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One sentence summary. Ancient and historical admixture events shaped the genetic structure of
modern-day Italians, the ancestry profile of Southern European populations and the continental
distribution of Neanderthal legacy.

Abstract

European populations display low genetic diversity as the result of long term blending of the small
number of ancient founding ancestries. However it is still unclear how the combination of ancient
ancestries related to early European foragers, Neolithic farmers and Bronze Age nomadic
pastoralists can fully explain genetic variation across Europe. Populations in natural crossroads like
the Italian peninsula are expected to recapitulate the overall continental diversity, but to date have
been systematically understudied. Here we characterised the ancestry profiles of modern-day Italian
populations using a genome-wide dataset representative of modern and ancient samples from across
Italy, Europe and the rest of the world. Italian genomes captured several ancient signatures,

including a non-steppe related substantial ancestry contribution ultimately from the Caucasus.
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Differences in ancestry composition as the result of migration and admixture generated in Italy the
largest degree of population structure detected so far in the continent and shaped the amount of

Neanderthal DNA present in modern-day populations.

Introduction
Our understanding of the events that shaped European genetic variation has been redefined by the

availability of ancient DNA (aDNA). In particular, it has emerged that, in addition to the
contributions of early hunter-gatherer populations, major genetic components can be traced back to
Neolithic (1-4) and Bronze Age expansions (3, 5).

The arrival of farming in Europe from Anatolia led to a partial replacement via admixture of
autochthonous and geographically structured hunter-gatherers, a process that generated individuals
genetically close to present-day Sardinians (2, 4, 6, 7). During the Bronze Age the dispersal of a
population related to the pastoralist nomadic Yamnaya from the Pontic-Caspian steppe area
dramatically impacted the genetic landscape of the continent, particularly of Northern and Central
Europe (3, 5, 8). This migration, supported by archaeological and genetic data, has also been
putatively linked to the spread of the Indo-European languages in Europe and the introduction of
several technological innovations in peninsular Eurasia (9). Genetically, ancient steppe populations
have been described as a combination of Eastern and Caucasus Hunter Gatherer/Iran Neolithic
ancestries (EHG and CHG/IN) (6), whose genetic signatures in the population of Central and
Northern Europe were introduced via admixture. However, the analysis of aDNA from Southern
East Europe identified the existence of additional contributions ultimately from the Caucasus (10,
11) and suggested a more complex ancient ancestry composition for Europeans (6).

The geographic location of Italy, enclosed between continental Europe and the Mediterranean
Sea, makes the Italian people relevant for the investigation of continent-wide demographic events,
to complement and enrich the information provided by aDNA studies. In order to characterise the

ancestry profile of modern-day populations and test the validity of the three-ancestries model
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across Europe (related to early European foragers, Neolithic farmers and Bronze Age nomadic
pastoralists), we characterised the genetic variability of present-day Italians and other Europeans
in terms of their ancient ancestry composition as the result of migration and admixture. In doing
so, we assembled and analyzed a comprehensive genome-wide SNP dataset composed by 1,616
individuals from all the 20 Italian administrative regions and more than 140 worldwide reference
populations, for a total of 5,192 modern-day samples (fig. S1, table S1), to which we added

genomic data available for ancient individuals (data file S1).
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105  Results

106  Distinctive genetic structure in Italy

107 We initially investigated patterns of genetic differentiation in Italy and surrounding regions by
108  exploring the information embedded in SNP-based haplotypes of modern samples (Full Modern
109  Dataset, FMD, including 218,725 SNPs). The phased genome-wide dataset was analysed using the
110 CHROMOPAINTER (CP) and fineSTRUCTURE (fS) pipeline (12, 13) (Supplementary materials)
111  to generate a tree of groups of individuals with similar “copying vectors” (clusters, Fig. 1A). The
112 fraction of pairs of individuals placed in the same cluster across multiple runs was on average 0.95
113 for Italian clusters and 0.96 across the whole set of clusters (see Materials and Methods,
114  Supplementary materials). Related non-European clusters were merged into larger groups in
115 subsequent analyses (see Materials and Methods, Supplementary materials).

