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Summary 12 

Nucleosome organization is suggested to affect local mutation rates in a genome. 13 

However, the lack of de novo mutation and high-resolution nucleosome data have 14 

limited investigation. Further, analyses using indirect mutation rate measurements 15 

have yielded contradictory and potentially confounded results. Combining >300,000 16 

human de novo mutations with high-resolution nucleosome maps, we reveal 17 

substantially elevated mutation rates around translationally stable (‘strong’) 18 

nucleosomes. Translational stability is an under-appreciated nucleosomal property, 19 

with greater impact than better-known factors like occupancy and histone 20 

modifications. We show that the mutational mechanisms affected by strong 21 

nucleosomes are low-fidelity replication, insufficient mismatch repair and increased 22 

double-strand breaks. Strong nucleosomes preferentially locate within young 23 

SINE/LINE transposons; subject to increased mutation rates, transposons are then 24 

more rapidly inactivated. Depletion of strong nucleosomes in older transposons 25 

suggests frequent re-positioning during evolution, thus resolving a debate about 26 

selective pressure on nucleosome-positioning. The findings have important 27 

implications for human genetics and genome evolution. 28 

  29 
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1 Introduction 30 

Germline de novo mutations, which can be passed to offspring, are the primary 31 

source of genetic variation in multicellular organisms, contributing substantially to 32 

biological diversity and evolution. De novo mutations are also thought to play 33 

significant roles in early-onset genetic disorders such as intellectual disability, autism 34 

spectrum disorder, and developmental diseases (Veltman and Brunner 2012; Acuna-35 

Hidalgo et al. 2016). Thus, investigating the patterns and genesis of de novo 36 

mutations in the germline is important for understanding genome evolution and 37 

human diseases.  38 

Germline and somatic mutation rates vary across the human genome at diverse 39 

scales ranging from nucleotide to chromosomal resolution (Hodgkinson and Eyre-40 

Walker 2011; Segurel et al. 2014). Studies revealed factors linked to local mutation 41 

rate variation, including sequence context (Michaelson et al. 2012), replication timing 42 

(Stamatoyannopoulos et al. 2009), recombination rate (Francioli et al. 2015), DNA 43 

accessibility (Sabarinathan et al. 2016) and histone modifications (Michaelson et al. 44 

2012; Schuster-Bockler and Lehner 2012). However, genomic features identified so 45 

far explain less than 40% of the observed germline mutation rate variation (at 100Kb 46 

to 1Mb resolution) (Terekhanova et al. 2017; Smith et al. 2018). Therefore, important 47 

factors remain to be found. Moreover, due to the limited availability of de novo 48 

mutation datasets, studies focused on coarse-grained mutation rate variation 49 

(typically ≥1kb windows for germline data), or used within-species polymorphisms 50 

and inter-species divergence whose observations are potentially confounded by 51 

natural selection and other evolutionary processes. 52 

Moreover, the underlying mutational processes causing the observed mutation rate 53 

variation are poorly understood, though recent studies have highlighted the 54 

contributions of error-prone replicative processes (Harris and Nielsen 2014; Lujan et 55 

al. 2014; Reijns et al. 2015; Seplyarskiy et al. 2017; Seplyarskiy et al. 2018) and 56 

differential DNA repair efficiencies (Supek and Lehner 2015; Perera et al. 2016; 57 

Sabarinathan et al. 2016; Frigola et al. 2017). Despite these advances, it remains a 58 

challenge to understand the molecular mechanisms associated with mutation rate 59 

variation, particularly in the germline. 60 

Here, we focus on the role of nucleosomes in modulating germline mutation rates. 61 

Chromatin is considered important because structural constraints could affect the 62 

mutability of genomic sequences (Makova and Hardison 2015). Nucleosome 63 

organization (including positioning and occupancy) has been reported as a significant 64 
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factor in humans and other eukaryotes (Sasaki et al. 2009; Tolstorukov et al. 2011; 65 

Chen et al. 2012; Michaelson et al. 2012; Lujan et al. 2014; Pich et al. 2018). Studies 66 

in different lineages (Sasaki et al. 2009; Tolstorukov et al. 2011; Lujan et al. 2014) 67 

reported increased substitution rates around the centers of nucleosomal sequences 68 

and increased insertion/deletion rates in linker DNA. However, there are also 69 

disagreements between published studies. For example, Michaelson et al. (2012) 70 

suggested that high nucleosome occupancy tends to suppress de novo mutations, 71 

but Smith et al. (2018) found that a comparative analysis using datasets from 72 

different studies resulted in opposing conclusions. Due to few available de novo 73 

mutations for humans, analysis of many studies was based on variant data from 74 

within-species polymorphisms or inter-species divergence, which can be affected by 75 

natural selection and non-adaptive processes such as GC-biased gene conversion. 76 

Furthermore, because of the limitation of available nucleosome maps, some previous 77 

studies treated all annotated nucleosomes equally, ignoring the diverse contexts in 78 

which they form. Therefore, combined with the scarcity of de novo mutation datasets,  79 

the effects of nucleosome organization on germline mutation rate variation, 80 

particularly at high resolution remain to be elucidated. Here we take advantage of the 81 

rapid increase in the number of de novo mutation datasets and better understanding 82 

of nucleosome organization in the human genome to perform a systematic analysis 83 

of this topic.  84 

  85 
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2 Results 86 

2.1 Datasets used for analysis 87 

We used >300,000 human de novo single-nucleotide variants (SNVs) and >30,000 88 

short insertions/deletions (INDELs), having removed genomic regions that could 89 

confound downstream analysis (Fig. 1a, Supplementary Fig. 1a; see Methods). 90 

Most data come from three large-scale trio sequencing projects which contribute 91 

about 100,000 mutations each (Jonsson et al. 2017; Turner et al. 2017a; Yuen et al. 92 

2017). We also examined extremely rare variants (allele frequency ≤ 0.0001) from 93 

the gnomAD database (Lek et al. 2016) which are approximated to de novo 94 

mutations because they are thought to undergo limited selection and non-adaptive 95 

evolutionary processes (Carlson et al. 2018).  96 

Nucleosome positioning on the genome is described by the translational setting, 97 

which defines the location of the nucleosomal midpoint (also called ‘dyad’) and the 98 

rotational setting, which defines the orientation of the DNA helix on the histone 99 

surface (Gaffney et al. 2012). Using MNase-seq measurements, Gaffney et al. (2012) 100 

identified ~1 million ’strong’ nucleosomes that adopt highly stable translational 101 

positioning across seven lymphoblastoid cell lines. Rotationally stable nucleosomes 102 

were previously identified from DNase-seq measurements across 43 cell types 103 

(Winter et al. 2013), covering 892Mb of the genome. There is a ~50Mb overlap 104 

between regions bound by strong nucleosomes and rotationally stable nucleosomes. 105 

Using these data, we classified the genome into three groups of regions (Fig. 1b; sex 106 

chromosomes excluded): i) those containing translationally stable, ‘strong’, 107 

nucleosomes (198Mb); ii) those with rotationally but not translationally stable 108 

nucleosomes (796Mb); and iii) all other non-N base genomic regions (1,703Mb). 109 

West et al. (2014) reported that with the exception of a few specific loci such as 110 

transcription start sites, overall nucleosome positioning varies little between cell types. 111 

None of the nucleosomal datasets were produced using germ cells, therefore as a 112 

precaution we excluded nucleosomes that differ in positioning between cell types 113 

(~23Mb; see Methods).  114 
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 115 

