABILITY STATEMENT 598 

The datasets generated in the study, supplementary data, tables, figures and 599 

files are available online at http://doi.org/10.5281/zenodo.1492796 600 
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Omnibus repository, at https://www.ncbi.nlm.nih.gov/geo/ under accessions 602 

summarized in Table 1. 603 

  604 

  605 
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 885 

FIGURE LEGENDS 886 

Figure 1. General approach, data curation, and analysis workflow summary. 887 

The flowchart shows in (a) the five main steps that summarize our method of 888 

approach for our study, and in (b) the curation and screening criteria for raw 889 

gene expression and annotation data files curation, data pre-processing, 890 

supervised machine learning for missing metadata prediction, and batch effects 891 

correction. (c) The meta-analysis included a linear model analysis of variance 892 
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(ANOVA) coupled Tukey’s Honestly Significant Difference (HSD) post-hoc tests, 893 

and KEGG pathway and GO enrichment. Finally, we performed a machine 894 

learning classification of AML based on our findings. 895 

 896 
Figure 2: Functional classification of DEPS from AML meta-analysis and 897 

associated KEGG and GO enrichment analysis. For all panels, normalized 898 

values are represented in with blue for down-regulation and red for up-regulation, 899 

while light red/gray represents no reported specific direction. (a) Heatmap of 974 900 

DEPS (rows) on 2,761 arrays (columns) including 2213 AML patients and 548 901 

healthy individuals from AML meta-analysis, using unsupervised hierarchical 902 

clustering and Euclidean distance for clustering. The age of each individual is 903 

displayed at the bottom and illustrated in the color bar on the top (dark green for 904 

young and yellow for old). The disease state (AML vs healthy), sex of each 905 

subject and age-groups are represented in color bars on the top. (b) Horizontal 906 

barplot of the top 10 DEPS (gene symbols on vertical axis) from AML meta-907 

analysis with mean difference values between AML and healthy (horizontal axis). 908 

Enrichment analysis identified 4 KEGG signaling pathways (c) for our AML 909 

DEPS, also visualized as a heatmap (d) of DEPS mean difference values 910 

between AML and healthy DEPS (rows) identified in these 4 KEGG signaling 911 

pathways (columns). The GO enrichment analysis results are summarized in (e).  912 

 913 

Figure 3: Sex-related gene expression meta-analysis in AML. (a). The 914 

heatmap of mean difference values comparison between the 70 DE overlapping 915 

genes between Analysis 1 and Analysis 2a. (b) Heatmap the 70 DEPS 916 
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expression (rows) on 2,761 arrays (columns) including 2213 AML patients and 917 

548 healthy individuals from Analysis 2a of sex-relevance in AML (using 918 

unsupervised hierarchical clustering and Euclidean distance for clustering). The 919 

disease state (AML vs healthy) and sex of each subject are indicated in color 920 

bars at the top.  (c). Horizontal barplot of the top 10 DEPS (gene symbols on 921 

vertical axis), with the mean difference values between male-female (horizontal 922 

axis). (d). Enrichment analysis for statistically significant overrepresented 923 

biological GO terms on the 70 DE genes. 924 

 925 

Figure 4: Age-related gene expression meta-analysis in AML. (a) The top 10 926 

up- and down- regulated DEPS overlapping AML and age-related analyses. 75 927 

DEPS specific to a single age-group comparison, (b). (c) The mean difference of 928 

25 DEPS with respect to the 0-19 baseline across all other groups are plotted to 929 

illustrate changes with aging. We note that the mean difference values between 930 

AML and healthy cohorts are shown in the right-most column of panes (a)-(c) for 931 

reference comparisons. (d) Overlaps over KEGG pathways of 17 DE genes 932 

identified in 4 KEGG pathways according to age groups.   933 
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Table 1: Summary table of all 34 gene expression datasets used in this 934 

study. 935 

Author, Year GEO accession Disease Status* Affymetrix platform id: Number of 
samples used & Sample source* Refs. 