116  Italian clusters separated into three main groups: Sardinia, Northern (North/Central-North Italy)
117 and Southern Italy (South/Central-South Italy and Sicily); the former two were close to populations
118 originally from Western Europe, while the latter was in proximity of Middle East groups (Fig. 1A,
119  fig. S2, data file S2). The cluster-composition of the administrative regions of Italy provided further
120  evidence for geographic structuring (Fig. 1B) with the separation between Northern and Southern
121 areas being shifted North along the peninsula; the affinity to Western and Middle Eastern
122  populations was also evident in the haplotype-based PCA (Fig. 1C), allele frequency PCA (fig. S3)
123 and the ADMIXTURE analysis (fig. S4).

124  These observations were replicated using a subset of the dataset genotyped for a larger number of
125 SNPs (High Density Dataset, HDD, including 591,217 SNPs; see Materials and Methods,
126 Supplementary materials, Fig. 1B, table S1). Recent migrants and admixed individuals, as identified
127 on the basis of their copying vectors (fig. S5, fig. S6, table S2), were removed in subsequent CP/fS

128  analyses (see Supplementary materials).
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129  We explored the degree of within-country differentiation by comparing the distribution of Fst
130  values among fS genetic clusters in Italy with the ones in several European countries (13-16) and
131 across the whole of Europe. Clusters within Italy were significantly more different from each other
132  than within any other country here included (median Italy: 0.004, data file S3; range medians for
133 listed countries 0.0001-0.002) and showed differences comparable with estimates across European
134  clusters (median European clusters: 0.004, Fig. 1D, see Materials and Methods, Supplementary
135  materials). The analysis of the migration surfaces (EEMS) (17) highlighted several barriers to gene
136 flow within and around Italy but also suggested the existence of migration corridors in the southern
137 part of the Adriatic and lonian Sea, and between Sardinia, Corsica and continental Italy (Fig. 1E;
138 fig. S7) (11).

139  Multiple ancient ancestries in Italian clusters

140  We investigated the ancestry composition of modern clusters by testing different combination of
141  ancient samples using the CP/NNLS pipeline, a previously implemented analysis that reconstructs
142 the profiles of modern populations as the combination of the “painted” profiles of different ancient
143 samples by using a “mixture fit” approach based on a non-negative least square algorithm (NNLS)
144 (13,18, 19). We applied this approach to ancient samples using the unlinked mode implemented in
145  CP, similarly to other routinely performed analyses based on unlinked markers or allele frequency,
146 such as gpAdm and ADMIXTURE. In addition, data from modern individuals (FMD) were
147 harnessed as donor populations (see Materials and Methods, Supplementary materials). Following
148  Lazaridis et. al 2017 (10), we performed two separate CP/NNLS analyses, “Ultimate” and
149  “Proximate”, referring to the least and the most recent putative sources, respectively (Fig. 2, fig.
150 S8, fig. S9). In the Ultimate analysis, all the Italian clusters were characterised by relatively high
151 amounts of Anatolian Neolithic (AN), ranging between 56% (Sltalyl) and 72% (NItaly4),
152 distributed along a North-South cline (Spearman p = 0.52, p-value < 0.05; Fig. 2A-C, fig. S8A),

153  with Sardinians showing values above 80%. A closer affinity of Northern Italian than Southern
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154 Italian clusters to AN was also supported by D-statistics (fig. S10). The remaining ancestry was
155  mainly assigned to WHG (Western Hunter-Gatherer), CHG and EHG. In particular, the first two
156 components were more present in populations from the South (higher estimates in Sltalyl ~13%
157 and Sltaly3 ~ 24% for WHG and CHG respectively), while the latter was more common in Northern
158  clusters (Nltaly6 = 15%). These observations suggest the existence of different secondary sources
159  contributions to the two edges of the peninsulas, with the North affected more by EHG-related
160  populations and the South affected more by CHG-related groups. Iran Neolithic (IN) ancestry was
161  detected in Europe only in Southern Italy.