Fig. 1 De novo mutations are enriched in strong nucleosomes. (a) Summary of 116 

germline de novo mutation data included in study. (b) Summary of nucleosome 117 

positioning data analysed in study. (c, d) Observed versus expected occurrence and fold 118 

enrichments of de novo (c) SNVs and (d) INDELs in the three different nucleosome 119 

contexts. Right-hand panel subdivides strong nucleosomes according to high, medium 120 

and low translational stabilities. Error bars depict 95% confidence intervals. (e) Top 121 

panels, meta-profiles of de novo SNV and INDEL densities relative to position of strong 122 

nucleosome dyads. Bottom panel, same meta-profiles zoomed into the middle 123 

nucleosome. (f) Fold enrichment of strong nucleosomes in different repeat elements: 124 

SINE (Short Interspersed Nuclear Element), LINE (Long Interspersed Nuclear Element), 125 

TR (Tandem Repeat) and LTR (Long Terminal Repeat). 126 

2.2 De novo SNVs and INDELS are enriched in strong nucleosomes 127 
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Genomic regions containing strong nucleosomes have ~30% more de novo SNVs 128 

(Fig. 1c) and ~15% more de novo INDELs (Fig. 1d) than expected. Similar increases 129 

are also apparent for extremely rare variants (Supplementary Fig. 1b,c), though 130 

effect sizes are smaller than for de novo mutations, probably due to the fact that 131 

highly mutable sites are under-represented among extremely rare variants (Harpak et 132 

al. 2016). Restricting the analysis to strong nucleosomes, we found that those with 133 

higher translational stability scores also exhibit higher mutation rates (Fig. 1c,d; 134 

scores from Gaffney et al., 2012). These results suggest that translational stability is 135 

associated with local variation in mutation rates across the genome, a previously 136 

unappreciated aspect. Regions containing rotationally stable nucleosomes, in 137 

contrast, are slightly depleted of both mutation types; we didn’t perform further 138 

analysis on this, as effect of rotational positioning has been comprehensively 139 

discussed by Pich et al. (2018). A more detailed view with meta-profiles clearly 140 

depicts increased SNV and reduced INDEL densities around dyad regions of strong 141 

nucleosomes compared with flanking linker regions (Fig. 1e), in line with 142 

observations made using polymorphism data (Tolstorukov et al. 2011). 143 

Interestingly, ~80% of strong nucleosomes overlap with repeats (Fig. 1f, 144 

Supplementary Fig. 1d), especially SINE/Alu (~44%) and LINE/L1 elements (~26%). 145 

Genetic variations in repeats are traditionally hard to detect because of poor 146 

mappability and so analyses have tended to be cautious in calling variants, resulting 147 

in many false negatives (though, few false positives; Lee and Schatz (2012)). 148 

Therefore, the above observations probably underestimate the true enrichment of de 149 

novo mutations in strong nucleosomes. We subdivided strong nucleosomes into 150 

three groups: i) Alu-associated, ii) L1-associated and iii) others. Alu-associated 151 

nucleosomes display increased SNV rates around the dyads, as seen in the 152 

metaprofiles for all strong nucleosomes (Supplementary Fig. 1e), whereas non-Alu 153 

nucleosomes show increased SNV rates ~60bp away from the dyads, close to the 154 

nucleosome edges. Such differences may be due to the different local sequence 155 

composition (discussed in next section). In contrast, the patterns of INDEL densities 156 

are relatively similar among different groups (Supplementary Fig. 1e).  157 

2.3 Controlling for potential confounding factors  158 

Many factors are associated with mutation rate variation. One of the most important 159 

is local sequence context - for example, CpG sites are known to be highly mutable 160 

and CpG density profiles correlate well with mutation rate profiles in strong 161 

nucleosomes (Supplementary Fig. 1e). Functional factors like DNA methylation, 162 
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histone modification, chromatin accessibility, replication timing and recombination 163 

rate are also relevant. Therefore, to systematically assess the contribution of 164 

nucleosomes to mutation rate variation, we used a logistic regression framework to 165 

control for potential confounding factors (Fig. 2).  166 

 167 

Fig. 2 Controlling for potential confounding factors in evaluating contribution of 168 

nucleosome organization to mutation rate variation. (a) Schematic diagram 169 

describing two nucleosome positioning-related variables (dmean and dvar) relative to a 170 

given genomic position. Lower dvar corresponds to higher translational stability. (b, c) 171 

Independent statistical significance of potential contributing factors to mutation rate 172 

variation, having controlled for other factors; (b) for SNVs and (c) INDELs. Tests for 173 

SNVs were performed separately at A/T and C/G sites (non-CpG and CpG contexts 174 

respectively). Vertical red lines indicate the threshold for statistical significance (0.05). 175 

‘us’, upstream; ‘ds’, downstream. 176 

We defined three variables to quantify nucleosomal properties relative to a specific 177 

nucleotide position in the genome. Two relate to translational positioning: dmean, the 178 

mean distance between the focal position and the midpoints of mapped MNase-seq 179 

fragments (maximum distance of 95 bp) and dvar, the variance of these distances (Fig. 180 

2a). A smaller dmean means that a nucleotide position is closer to nucleosome dyads 181 
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and a smaller dvar indicates that the nucleosomes around it are more translationally 182 

stable. As the relationship between between dmean and SNV rates is non-linear, we 183 

defined dmean a categorical variable binned into five intervals (Methods; Fig. 1e, 184 

Supplementary Fig. 1e). The third variable is nucleosome occupancy calculated as 185 

a normalised per-base MNase-seq fragment coverage (see Methods). Other factors 186 

considered are local nucleotide sequences (±5bp of the focal site) and functional 187 

genomic measurements in human germ cells or other cell types if no available germ-188 

cell data (see Methods). dvar has a relatively weak but statistically significant 189 

correlation with many of these factors, suggesting non-independence 190 

(Supplementary Fig. 2).  191 

To assess the contribution of each factor to local mutation rates, we compared a full 192 

logistic regression model encompassing all variables against reduced models 193 

missing individual variables; the reported p values indicate how significant a factor is 194 

associated with mutation rate variation, having controlled for other factors (Fig. 2b,c; 195 

Methods). For SNVs, we tested A/T (comprising A>C, A>G and A>T mutations), CpG 196 

and non-CpG C/G sites separately (both C>A, C>G and C>T; Fig. 2b), whereas they 197 

were pooled for INDELs.  198 

Our statistical framework recapitulates reported observations (Fig. 2b,c, 199 

Supplementary Fig. 3).  In agreement with previous studies (Carlson et al. 2018), 200 

local sequence context is the biggest contributor to local mutation rate variation (Fig. 201 

2b,c), with effect sizes generally declining with increasing distance from the surveyed 202 

site. DNA methylation and H3K9me3 are two common epigenetic marks associated 203 

with mutation rate variation in general (Schuster-Bockler and Lehner 2012), whereas 204 

H3K4me1, H3K4me2, H3K4me3 H3K27me3 and H3K36me3 are linked with specific 205 

mutation types. Replication timing has highly statistically significant associations with 206 

both SNVs and INDEL mutation types. Recombination rate and open chromatin 207 

(measured by ATAC-seq) are also associated with many mutation types. 208 

Transcription levels, however, lack any links with local mutation rates here.  209 

Turning to nucleosomal properties, translational stability (dvar) is associated with 210 

elevated mutation rates at A/T, non-CpG C/G and CpG sites, with the first two 211 

showing the greatest effect sizes. INDELs also show similar effects, though the 212 

higher p values compared with SNVs could partly be due to the smaller sample size. 213 

Examining specific SNV mutation types, dvar is significantly associated with all A/T 214 

and C/G mutations (Supplementary Fig. 3), except for CpG>TpG (adjusted p = 215 

0.10).. The regression coefficients for dvar are always negative (i.e., nucleosome 216 
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variability is anti-correlated with mutation rate, see coefficients in Supplementary 217 

Table 1), indicating that translational stability is positively associated with mutation 218 

rates thus corroborating the patterns observed in Fig. 1. As expected from Fig. 1, the 219 

mean distance to dyads, dmean, also displays statistically significant associations with 220 

mutations rates at A/T and C/G sites (Fig. 2b,c). Finally, nucleosome occupancy is 221 

also statistically significant; in contrast to the positioning variables however, here the 222 

effect is much larger for INDELs than SNVs (Fig. 2b,c; INDELs, adjusted p = 5.8e-37; 223 