Zatkova et al, 2009 GSE10258 AML GPL570: 8 BM 63 
Tomasson et al, 2008 GSE10358 AML GPL570: 300 BM 64 

Metzeler et al, 2008 GSE12417 AML GPL570: 73 BM & 5 PB 
GPL96/97: 160 BM & 2PB 

49 

Wouters et al, 2009, 
Taskesen et al, 2011 GSE14468 AML GPL570: 482 BM & 43 PB 65,66 

Figueroa et al, 2009 GSE14479 AML GPL570: 16 BM 67 
Klein et al, 2009 GSE15434 AML GPL570: 231 BM & 20 PB 68 
Lück et al, 2011 GSE29883 AML GPL570: 10 BM & 2 PB 69 
Li et al, 2013, 
Herold et al, 2014, 
Janke et al, 2014, 
Jiang et al, 2016 

GSE37642 AML GPL570: 140 BM 
GPL96/97: 422 BM 

50-53 

Bullinger et al, 2014 GSE39363 AML GPL570: 11 BM & 2 PB NYP 
Opel et al, 2015 GSE46819 AML GPL570: 8 BM & 4 PB 70 
TCGA et al, 2015 GSE68833 AML GPL570: 183 BM NYP 
Cao et al, 2016 GSE69565 AML GPL570: 12 PB 71 
Bohl et al, 2016 GSE84334 AML GPL570: 25 BM & 20 PB NYP 
Li et al, 2011 GSE23025 AML GPL570: 21 BM & 13 PB 72 
Warren et al, 2009 GSE11375 Healthy GPL570: 26 PB 73 
Green et al, 2009 GSE14845 Healthy GPL570: 1 PB NYP 
Wu et al, 2012 GSE15932 Healthy GPL570: 8 PB NYP 
Karlovich et al, 2009 GSE16028 Healthy GPL570: 22 PB 74 
Krug et al, 2011 GSE17114 Healthy GPL570: 14 PB NYP 
Kong et al, 2012 GSE18123 Healthy GPL570: 17 PB 75 
Sharma et al, 2009 GSE18781 Healthy GPL570: 25 PB 76 
Rosell et al, 2011 GSE25414 Healthy GPL570: 12 PB 77 
Schmidt et al, 2006 GSE2842 Healthy GPL570: 2 PB 78 
Meng et al, 2015 GSE71226 Healthy GPL570: 3 PB NYP 
Tasaki et al, 2017 GSE84844 Healthy GPL570: 30 PB 79 
Leday et al, 2018 GSE98793 Healthy GPL570: 64 PB 80 
Shamir et al, 2017 GSE99039 Healthy GPL570: 121 PB 81 
Tasaki et al, 2018 GSE93272 Healthy GPL570: 35 PB 62 
Clelland et al, 2013 GSE46449 Healthy GPL570: 24 PB 82 
Lauwerys et al, 2013 
Ducreux et al, 2016 GSE39088 Healthy GPL570: 46 PB 83,84 

Xiao et al, 2011 GSE36809 Healthy GPL570: 35 PB 85 
Zhou et al, 2010 GSE19743 Healthy GPL570: 63 PB 86 

Jiang et al, 2018# GSE107968* 2 AML, 
1 Healthy GPL570: 3 BM NYP 

Greiner et al, 2015# GSE68172* 20 AML, 
5 Healthy GPL570: 25 PB 58 

Majeti et al, 2009# GSE17054* 9 AML, 
4 Healthy GPL570: 13 BM 59 

Bacher et al, 2012# GSE33223* 20 AML, 
10 Healthy GPL570: 30 PB 60 

Mills et al, 2009# GSE15061* 404 AML, 
138 Healthy GPL570: 542 BM 61 

Meta-analysis data sets summary 
Disease state Sample source Affymetrix platform id Unique probe sets 
AML Healthy BM PB GPL570 GPL96/97 GPL570 GPL96/97 
2213 548 2090 671 2177 584 54,675 44,760 
Table 1. A summary table of all our data sets using in our meta-analysis and disease classification.  
#“Covariate reference data sets,” 5 data sets that were used during the batch correction step., datasets were used only 
during the batch effect correction steps.  
*GEO, Gene Expression Omnibus; AML, acute myeloid leukemia; Ref. reference; NYP, not yet published, GPL570, 
Affymetrix Human Genome U133 Plus 2.0 Array; GPL96, Affymetrix Human Genome U133A Array; GPL97, Affymetrix 
Human Genome U133B Array; BM, Bone Marrow; PB, Peripheral Blood. 
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Table 2. Top 10 up- and down-regulated of DEPS in AML from disease state 936 
 937 