162  North-South differences across Italy were also detected in the Proximate analysis. When Proximate
163  sources were evaluated, SBA contribution ranged between 33% in the North and 6% in the South
164  of Italy, while ABA (Anatolia Bronze Age) showed an opposite distribution (Fig. 2D-F, fig. S9), in
165  line with the results based on the D statistics (fig. S10, fig. S11), and mirroring the EHG and CHG
166  patterns, respectively. Contrary to previous reports, the occurrence of CHG as detected by the
167  CP/NNLS analysis did not mirror the presence of Steppe Bronze Age (SBA), with several
168  populations testing positive for the latter but not for the former ((6), Fig. 2, fig. S8). We therefore
169  speculate that our approach might in general underestimate the presence of CHG across the
170  continent; however, we note that even considering this scenario, the excess of Caucasus related
171 ancestry detected in the South of the European continent, and in Southern Italy in particular, is
172 striking and unexplained by currently proposed models for the peopling of the continent.

173 Interestingly, clusters belonging to the North had more EEN (European Early Neolithic) than
174 Southern ones, which in turn were composed by an higher fraction of ABA, although the high AN-
175  related component in both these ancient groups might have affected the exact source identification.
176 The relevance of ABA in Italy was additionally supported by the reduced fit of the NNLS (sum of
177 the squared residuals; Materials and Methods, Supplementary materials) when the Proximate

178 analysis was run excluding ABA. Results were similar to the full Proximate analysis for most of
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179  the European clusters, but not for Southern European groups, where the residuals were almost up
180  to twice as much when ABA was not included as a source (Fig. 2G). A similar behaviour, but for
181  Northern Italian and most of the European clusters, was observed when SBA was removed from
182  the panel of Proximate sources (Fig. 2H). The closer affinity of the Southern Italian clusters to ABA
183  was also highlighted by the PCA and ADMIXTURE analysis on ancient and modern samples (Fig.
184  2l, fig. S12, fig. S13, fig. S14) and significantly higher ABA ancestry in Southern than Northern
185 Italy, as estimated by NNLS analysis (Fig. 2D, Student's t-Test p-value < 0.05, Supplementary
186  materials). We also noted that in the Balkan peninsula signatures related to ABA were present but
187  less evident than in Southern Italy across modern-day populations, possibly masked by historical
188  contributions from Central Europe (20, 21) (Fig. 2, Fig. 3, fig. S8B). Overall, SBA and ABA appear
189  to have very different distribution patterns in Europe: continent-wide the former, more localised (in
190  the South) the latter. Similar results were obtained when other Southern European ancient sources
191  replaced ABA in the Proximate analysis (fig. S9, Materials and Methods, Supplementary materials).
192  These results were confirmed by gpAdm analysis. When two sources were evaluated, a large AN
193  contribution was supported only in one cluster (Sltaly2), while the vast majority of supported
194  models included ABA, Minoan or Mycenaean and one of the hunter-gatherer groups or SBA (table
195  S3, table S4). When three possible sources were allowed, AN was supported for all the Southern
196 Italian clusters, mostly in association with EHG/WHG/SBA and CHG/IN. Nevertheless, all the
197  analysed clusters, could be modelled as a combination of ABA, SBA and European Middle-
198 Neolithic/Chalcolithic, their contributions mirroring the pattern observed in the CP/NNLS analysis
199  (fig. S15, table S3, table S4). North African contributions, ranging between 3.8% (SCltalyl) to
200  14.5% (Sltalyl) became evident when combinations of five sources were tested. Sardinian clusters
201 were consistently modeled as AN+WHG+CHG/IN across runs, with the inclusion of North Africa
202 and SBA when different number of sources were considered. The gpAdm analyses of Italian HDD