SNVs, adjusted p = 0.21, 1.6e-6 and 2.2e-7). The regression coefficients of 224 

occupancy are negative for SNVs at A/T sites, but positive for SNVs at CpG sites 225 

(Supplementary Table 1), suggesting that occupancy can have opposing effects on 226 

mutability depending on sequence context. 227 

Nucleosome positioning stability is at least partly determined by the occupied DNA 228 

sequence and thus its effects on mutation rates to some degree can be attributed to 229 

the associated sequence (this also applies to other reported factors such as 230 

replication timing). However, higher-order interactions among the long stretches of 231 

nucleotides which guide nucleosome positioning are difficult to model properly. 232 

Nonetheless, we achieved similar statistical significance for translational stability after 233 

including non-additive two-way interaction effects for ±5 nucleotides and the 7-mer 234 

mutability estimates from Carlson et al. in regression models (Methods; 235 

Supplementary Fig. 4a,b).  236 

Since many strong nucleosomes are associated with repeat elements, we added 237 

repeat status as a predictor in the regression models (Methods). We still achieved 238 

strong statistical significance for translational stability after considering repeat status 239 

(Supplementary Fig. 4c), suggesting that translational stability is independently 240 

associated with mutation rate variation. We also tested repeat and non-repeat 241 

regions separately, and in most tests (including those for non-repeat regions) 242 

translational stability is a significant factor (Supplementary Fig. 4d). 243 

Taken together, the logistic regression modeling analysis recapitulated known factors 244 

and confirmed the independent contribution of nucleosome translational stability as a 245 

new significant factor to local mutation rate variation.  246 

2.4 Mutational processes associated with elevated mutability around strong 247 

nucleosomes 248 

2.4.1 Mutational signature analysis 249 
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Having established an association between mutation rate and nucleosome 250 

translational stability, we next sought to identify mutational mechanisms that might 251 

explain it. As an initial screen, we compared the COSMIC mutational signatures for 252 

de novo mutations within strong nucleosomes and those in genomic background. 253 

Mutational signatures were originally developed to infer the mutational processes 254 

underlying cancer progression by combining the relative frequencies of 96 possible 255 

mutation types (six types of single nucleotide substitutions C>A, C>G, C>T, T>A, 256 

T>C and T>G, each considered in the context of the bases immediately 5’ and 3’ to 257 

each mutated base; Alexandrov et al. (2013)).  258 

We first consider the relative frequencies of the 96 mutation types in the whole 259 

genome and strong nucleosomes in different repeat contexts (Fig. 3a). The results 260 

account for background differences in trinucleotide frequencies between these 261 

regions (Methods). Several mutation types display distinct frequencies in strong 262 

nucleosomes, suggesting differences in the underlying mutational processes. For 263 

instance, 6 out of 16 T>C mutation types are more prevalent in strong nucleosomes 264 

and different repeat-based subgroups display distinct C>T mutation frequencies. L1-265 

associated strong nucleosomes tend to show the most similar mutation frequencies 266 

to genomic background, whereas the ‘Others’ group show the most changes, 267 

perhaps reflecting the heterogeneity of constituent genomic regions.  268 

Next, we applied the MutationalPatterns software (Blokzijl et al. 2018) to calculate the 269 

contribution of COSMIC mutational signatures to different sets of de novo SNVs. 270 

Three major signatures (Signatures 1, 5 and 16) are present in all tested groups 271 

(contributing 87.7% for the whole-genome group, 77.0%~84.5% for strong-272 

nucleosome groups; Fig. 3b). Four signatures (Signatures 5, 12, 20 and 26) show 273 

increased contribution (>1%) to the ‘all strong-nucleosome’ group relative to the 274 

genomic background. The aetiologies of Signatures 5 (~7% increase in strong-275 

nucleosome regions) and 12 (2.2% increase) are currently unknown according to the 276 

COSMIC website, but a recent study (Roy et al. 2018) suggested that Signature 5 is 277 

likely associated with POL θ-mediated mutagenesis and double-strand break repair. 278 

Signatures 20 (1.3% increase) and 26 (1.2% increase) are associated with DNA 279 

mismatch repair. There are further differences in associated signatures among strong 280 

nucleosome-associated SNVs in different repeat contexts (‘Alu’, ‘L1’ and ‘Others’; Fig. 281 

3b), such as signatures 1, 3, 5, 6, 11, 12, 20 and 26. Such differences between 282 

different groups could be due to the heterogeneity of contributing mutational 283 

processes and redundancy among some COSMIC signatures.  284 
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It is worth highlighting that COSMIC mutational signatures were designed for use 285 

with cancer genomes and so some germline mutational processes may not be well 286 

represented. Nevertheless, our analysis identified several candidate mutational 287 

processes associated with strong nucleosomes, such as the mutagenesis linked to 288 

DNA mismatch repair (Signatures 6, 20 and 26) and DNA double-strand repair 289 

(Signatures 3 and 5). Therefore, to gain deeper insights and to obtain independent 290 

evidence for these mutational processes, we examined multiple published genomic 291 

and functional genomic datasets below. 292 

 293 

Fig. 3 De novo SNVs in strong nucleosomes display distinct mutation type 294 

frequencies and COSMIC mutational signatures. (a) Frequencies of 96 mutation 295 

types among de novo SNVs; 6 nucleotide substitutions in the context of the bases 296 

immediately 5’ and 3’ of the mutated site. SNVs are grouped into those overlapping 297 

strong nucleosomes and those elsewhere, and among the former into those overlapping 298 

with different classes of repeat elements. ↑ and ↓ indicate mutation types showing 299 

statistically significant differences relative to the genomic background SNV set (adjusted 300 
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p < 0.05, Fisher’s exact test). (b) Percentage contribution of COSMIC mutational 301 

signatures among different groups of SNVs; only signatures with non-zero values are 302 

shown. * indicate mutational signatures displaying >1% increase relative to the genomic 303 

background SNV set. Brief summaries of the aetiologies of affected signatures are 304 

shown on the right (descriptions taken from the COSMIC website). 305 

2.4.2 Mismatch repair (Signatures 6, 20 and 26) 306 

DNA Mismatch repair (MMR) is a major pathway that is active during DNA replication: 307 

it mainly repairs mismatches and short INDELs introduced by DNA synthesis that 308 

have escaped polymerase proofreading. Mutations arising from inefficiencies in MMR 309 

are represented by Signatures 6, 20 and 26, which show increased contribution to de 310 

novo SNVs in the ‘All strong nucleosomes’ group (2% increase collectively) and three 311 

repeat-based subgroups of mutations (1.6%, 6.7% and 4.3% increase for ‘Alu’, ‘L1’ 312 

and ‘Others’, respectively).   313 

We analyzed somatic mutations from two sets of ultra-hypermutated cancer 314 

genomes (Campbell et al. 2017). The first comprised genomes with driver mutations 315 

in the POLE gene encoding the catalytic subunit of DNA polymerase ε (Pol ε, the 316 

major replicase for the leading strand) and in one or more of the core MMR genes 317 