Up-regulated* 

DEG name DEPS Gene 
Symbol 

Tukey’s HSD Mean 
difference 

Bonferroni 
(p-adjusted) 

Wilms tumor 1 WT1 0.255353 < 4.11E-11 

MAM domain containing 2 MAMDC2 0.248983 5.47E-09 

X inactive specific transcript (non-protein coding) XIST 0.230331 < 4.11E-11 

homeobox A3 HOXA3 0.195790 1.1E-06 

fms-related tyrosine kinase 3 FLT3 0.193420 < 4.11E-11 

cyclin A1 CCNA1 0.185050 1.35E-07 

mex-3 RNA binding family member B MEX3B 0.181068 < 4.11E-11 

collagen, type IV, alpha 5 COL4A5 0.177721 1.7E-05 

neurexin 2 NRXN2 0.166598 < 4.11E-11 

ATPase, Na+/K+ transporting, beta 1 polypeptide ATP1B1 0.165197 5.47E-09 

Down-regulated 

cysteine-rich secretory protein 3 CRISP3 -0.51965625 < 4.11E-11 

olfactomedin 4 OLFM4 -0.489845396 < 4.11E-11 

orosomucoid 1 ORM1 -0.465232864 < 4.11E-11 
cytochrome P450, family 4, subfamily F, 
polypeptide 3 CYP4F3 -0.453467442 < 4.11E-11 

chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 -0.421520435 < 4.11E-11 

annexin A3 ANXA3 -0.390688999 < 4.11E-11 
oxidized low density lipoprotein (lectin-like) 
receptor 1 OLR1 -0.35525472 < 4.11E-11 

carcinoembryonic antigen-related cell adhesion 
molecule 8 CEACAM8 -0.351181264 < 4.11E-11 

orosomucoid 1 ORM1 -0.336303304 < 4.11E-11 

tumor-associated calcium signal transducer 2 TACSTD2 -0.323939961 < 4.11E-11 
Table 2. From the Post-hoc Tukey’s test, gene expression means difference value < 5% or > 95% between AML and 
healthy (AML - healthy) were deemed statistically significant for AML. Genes were considered disease state 
statistically significant from the analysis of all 2761 cases (2213 AML patients and 548 healthy controls) using. The 
p-values were adjusted based on Bonferroni correction for false discovery rate (FDR). Significant DEPS (gene 
symbols) are listed in descending order of the mean difference value comparisons for disease state. 
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Table 3. KEGG pathway analysis of DEPS from meta-analysis of 34 gene 939 
expression datasets. 940 
AML Vs Healthy DEPS  and associated signaling pathways 