203  clusters generated similar results (Materials and Methods, Supplementary materials, table S4). In
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204  order to obtain insights about the relationship between ancient and modern groups, we performed
205  the same gpAdm analysis on post-Neolithic/Bronze Age Italian individuals (fig. S15, table S5).
206  Iceman and Remedello, the oldest Italian samples here included (3,400-2,800 BCE, Before Current
207  Era), were composed by high proportions of AN (74 and 85%, respectively). The Bell Beaker
208  samples of Northern Italy (2,200-1,930 BCE) were modelled as ABA and AN + SBA and WHG,
209 although ABA was characterised by large standard errors but the detection of Steppe ancestry, at
210  14%, was more robust. On the other hand Bell Beaker samples from Sicily (2,500-1,900 BCE) were
211 modelled almost exclusively as ABA, with less than 5% SBA. Despite the fact that the small
212 number of SNPs and prehistoric individuals tested prevents the formulation of conclusive results,
213 differences in the occurrence of AN ancestry, and possibly also Bronze Age related contributions,
214  are suggested to be present between ancient samples from North and South Italy. Differences across
215  ancient Italian samples were also supported by their projections on the PCA of modern-day data
216  (Fig. 21). Remedello and Iceman clustered with European Early Neolithic samples, together with
217 one of the three Bell Beaker individuals from North Italy, as previously reported (22), and modern-
218  day Sardinians. The other two Bronze Age North Italian samples clustered with modern North
219 Italians, while the Bell Beaker sample from Sicily was projected in between European Early
220 Neolithic, Bronze Age Southern European and modern-day Italian samples (Fig. 21).

221 Historical admixture

222 In order to investigate the role of historical admixture events in shaping the modern distribution of
223  ancient ancestries, we generated the admixture profiles of Italian and European populations using
224  GLOBETROTTER (GT, (21)) (Fig. 3, fig. S16, table S6, table S7).

225  We discussed here the results based on the full modern dataset (FMD) as it provided a wider
226 coverage at population level.

227 We run the analysis excluding the Italians as donors in order to reduce copying between highly

228  similar groups (GT “noltaly” analysis; Fig. 3). The events detected in Italy occurred mostly between
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229 1,000 and 2,000 years ago (ya), and extended to 2,500ya in the rest of Europe (Fig. 3A and fig.
230  S16). Clusters from Caucasus and North-West Europe were identified all across Italy as best-
231  proxies for the admixing sources, while Middle Eastern and African clusters were identified as best
232 proxies only in Southern Italian clusters and Sardinia (Fig. 3B, C). We noted that when we extended
233 the search for the best-proxies to include also Italian clusters, these were as good as or better proxies
234 than clusters from the Caucasus and the Middle East. On the other hand, North-West European and
235  African clusters were usually still better proxies than groups from any other area (Fig. 3B, C).
236 Notably, Eastern and Middle Eastern clusters were not detected as best proxies when we run the
237 GT analysis including all clusters as donors, contrary to African, European and Italian groups
238 (“GTall” analysis; table S6). Overall these results supported a scenario in which gene flow mostly
239 occurred between resident Italian sources and non-Italian sources. SBA and ABA ancestries were
240  detected in Italian and non-Italian best-proxies (Fig. 2D, Fig. 3, table S6, table S7), which suggests
241  that part of these ancestries arrived from outside Italy in historical times, but also that these
242  components were already present in Italian groups at the time of these admixture events. Episodes
243 of gene flow were also detected in Sardinia, combining signals from both the African continent and
244 North West Europe. MALDER results for the more recent episodes replicated the admixture pattern
245  identified by GT (fig. S16, table S8).

246 The Neanderthal legacy across Italy and Europe

247  The variation in ancestry composition reported across Italy and Europe is expected to influence
248  other aspects of the genetic profiles of European populations, including the presence of archaic
249  genetic material (6). We investigated the degree of Neanderthal ancestry in Italian and other
250  Eurasian populations by focusing on SNPs tagging Neanderthal introgressed regions (23, 24). SNPs
251 were pruned for LD and a final set of 3,969 SNPs was used to estimate the number of Neanderthal
252 alleles in samples genotyped for the Infinium Omni2.5-8 Illumina beadchip. Asian and Northern