(MLH1, MSH2, MSH6, PMS1 and PMS2). The second contained cancers with 318 

mutated POLE but intact MMR. As it is even more challenging to detect somatic 319 

mutations in tumor-derived data than re-sequencing of normal individuals, we 320 

focused this analysis on strong nucleosomes found in high-mappability regions of the 321 

genome (Methods).  322 

We reasoned that differences in mutation distributions between the two sets of 323 

genomes could be attributed to the MMR pathway. The overall mutation patterns are 324 

similar in both cases, with much higher mutation rates at strong nucleosome 325 

boundaries and adjacent linker DNA than the surrounding regions (Fig. 4a). This 326 

implies that errors introduced during error-prone replication by a deficient Pol ε 327 

escape repair by the MMR pathway when they coincide with strong nucleosomes. 328 

Next, we calculated an ‘MMR escape ratio’ to quantify the relative amount of 329 

replication errors that escapes MMR repair in the POLE only mutant cancers 330 

compared with the POLE and MMR double mutants. Strong nucleosomal regions 331 

(especially boundaries and adjacent linkers) display ~10% higher escape ratios than 332 

the genome-wide background (Fig. 4a). Although A/T sites have higher escape ratios 333 

than C/G sites around strong nucleosomes, both C/G and A/T sites exhibit similarly 334 

elevated escape ratio profiles, suggesting independence of sequence context. 335 
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Moreover, the apparent ~200-bp periodicity in escape ratio and mutation density 336 

profiles are suggestive of associations with nucleosome positioning rather than 337 

sequence alone. Together, these observations strongly indicate a relationship 338 

between replication errors, MMR and strong nucleosomes in elevating mutation rates.  339 

 340 

Fig. 4 Mismatch repair (MMR), DNA polymerase fidelity and double strand breaks (DSB) 341 

explain increased mutation rates in strong nucleosomes. (a) Mutation density profiles 342 

relative to strong nucleosome dyads in cancer genomes harboring driver mutations in the 343 

POLE and MMR pathway genes. Numbers of mutations used are indicated in the brackets. 344 

The MMR escape ratio compares the mutation densities in the MMR proficient and MMR 345 

deficient genomes. (b) Mutation density profiles relative to strong nucleosome dyads for 346 

bMMRD cancer genomes with different driver mutation statuses in the POLE and POLD1 347 

genes. The escape ratios compare the mutation densities for Pol ε-deficient and Pol δ-348 

deficient cancers with the proficient ones. (c) END-seq signal indicating the density of DSBs 349 

relative to strong nucleosome dyads. HU, hydroxyurea. Fisher’s exact test was used for 350 

testing the association of strong nucleosomal regions (dyad±95bp) with differential 351 

MMR/polymerase performance. 352 

2.4.3 DNA polymerase fidelity (Signatures 10 and possibly 12) 353 

We also studied the effect of strong nucleosomes on replication fidelity by examining 354 

data from children with inherited biallelic mismatch repair deficiency (bMMRD; 355 
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(Shlien et al. 2015); these include ultra-hypermutated genomes arising from Pol ε 356 

and polymerase δ defects (Pol δ, the major replicase for the lagging strand). We 357 

estimated Pol δ and Pol ε escape ratios (escaping the proofreading correction of 358 

polymerases) using the same reasoning as above (Fig. 4b). We found that strong 359 

nucleosomes have higher escape ratios for both polymerases relative to the genomic 360 

background (Fig. 4b), implying that they have lower replication fidelity in these 361 

regions. The proofreading escape ratios for both polymerases are even higher than 362 

that for MMR (Fig. 4a,b) and A/T sites display higher proofreading escape ratios than  363 

C/G sites (Supplementary Fig. 5a). Again, the periodic pattern in the relative escape 364 

profiles (Fig. 4b, Supplementary Fig. 5a) suggests that nucleosome positioning 365 

contributes to the heterogeneity in replicase fidelity across the genome.  366 

The aetiology of Signature 12 is currently unknown. Here, we found that it contributes 367 

21.15%~21.99% to mutations in POLD1-mutant bMMRD genomes (inferred by 368 

MutationalPatterns, Supplementary Fig. 5b,c), but much less for other bMMRD 369 

samples (0~2.88% for POLE-mutant, and 3.32%~10.43% for POLE/POLD1-intact). 370 

This suggests that Signature 12 is probably associated with Pol δ and that many de 371 

novo mutations around strong nucleosomes arise from errors escaping Pol δ 372 

proofreading. Surprisingly, Signature 10, known to be associated with Pol ε 373 

deficiency, is absent from strong nucleosomal de novo SNVs (Fig. 3b). This 374 

suggests that although both Pol ε and Pol δ have high proofreading escape ratios (i.e. 375 

low fidelities) around strong nucleosomes (Fig. 4b), the majority of the replication 376 

errors that are eventually converted to de novo mutations are derived from lagging 377 

strand replicase Pol δ.   378 

Reijns et al (2015) showed that in budding yeast, Okazaki junctions formed during 379 

lagging strand replication tend to be near nucleosome dyads and display elevated 380 

mutation rates (Reijns et al. 2015). We tested this by re-analyzing OK-seq data from 381 

human lymphoblastoid cells (Petryk et al. 2016). Unlike yeast, Okazaki junctions in 382 

humans are more frequently located in the linker regions (Supplementary Fig. 6) 383 

rather than the dyads, suggesting that the mutagenic effects of Okazaki junctions are 384 

different in the two organisms. This may partly be because yeast lacks the typical H1 385 

histone found in human and other eukaryotes. However, the very short reads (single-386 

ended 50bp) of OK-seq data restricted our analysis to nucleosomes with high 387 

mappability (~10% of strong nucleosomes), limiting the strength of the conclusions 388 

here.  389 

2.4.4 Double-strand breaks (Signatures 3 and 5) 390 
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Double-strand break (DSB) repair represented by Signatures 3 and 5 is another 391 

potential mechanism involved in strong nucleosome-associated mutations (Fig. 3b). 392 

Tubbs et al. (2018) studied the genome-wide distribution of DSBs using END-seq 393 

and suggested that poly(dA:dT) tracts are recurrent sites of replication-associated 394 

DSBs. Our analysis of this data revealed a higher frequency of DSBs around strong 395 

nucleosomes compared with genomic background (Fig. 4c). The trend holds for 396 

experiments with and without hydroxyurea treatment (HU, a replicative stress-397 

inducing agent), suggesting that strong nucleosomes are endogenous hotspots (i.e. 398 

without HU treatment) of DSBs during replication. It is notable that young Alu and L1 399 

elements harbor prominent poly(dA:dT) tracts, which are enriched at the boundary 400 

and linker regions of strong nucleosomes (Supplementary Fig. 7a). The patterns of 401 

high DSB frequency still hold true when looking at strong nucleosomes associated 402 

with different repeats (Supplementary Fig. 7b,c). However, because the END-seq 403 

data were sequenced with single-ended 75bp reads and majority of young Alu and 404 

L1 elements cannot be assessed with such short reads, we could not pursue further 405 

detailed analysis. Since DSB repair can be error-prone (Rodgers and McVey 2016), 406 

even using high-fidelity homologous recombination, frequent DSB formation and 407 

subsequent error-prone repair likely contribute to the elevated mutation rates around 408 

strong nucleosomes.  409 

2.5 Strong nucleosome positioning is mostly associated with young repeat 410 

elements and undergoes frequent turnover 411 

Above, we highlighted that ~70% of strong nucleosomes are located in Alu and L1 412 

retrotransposons (Supplementary Fig. 1d). Upon examination of the subfamilies 413 

(Fig. 5a,b), we uncovered a strong enrichment for evolutionarily young L1s (e.g. 414 

L1PA2 to L1PA11) and Alus (e.g. AluY to AluSx). Since younger repeats have poorer 415 

mappability, these observations probably underestimate the true enrichment. This 416 

may also explain why several of the youngest L1 subfamilies (L1PA2 to L1PA5) have 417 

lower enrichments than the slightly older subfamilies (Fig. 5a).  418 

The preference for nucleosomes to occupy specific sections of Alu elements is 419 

supported by both in vitro and in vivo evidence (Englander et al. 1993; Englander and 420 

Howard 1995; Salih et al. 2008; Tanaka et al. 2010). We recapitulated these 421 

observations for strong nucleosomes using the Gaffney et al. MNase-seq data (Fig. 422 