Pathway No. of 
genes* 

Down- 
regulated 

Up- 
regulated 

p-
value 

p-value 
Benjamini 
adjusted 

Hematopoietic cell 
lineage 11, 6 

IL1R2, CD59, GYPA, 
MS4A1, EPOR, CD24, CD14, 
EPOR, IL1R1, MME, CR1 

ITGA4, FLT3, CD34, 
IL3RA, ITGA5, CD44 2.3E-5 5.8E-3 

Cell cycle 12, 6 

CDC7, CDC6, CCNB1, 
CDC20, CCNA2, CCNE2, 
TTK, CDC14B', CDK1, 
BUB1, CCNB2, BUB1B 

RB1, CCNA1, CDK6, 
ATM, TFDP2, CDKN2A 1.4E-4 1.2E-2 

p53 signaling 
pathway 6, 7 THBS1, CCNB1, CCNE2, 

CDK1, RRM2, CCNB2 

SIAH1, CDK6, ATM, 
SERPINE1, CDKN2A, 
PMAIP1, ZMAT3 

1.0E-4 1.3E-2 

Transcriptional 
misregulation in 
cancer 

7, 13 
IL1R2, GZMB, CD14, 
ELANE, MMP9, CEBPE, 
PBX1 

WT1, RUNX2, ETV5, MEI
S1, JUP, EWSR1, ATM, 
HOXA10, MLF1, FLT3, C
CNT2, MEF2C, SLC45A3 

6.5E-4 4.1E-2 

AML sex relevant (male - female) DEPS & associated signaling pathways 

Pathway No. of 
genes* High in Females High in Males 

Hematopoietic cell 
lineage 1, 2 – FLT3, CD34  

p53 signaling 
pathway –, 1 – PMAIP1 

Transcriptional 
misregulation in 
cancer 

–, 1 MS4A1 FLT3  

Table 3: Enrichment analysis was done using 974 DEPS, including  KEGG enrichment analysis identified 4 statistically 
significant pathways from AML Vs Healthy meta-analysis, shown with overlaps with sex-specific analysis. 
* up and down regulated genes displayed 
  941 
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Table 4. KEGG pathway analysis of DEPS from meta-analysis of 34 gene 942 
expression datasets overlap with age-specific findings. 943 
AML age-dependent (AML - healthy) DEPS & associated signaling pathways 

Pathway No. of 
genes* 

Down-regulated 
Age-group 

Up-regulated 
Age-group 

Hematopoietic cell 
lineage 4, 1 

CD14 
(30 to 39) - (0 to 19) 

FLT3 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 
19),  
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19),  
(60 to 69) - (0 to 19), (70 to 79) - (0 to 
19),  
(80 to 100) - (0 to 19) 

MME 
(30 to 39) - (0 to 19), (40 to 49) - (0 to 
19), 
(50 to 59) - (0 to 19) 
CD24 
(30 to 39) - (0 to 19), (40 to 49) - (0 to 
19), 
 (50 to 59) - (0 to 19) 
MS4A1 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19), 
 (60 to 69) - (0 to 19), (70 to 79) - (0 to 
19), 
(80 to 100) - (0 to 19) 

Cell cycle 3, 2 

CCNA2 
(50 to 59) - (0 to 19) 

CCNA1 
(30 to 39) - (0 to 19), (40 to 49) - (0 to 
19),  
(50 to 59) - (0 to 19), (60 to 69) - (0 to 
19) 

CDK6 
(60 to 69) - (30 to 39) 

CDC14B 
(30 to 39) - (0 to 19), (40 to 49) - (0 to 
19),  
(50 to 59) - (0 to 19), (60 to 69) - (0 to 
19),  
(70 to 79) - (0 to 19) 

CDKN2A 
(40 to 49) - (0 to 19) 

p53 signaling 
pathway 1, 1 CDK6 

(60 to 69) - (30 to 39) 
CDKN2A 
(40 to 49) - (0 to 19) 

Transcriptional 
misregulation in 
cancer 

5, 4 

CD14 
(30 to 39) - (0 to 19) 

MEIS1 
(50 to 59) - (0 to 19), (50 to 59) - (20 to 
29), (60 to 69) - (0 to 19), (60 to 69) - 
(20 to 29), 
(70 to 79) - (0 to 19) 

MMP9 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 
19),  
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19),  
(60 to 69) - (0 to 19), (70 to 79) - (0 to 
19) 

EWSR1 
(60 to 69) - (50 to 59),  
(70 to 79) - (50 to 59) 

WT1 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 
19), 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19), 
(60 to 69) - (0 to 19), (70 to 79) - (0 to 
19) 

CEBPE 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 
19), 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19), 
(50 to 59) - (20 to 29), (60 to 69) - (0 
to19), 
(70 to 79) - (0 to 19), (70 to 79) - (20 
to29), 
(80 to 100) - (0 to 19) 

FLT3 
(20 to 29) - (0 to 19), (30 to 39) - (0 to 
19), 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19), 
(60 to 69) - (0 to 19), (70 to 79) - (0 to 
19), 
(80 to 100) - (0 to 19) 

CCNT2 
(60 to 69) - (30 to 39),  
(70 to 79) - (30 to 39),  
(60 to 69) - (50 to 59) 

HOXA10 
(40 to 49) - (0 to 19), (50 to 59) - (0 to 
19), (50 to 59) - (20 to 29), (60 to 69) - 
(0 to 19), (60 to 69) - (20 to 29), (70 to 
79) - (0 to 19) 

Table 4: Enrichment analysis was done using 974 DEPS overlapped with age-specific analysis 
* up and down regulated genes displayed 
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(a) (b)

(c)

(d) GO Term Category

High in Males
High in Females

Lorem ipsum

High in Males (GO Terms)
High in Females (GO Terms)
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