5c): there are two hotspots of strong nucleosomes in young Alus, which fade away in 423 

older elements. We also observed that younger Alus exhibit elevated de novo 424 

mutation rates compared with old ones (Fig. 5c), and the weaker translational 425 
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stability in older Alus is accompanied by reduced de novo mutation rates for both 426 

SNVs and INDELs (Fig. 5c). Thus, there is an intriguing interplay between Alus, 427 

strong nucleosomes and mutation rates.  428 

The histone octamer is thought to preferentially bind DNA sequences presenting 429 

lower deformation energy costs (Tolstorukov et al. 2008). We estimated deformation 430 

energies using the nuScore software (Tolstorukov et al. 2008) based on the DNA 431 

sequence and nucleosome core particle structure and we found that Alus do indeed 432 

exhibit lower deformation energies than surrounding regions (Fig. 5c). Furthermore, 433 

the energies of Alu elements tend to increase with age, suggesting that the 434 

accumulated mutations in Alu sequences reduced their nucleosome-binding stability. 435 

This is also supported by comparing deformation energies of Alu consensus 436 

sequences (ancestral states) and those of current genomic sequences 437 

(Supplementary Fig. 8a). We further analyzed the 3’ end sequences of L1 elements 438 

harboring strong nucleosomes and observed similar patterns (Supplementary Fig. 439 

8b,c).  440 

 441 

Fig. 5 Strong nucleosomes are frequently found inside evolutionarily young LINE 442 

and SINE elements. (a) Fold enrichment of strong nucleosome occurrence in L1 443 

subfamilies. The top 30 abundant subfamilies are shown ordered by evolutionary age. 444 

Dot sizes depict the numbers of strong nucleosomes and color-scale indicates the 445 

subfamily age. (b) Same as (a) but for Alu elements. (c) Densities of strong nucleosome 446 

dyads, de novo SNVs and de novo INDELs along the Alu sequences and flanking 447 
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regions, grouped by Alu subfamilies of different ages. Bar plots show the average 448 

densities for all Alus of different subfamilies on the right. The bottom panel shows the 449 

average DNA deformation energies along Alu sequences estimated using nuScore. 450 

Profiles were plotted using Alu elements >=250bp and all elements were scaled up to a 451 

300bp region in the plots. 452 

Studies have suggested that natural selection appears to preserve nucleosome 453 

positioning during evolution (Prendergast and Semple 2011; Tolstorukov et al. 2011; 454 

Drillon et al. 2016), but they had differing views about the effects of selection on the 455 

underlying sequence. In contrast, Warnecke et al. (2013) suggested that the 456 

observed sequence divergence patterns around nucleosomes can be explained by 457 

frequent nucleosome re-positioning after mutation, rather than by natural selection. 458 

Since these results were mainly based on human polymorphisms or inter-species 459 

divergence, indirect mutation rate measurements were potentially confounded by 460 

selection and non-adaptive processes. The use of de novo mutations helps resolve 461 

this debate to some extent.  462 

As we showed above, there is considerable de novo mutation rate variation around 463 

strong nucleosomes (Fig. 1e, Supplementary Fig. 1), which cannot be ignored in 464 

any selection analysis. Furthermore, strong nucleosomes are clearly preferentially 465 

present in young SINE/LINE elements and the strength of translational stability 466 

decays substantially over time (Fig. 5). These observations support the re-positioning 467 

model over a long evolutionary scale. Since a large majority of strong nucleosomes 468 

associated with SINE/LINE elements are expected to become non-strong ones in 469 

future, selection for preserving positioning might not be as widespread as previously 470 

suggested, though it may happen at some particular regions or within a short 471 

evolutionary scale. 472 

3 Discussion 473 

Though the involvement of nucleosome organization in DNA damage/repair 474 

processes was recognised nearly 30 years ago (Smerdon 1991), its genome-wide 475 

effects on germline mutation rates (particularly in higher eukaryotes) have remained 476 

poorly understood. Our analysis combining large-scale de novo mutation and 477 

nucleosome datasets in human provides several important insights into this topic.  478 

A major finding is that strong translational positioning of nucleosomes is associated 479 

with elevated de novo mutation rates, which is also supported by observations using 480 

extremely rare variants in polymorphism data. The ability to use de novo mutations 481 
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here allowed us to bypass confounding evolutionary factors such as selection, thus 482 

allowing direct assessment of the impact on background mutation rates. Importantly, 483 

our statistical tests controlling for nucleosome occupancy and other related factors 484 

confirmed the significant contribution of translational stability to mutation rate 485 

variation. Therefore, we have discovered a novel factor that significantly modulate 486 

germline mutation rate variation. 487 

Investigating the underlying mutational processes responsible for this association 488 

remains challenging. Nevertheless, we obtained several informative results regarding 489 

potential mechanisms by leveraging published omics data related to DNA damage 490 

and repair. In doing so, we revealed that MMR, replicase fidelity and DSB contribute 491 

significantly to elevated mutation rates around strong nucleosomes. In particular, 492 

multiple sets of ultra-hypermutated cancer data allowed us to quantify the 493 

performance of MMR and replicases by calculating the repair escape ratios. The 494 

results probably apply to germ cells because i) they agree nicely with the 495 

observations from our mutational signature analysis with de novo mutations and ii) 496 

recent studies suggested that replicative errors account for majority of mutations 497 

arising in both somatic and germ cells (Tomasetti and Vogelstein 2015; Tomasetti et 498 

al. 2017). The precise molecular interactions determining the relationships between 499 

strong nucleosome positioning, replicase fidelity and DNA repair are still not clear. 500 

However, based on the evidence from our analysis with the omics data and previous 501 

studies (Li et al. 2009; Reijns et al. 2015; Tubbs et al. 2018), we speculate that 502 

strong nucleosomes may act as particularly strong barriers which impair the 503 

performance of the replication and repair machineries. There may be additional, 504 

unexamined effects on DNA damage/repair processes related to germline 505 

development, but many published genomic datasets about DNA damage/repair were 506 

generated in non-germ cells and with very short sequencing reads (e.g. <100bp), 507 

which hinder accurate analysis. Improved sequencing strategies such as long-read 508 

sequencing and direct measurement in germ cells would benefit future related 509 

studies. 510 

Interestingly, we found that strong nucleosomes are preferentially located within 511 

young LINE and SINE elements, two of the most common retrotransposons in the 512 

human and other mammalian genomes. Owing to their potentially deleterious effects, 513 

newly inserted retrotransposons are tightly repressed by multiple regulatory 514 

mechanisms, such as DNA methylation and H3K9me3 (Slotkin and Martienssen 515 

2007). Strong nucleosome positioning, which may mask access to the transcription 516 

machinery, could be another layer of the repressive system. Furthermore, the 517 
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hypermutation in young SINEs/LINEs, partly contributed by associated strong 518 

nucleosomes, could lead to the rapid reduction of retrotransposition capacity. 519 

Therefore, the combination of strong nucleosome positioning and hypermutation in 520 

SINEs/LINEs might have facilitated their expansion across the genome. 521 

The decreasing numbers of strong nucleosomes in older LINE/SINE elements imply 522 

widespread nucleosome re-positioning during evolution. Since nucleosome 523 

positioning is strongly affected by the underlying DNA sequence, their re-positioning 524 

probably arises from the accumulation of mutations. Our data largely disagree with 525 

the previous hypothesis of widespread selection for maintaining nucleosome 526 

positioning in the human genome (Prendergast and Semple 2011). Another reason 527 

for favoring the re-positioning model is that most genomic regions do not employ 528 

strong positioning, possibly due to its relatively high mutagenic potential.  529 

Finally, we summarized our major findings in a proposed model in Fig. 6, which 530 

demonstrates the relationship among nucleosome positioning, mutation rate variation, 531 

retrotransposons and evolution. Given the importance of germline de novo mutations 532 

in evolution and human diseases and the universal roles of nucleosomes in 533 

eukaryotic genome organization and regulation, our work should have profound 534 

implications in related research areas. 535 

 536 

Fig. 6 Proposed model of the interplay between nucleosome translational stability, 537 

mutation  rate and transposable elements. (a) Most genomic regions are occupied by 538 

nucleosomes lacking strong translational stability. (b) Strong nucleosomes are 539 

preferentially associated with newly inserted SINE/LINE elements. (c) Strong 540 

nucleosomal regions are subject to high mutation rates during germline development, 541 
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caused by mutational processes such as low replicase fidelity, inefficient MMR and DSB 542 

repair. (d) Accumulation of mutations reduces translational stability of strong 543 

nucleosomes and reduces transposition capacity of transposable elements.  544 

 545 

 546 

547 
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Methods 548 

Mutation datasets 549 

De novo mutations identified in multiple large-scale trio sequencing project were 550 

downloaded from denovo-db v1.6.1 (Turner et al. 2017b). Seven studies with >1000 551 

de novo mutations  (Genome of the Netherlands 2014; Turner et al. 2016; Yuen et al. 552 

2016; Jonsson et al. 2017; Turner et al. 2017a; Yuen et al. 2017; Werling et al. 2018) 553 

were considered in our analysis (Supplementary Fig. 1a). Extremely rare variants 554 

(derived allele frequency ≤ 0.0001) were obtained from Genome Aggregation 555 

Database (gnomAD, release 2.0.2) (Lek et al. 2016).  556 

Nucleosome datasets 557 

We used the 1,037,801 strong nucleosomes (i.e. translationally stable nucleosomes) 558 

identified based on MNase-seq data of sequenced seven lymphoblastoid cell lines 559 

from Gaffney et al. (Gaffney et al. 2012). The original hg18-based coordinates of 560 

annotated nucleosomes were converted to hg19 using the ‘liftOver’ tool from UCSC 561 

genome browser. The rotationally stable nucleosomes identified based on 49 DNase-562 

seq samples (43 distinct cell types) were from Winter et al. (Winter et al. 2013). We 563 

classified the human genome into three groups based on the nucleosome contexts 564 

(Fig. 1b): i) regions covered by translationally stable (‘strong’) nucleosomes; ii) 565 

regions covered by rotationally but not stable translationally nucleosomes; and iii) the 566 

remaining genomic regions. Chromosomes X and Y were excluded from analysis as 567 

some other datasets used in our work lacked data for these chromosomes. As the 568 

nucleosome maps we used were not derived from germ cells, for downstream 569 

analysis we excluded the genomic regions in which nucleosome positioning were 570 

found to differ between human embryonic stem cells and differentiated fibroblasts 571 

(West et al. 2014). Based on the positioning stability scores defined in Gaffney et al., 572 

we divided the one million strong nucleosomes into three categories of equal sizes 573 

with different levels of stability – ‘high’, ‘middle’ and ‘low’, which were used for 574 

analysis shown in Fig. 1 and Supplementary Fig. 1. 575 

Accounting for mappability 576 

Sequencing read mappability can significantly affect variant calling results and other 577 

aligned read-depth based measurements (e.g. nucleosome occupancy). The 578 

sequencing reads for detecting de novo mutations used in our analysis were mainly 579 

150bp paired-end reads, with fragment sizes ranging from 300-700bp 580 

(Supplementary Fig. 1). We used the Genome Mappability Analyzer (GMA) (Lee 581 
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and Schatz 2012) to generate the mappability scores for simulated paired-end 150 582 

reads with fragment sizes set to be 400bp. Only the regions with GMA mappability 583 

scores of >=90 (~2.59Gb) were considered for most analyses, unless specified 584 

otherwise. We did not use the mappability tracks from ENCODE for the de novo 585 

mutation data, because those tracks were only for single-ended reads. For some 586 

analyses, additional filtering were applied if other associated datasets suffered from 587 

more severe mappability issues. For measuring nucleosome occupancy, we used the 588 

method described in the Gaffney et al. to simulate paired-end 25bp reads matching 589 

the base compositions of MNase-seq data in the human genome, and then 590 

calculated per-base coverage depth by the simulated fragments. The 10bp-bin ratios 591 

between the MNase-seq read coverage and the simulated read coverage were used 592 

for measuring the occupancy.  593 

Enrichment analysis for de novo mutations in different nucleosome contexts  594 

Genomic association tester (GAT) (Heger et al. 2013), a tool for computing the 595 

significance of overlap between multiple sets of genomic intervals, was used to 596 

estimate the expected numbers of mutations in different contexts (sampling >=1000 597 

times), which were then compared with the observed numbers. Low-mappability 598 

regions were excluded from analysis. A similar analysis was also done for the 599 

extremely rare variants of gnomAD. Analysis of meta-profiles along strong 600 

nucleosomes was done using deepTools (Ramirez et al. 2014).  601 

Statistical modelling of the contribution of different factors to mutation rate 602 

variation 603 

As described in the main text, for a given genomic position, we defined two variables 604 

regarding the translational positioning of nearby nucleosomes (Fig. 2a):  605 

      
   

 
   

 
             

     
           

  
   

 
 

where d is the distance between a MNase-seq midpoint to the focal site. We 606 

considered MNase-seq midpoints within ±95bp of the focal site, because genome-607 

wide nucleosome repeat length was estimated to be 191.4bp for the Gaffney et al. 608 

data (Gaffney et al. 2012). Genomic sites without any MNase-seq midpoint within 609 

±95bp were excluded from analysis (123Mb out of 2.59Gb excluded). The 610 

measurements for nucleosome occupancy were 10bp-bin ratios between the MNase-611 
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seq read coverage and the simulated read coverage. We did not use the positioning 612 

score S(i) defined in Gaffney et al. to measure positioning stability in our modelling 613 

analysis, because S(i) was designed for identifying the stable dyads and so for non-614 

dyad positions it does not represent the positioning stability properly.  615 

RNA expression, DNA methylation and chromatin accessibility (ATAC-seq) data from 616 

human spermatogonial stem cells were from Guo et al. (Guo et al. 2017). For the 617 

RNA-seq and ATAC-seq data from Guo et al., because the genome-wide read signal 618 

tracks were not available, we downloaded, processed and mapped the raw reads to 619 

generate the genome-wide tracks. Since suitable data for histone modifications in 620 

human germ cells were not available, we used the ChIP-seq data of human 621 

embryonic stem cells from ENCODE (ENCODE Consortium 2012). Replication timing 622 

data (Repli-seq of GM12878) were also from ENCODE. The data of recombination 623 

rates were from the HapMap project (International HapMap Consortium et al. 2007).  624 

A binary logistic regression framework was used to assess the contribution of 625 

different factors to mutation rate variation across the genome systematically. The 626 

logistic regression model is described as below: 627 

          
                   

                     
 

 
       

         
 

             
 

   
     

where           denotes the probability that a genomic position is mutated (for 628 

testing individual SNV mutation types, e.g. A>T,   is the probability that a site is 629 

mutated to a specific nucleotide),   represents the observations for the considered 630 

variables (categorical or continuous, e.g. dmean, dvar, adjacent nucleotides, etc.), and   631 

is the vector of parameters to be estimated.  632 

We used the Bayesian logistic regression model implemented in the ‘bayesglm’ 633 

(Gelman et al. 2008) of the R package ‘arm’, which was reported to perform well in 634 

handling the complete separation issue in logistic regression models (Gelman et al. 635 

2008). The complete separation issue is common when one class is rare relative to 636 

the other and (or) there are many regressors in a model. As we had only ~300,000 637 

de novo mutations, the probability for a given site to be mutated in our data is 638 

~1/10,000, which is a rare event.  639 
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Within the logistic regression framework, we compared the full model with all 640 

considered variables to a reduced model without one specific variable by performing 641 

likelihood-ratio tests in R (‘anova’ function) to evaluate the significance for each 642 

variable. The resulting p values of a set of likelihood-ratio tests were adjusted for 643 

multiple testing with Benjamini–Hochberg correction. 644 

To perform the regression analysis, we generated the data of all variables for the de 645 

novo mutation sites and subsampled a fraction of the non-mutated sites as the 646 

control sites. We did not use all the non-mutated sites in the genome as it would lead 647 

to a large imbalance in the sizes of two classes (‘mutated’ and ‘non-mutated’) and 648 

much larger computational burden. For de novo SNVs, we randomly generated 649 

2,561,953 non-mutated sites (about 1/1000 of the accessible genome, about 10 650 

times as many as de novo SNVs) and 256,337 non-mutated sites (about 1/10,000 of 651 

the accessible genome, about 10 times as many as de novo INDELs) for INDELs. 652 

For de novo INDELs, we used the INDELs of ≤5bp for regression analysis, because 653 

long INDELs were rare and may have high false positive/negative rates. For RNA 654 

expression, DNA methylation, chromatin accessibility, replication timing, 655 

recombination rate and histone modifications data, we used the average value of the 656 

±10bp of a focal site for each specific feature based on the genome-wide signal 657 

tracks. We also assessed different window sizes (±5bp and ±20bp), which led to 658 

similar results. 659 

For SNVs, we performed logistic regression tests for mutation types at A/T sites and 660 

C/G sites separately and distinguished C/G sites in CpG and non-CpG contexts. We 661 

also tested for nine individual SNV mutation types (three for A/T sites, three for C/G 662 

sites at CpG contexts, and three for non-CpG contexts, Supplementary Fig. 3). The 663 

regression coefficients for the full model of each test are given in Supplementary 664 

Table 1.  665 

Since the variable dmean has a non-monotonic relationship with mutation rates, we 666 

binned the values into five categories: [0,18], [19, 36], [37, 54], [55, 73] and [74, 95] 667 

(first four bins implying nucleosome-bound regions, and the last bin implying close to 668 

the linker).  669 

In the regression models mentioned above, we did not consider the non-additive 670 

effects of adjacent nucleotides (±5 bp). When we tried adding non-additive effects for 671 

±5 nucleotides (considering only two-way interactions; taking a much longer running 672 

time), we got similar results regarding the association of translational stability (dvar) 673 
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and mutation rates (Supplementary Fig. 4). We also tried using the 7-mer mutability 674 

estimates from Carlson et al. (Carlson et al. 2018), which incorporated  non-additive 675 

effects among ±3 nucleotides, as predictors in the regression models.  676 

To evaluate how the sequence repeat status affects the effects of translational 677 

stability on mutation rates, We added the repeat status ( ‘Alu’, ‘L1’, ‘other repeat’ or 678 

‘non-repeat’) as a predictor in the regression models, and also ran the regression 679 

tests for different repeat/non-repeat regions separately. 680 

Analysis of mutational processes 681 

COSMIC mutational signatures are based on frequencies of mutations in tri-682 

nucleotide contexts. Since the regions associated with strong nucleosomes have 683 

different tri-nucleotide composition relative to genome background, we first 684 

normalized the mutation type frequencies in regions associated with strong 685 

nucleosomes as this: set           for the occurrence of a specific mutation type (e,g. 686 

T[T>C]T ),           for the occurrence of the considered tri-nucleotide context (e.g. 687 

TTT) in strong-nucleosome regions and          for the occurrence of the 688 

considered tri-nucleotide context in the whole-genome background, then the 689 

corrected occurrence of a the mutation type for strong nucleosomes is          
  690 

                                . Fisher’s exact tests were performed to identify 691 

mutation types that show significant increase or decrease in strong-nucleosome 692 

regions relative to genome background. The contingency table used for running 693 

‘fisher.test’ in R for a specific mutation type is 694 

                                                                                 695 

                              , where           . And             are the 696 

occurrences of the considered mutation type and            and           for the 697 

occurrences of the considered tri-nucleotide context. Benjamini-Hochberg method 698 

was used for multiple testing correction.  699 

The contribution of COSMIC mutational signatures (Alexandrov et al. 2013) to 700 

different sets of mutations (de novo SNVs and somatic mutations from bMMRD 701 

samples) was predicted using the ‘fit_to_signatures’ function in the R package 702 

‘MutationalPatterns’ (Blokzijl et al. 2018). For the sets of de novo SNVs associated 703 

with strong nucleosomes, the corrected frequencies described above were used for 704 

running ‘fit_to_signatures’. 705 
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Mutations in POLE in cancers can lead to reduced base selectivity and/or deficient 706 

proofreading during replication, producing unusually large numbers of mutations (so 707 

called ‘ultra-hypermutation’) which facilitated our analysis. POLE mutated genomes 708 

from PCAWG project (Campbell et al. 2017) were used to evaluate the differential 709 

MMR efficiency between strong and non-strong nucleosome regions. We compared 710 

the mutation densities in cancer genomes with POLE mutated and a deficient MMR 711 

(4 individual samples) to those with POLE mutated and a proficient MMR (6 samples). 712 

The MMR pathway was considered deficient if a driver mutation (annotated by the 713 

PCAWG consortium) was found in one of five MMR core genes - MLH1, MSH2, 714 

MSH6, PMS1 and PMS2. 715 

For a given bin (10bp-size) in the meta-profile, we calculated the relative MMR 716 

escape ratio relative to genomic background around strong nucleosomes as 717 

described in the following formula,  718 

  
       

  
            

  
           

              

             

 

where mi is the mutation density for the ith bin (observed number of mutations in the 719 

ith bin divided by the bin size), and   is the genome-wide average mutation density 720 

of a specific sample group (observed number of mutations in the simulated windows 721 

divided by the total window size), estimated by simulating random windows in the 722 

genome. A similar logic was used when evaluating relative proofreading escape 723 

ratios of Pol ε (mutated POLE) and Pol δ (mutated POLD1) using the somatic 724 

mutation data from the bMMRD project (Shlien et al. 2015).  725 

When analyzing PCAWG and bMMRD data, to account for potential mappability 726 

issues, we focused on the highly mappable regions based on the CrgMapability 727 

scores from ENCODE. We used CrgMapability scores here, which are more stringent 728 

than GMA ones, because detecting somatic mutations in tumors is more difficult than 729 

for ordinary individual re-sequencing data. We considered the strong nucleosomes 730 

which have a 100mer CrgMapability score of 1 (meaning any 100-bp read from these 731 

regions can be mapped uniquely in the genome) within ±800bp of the dyads. We 732 

then simulated a same number of 1600bp-sized regions from the genome that satisfy 733 

the mappability requirement to calculate the background mutation density. Note that 734 

in theory the mappability issue in the relative escape ratios should be very small 735 
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because the two sets of samples have the same mappability for a given bin and the 736 

ratio calculation normalizes the effects of different mappability among regions.     737 

The raw reads of OK-seq data (Petryk et al. 2016) were downloaded from NCBI and 738 

mapped to the human genome. We kept only the uniquely mapped reads for inferring 739 

Okazaki junctions. The very 5’ end sites of aligned reads (separating reads mapped 740 

to Watson and Crick strands) were considered putative Okazaki junction signals. 741 

To investigate DSBs around strong nucleosmes, we downloaded the genome-wide 742 

tracks of human END-seq data (GSM3227951 and GSM3227952) (Tubbs et al. 743 

2018). Because the reads of END-seq data were single-ended 75bp, we considered 744 

the strong nucleosomes which have a 75mer CrgMapability score of 1 within ±500bp 745 

of the strong nucleosome dyads for analysis. 746 

Enrichment analysis for strong nucleosomes in different repeat contexts 747 

GAT (Heger et al. 2013) was used to estimate the expected numbers of strong 748 

nucleosomes in different contexts (sampling >=1000 times), which were compared to 749 

the observed numbers. The annotations of repeat elements (Feb 2009, Repeat 750 

Library 20140131) were downloaded from RepeatMasker (Tempel 2012). We also 751 

did GAT analysis for LINE-1(L1) and Alu subfamilies of different ages. The age 752 

information of repeat families was from Giordano et al. (Giordano et al. 2007). For 753 

generating the MNase-seq midpoints along the repeat consensus sequences, we 754 

made use of the alignment information in the RepeatMasker result files 755 

(‘hg19.fa.align.gz’) and mapped the hg19-based coordinates to the coordinates in the 756 

consensus sequences. Strong nucleosomes appear to be under-detected in very 757 

young L1 elements, which we think is due to difficulties in mapping short MNase-seq 758 

reads (Alus are easier to map because they are much smaller). 759 

Nucleosome deformation energies of all sites in the human genome were estimated 760 

using nuScore (Tolstorukov et al. 2008). We also used nuScore to estimate the 761 

deformation energies of Alu/L1 subfamily consensus sequences. For the L1 analysis 762 

shown in Supplementary Fig. 8, we only considered the 3’ end regions of L1 763 

subfamilies, because 5’ end regions of L1 elements are usually truncated in the 764 

genome and their subfamily identities are difficult to be determined. 765 

 766 

  767 
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Supplementary Tables and Figures 989 

 990 

Supplementary Table 1 Coefficients of variables and other information from the 991 
full regression models for different mutation types (in a separate Excel file). 992 
Note that for each of the categorical variables, the first category was used by the 993 
regression model as reference category (other categories were compared with the 994 
reference category) and thus there is no coefficient for that category. The statistics 995 
(4th column) and p-values (5th column) in the table were from Wald tests defaultly 996 
produced by ‘bayesglm’ (shown for reference), which are different from the likelihood 997 
ratio test-based p-values and were not used in our discussion. 998 
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 1000 

Supplementary Figure 1 Mutations in different nucleosome contexts. (a) 1001 
Information of the de novo mutation datasets from seven studies used in analysis. (b) 1002 
Fold enrichment/depletion of gnomAD extremely rare SNVs in different nucleosome 1003 
contexts. ‘Strong’, translationally stable positioning; ‘Rotational’, rotationally but not 1004 
translationally stable positioning; ‘Others’, the remaining genomic regions. On the left 1005 
is the fold enrichment for three subgroups of strong nucleosomes with different 1006 
stabilities. Error bars depict 95% confidence intervals. (c) Fold enrichment/depletion 1007 
of gnomAD INDELs in different nucleosome contexts. When using all INDELs the 1008 
‘strong.high’ group does not have a higher mutation rate than other two groups, but if 1009 
using the 1-bp INDELs  ‘strong.high’ does have the highest mutation rate among the 1010 
three groups. We speculated that there may be more false negatives of longer 1011 
INDELs in the ‘strong.high’ group. (d) Top 10 repeat families that are associated with 1012 
strong nucleosomes. (e) Meta-profiles of SNV/INDEL densities (de novo or extremely 1013 
rare variants) around all strong nucleosomes, or in different repeat-associated 1014 
subgroups. At the bottom are the G+C content and CpG content profiles. 1015 
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 1018 

Supplementary Figure 2 Correlation analysis between nucleosome positioning 1019 
stability (dvar) and other factors. On the top of each panel are the Pearson’s 1020 
correlation coefficients and the corresponding p-values. 1021 
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 1026 

 1027 

Supplementary Figure 3 Results of statistical tests for nine individual SNV 1028 

mutation types. C/G sites in non-CpG contexts and C/G sites in CpG contexts were 1029 

tested separately. The red vertical lines represent the significance cut-off (0.05) for 1030 

the adjusted p values (Benjamini–Hochberg correction). ‘us’, upstream; ‘ds’, 1031 

downstream. ‘#’ means adjusted p < 1e-30. 1032 

 1033 
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 1036 

 1037 

 1038 

Supplementary Figure 4 Results of statistical tests when considering two-way 1039 
interactions of adjacent nucleotides, 7-mer mutability estimates from Carlson 1040 
et al. and repeat status. (a) Adding the two-way interactions for ±5 nucleotides in 1041 
the regression models. (b) Adding the 7-mer mutability estimates from Carlson et al. 1042 
as predictors in the regression models. (c) Adding repeat status as a predictor in the 1043 
regression models. (d) Running regression models for regions associated with 1044 
different repeat contexts separately. We tested SNVs at A/T sites, C/G sites in non-1045 
CpG context and C/G sites in CpG context separately. The red vertical lines 1046 
represent the significance cut-off (0.05) for the adjusted p values (Benjamini–1047 
Hochberg correction). ‘us’, upstream; ‘ds’, downstream. ‘#’ means adjusted p < 1e-30. 1048 
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 1050 

 1051 

Supplementary Figure 5 Analysis of related mutational processes using 1052 
bMMRD data. (a) Mutation profiles around strong nucleosomes for bMMRD cancer 1053 
genomes and the estimated relative escape ratios of Pol ε or Pol δ, for mutations at 1054 
A/T sites and C/G sites respectively. Fisher’s exact test was used for testing the 1055 
association of strong-nuclesome regions (dyad±95bp) with differential polymerase 1056 
performance. (b) Comparison of the contribution of COSMIC mutational signatures 1057 
predicted by MutationalPatterns in different bMMRD genomes. Highlighted is 1058 
Signature 12, which shows a particularly high contribution in POLD1-muated bMMRD 1059 
samples. (c) the tri-nucleotide mutational profile of Signature 12, obtained from 1060 
COSMIC website. 1061 
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 1065 

Supplementary Figure 6 Analysis with OK-seq data. (a) Schematic illustrating 1066 
replication strands and Okazaki junctions (OJs). (b) Meta-profile of the density of 1067 
Okazaki junctions inferred from alignments of OK-seq reads around strong 1068 
nucleosomes (high-mappability). OJ signals for Watson strand and Crick strand were 1069 
plotted separately. Replication directions of Okazaki fragments are shown by arrows. 1070 
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 1073 

Supplementary Figure 7 Analysis related to the DSBs around strong 1074 
nucleosomes. (a) Density of poly(dA:dT) tracts (based on occurrence of (dA:dT)6 1075 
motifs) around strong nucleosomes. (b-c) Signal of DSBs based on the END-seq 1076 
data around strong nucleosomes associated with different repeat elements. Only the 1077 
strong nucleosomes of high 75-mer mappability within ±500bp were considered. 1078 
Numbers of usable strong nucleosomes for each group are given in the brackets. HU 1079 
(hydroxyurea) is a replicative stress-inducing agent. 1080 
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 1081 

Supplementary Figure 8 Additional analysis about repeat subfamily ages and 1082 
strong nucleosomes. (a) nuScore-estimated per-base nucleosome deformation 1083 
energies along three Alu subfamily consensus sequences. On the right are the 1084 
comparisons of deformation energy distributions of the consensus sequences 1085 
(ancestral states) and those of current genomic regions for the three subfamilies 1086 
respectively. The deformation energy profiles of the consensus sequences are 1087 
similar, but the average deformation energies increase over time, with older Alu 1088 
subfamilies displaying larger differences relative to the consensus. (b) Similar to (a), 1089 
but for three example L1 subfamilies. (c) Barplots for normalized densities of strong 1090 
nucleosome dyads and de novo SNVs along the consensus sequences of three L1 1091 
subfamilies, using 10-bp bins. Several loci that are enriched for dyads of strong 1092 
nucleosomes are shown on the top with ellipses. The red dash lines represent the 1093 
average densities for the L1PA5 subfamily. The densities of strong nucleosome 1094 
dyads and de novo SNVs appear to decrease over evolutionary time.  1095 
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