253  European populations had significantly more Neanderthal alleles than European and Southern
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254  European groups respectively, as previously reported (25-28), with significant differences also
255  highlighted within Italy (Fig. 4A, B). Contributions from African groups possibly influenced these
256  patterns, particularly in Southern European populations (20) (Fig. 2, Fig. 3). However differences
257 within Europe and Italy were still present once individuals belonging to clusters with African
258  contributions were removed (fig. S17, see Materials and Methods, Supplementary methods).
259  Ancient samples have been reported to differ in the amount of Neanderthal DNA due to variation
260 in the presence of a so-called “Basal Eurasian” lineage, stemming from non-Africans before the
261  separation of Eurasian groups and harbouring only a negligible fraction of Neanderthal ancestry
262  (6). Consistent with this (6), we found the estimated amounts of Basal Eurasian and Neanderthal to
263  be negatively correlated across modern day European clusters (Fig. 4C, fig. S18, fig. S19),
264  irrespective of the removal of all the clusters admixed with African sources (see Materials and
265  Methods, Supplementary materials; fig. S17).

266  The variation in Neanderthal ancestry was also reflected at specific loci. A total of 144 SNPs were
267 identified among the Neanderthal-tag SNPs showing the largest differences in allelic frequency in
268  genome-wide comparisons across Eurasian and African populations (see Materials and Methods,
269  Supplementary materials - Neanderthal-Tag SNPs within the Top 1% of the genome-wide
270  distributions of each of the 55 pairwise population comparisons - NTT SNPs; fig. S20). The top 1%
271 of each distribution was significantly depleted in Neanderthal SNPs (see Materials and Methods,
272 Supplementary materials, table S9), in agreement with a scenario of Neanderthal mildly deleterious
273 variants being removed more efficiently in human populations (29-31).

274 The 50 genes containing NTT SNPs were enriched for phenotypes related to facial morphology,
275  body size, metabolism and muscular diseases (see Materials and Methods, Supplementary
276  materials, data file S4). A total of 34 NTT SNPs were found to have at least one known phenotypic
277  association (32, 33) (data file S4). Among these, we found Neanderthal alleles associated with

278  increased gene expression in testis and in skin after sun exposure (SNPs within the IP6K3 and
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279  ITPR3 genes), susceptibility to cardiovascular and renal conditions (AGTR1), and Brittle cornea
280  syndrome (PRDMS5) (24). NTT SNPs between European and Asian/African populations included
281  previously reported variants in BNC2 and SPATAL8 genes (23, 34, 35) (see Materials and Methods,
282  Supplementary materials, Fig. 4D), while 80 NTT SNPs were involved in at least one comparison
283  between Northern (CEU, GBR and FIN) and Southern European populations (IBS and Italian
284  groups). Among these SNPs, three mapped to the Neanderthal introgressed haplotype hosting the
285  PLAZ2R1 gene, the archaic allele at these positions reaching frequencies of at least 43% in Northern
286  European and at most of 35% in Southern European populations (Fig. 4E, F). Ten SNPs showed an
287  opposite frequency gradient: seven mapped to one Neanderthal introgressed region spanning the
288  OR51F1, OR51F2 and OR52R1 genes (Fig. 4E, F), and the other three identified regions hosting
289  the AKAP13 gene, within one of the high frequency European Neanderthal introgressed haplotypes
290  recently reported (36) (Fig. 4E, F).

291  Discussion

292  The pattern of variation reported across Italian groups appears geographically structured in three
293  main regions: Southern and Northern Italy and Sardinia. The North-South division in particular
294  appeared as shaped by the distribution of Bronze Age ancestries with signatures of different
295  continental hunter-gatherer groups. The results of the analyses of both modern and ancient data
296  suggest that ancestries related to Caucasus and Eastern hunter-gatherers were possibly initially
297  brought in Italy by at least two different contributions from the East. Of these, one is the well-
298  characterised SBA signature ultimately associated with the nomadic groups from the Pontic-
299  Caspian steppes. This component entered Italy from mainland Europe and was present in the
300 peninsula in the Bronze Age, as suggested by its presence in Bell Beaker samples from North Italy
301 (table S5). SBA ancestry continued to arrive from the continent up until historical times (Fig. 3).
302  The other contribution is ultimately associated with CHG ancestry and affected predominantly the

303  South of Italy, where it now represents a substantial component of the ancestry profile of local
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304  populations. This signature is still uncharacterised in terms of precise dates and origin; however
305  such ancestry was possibly already present during the Bronze Age in Southern Italy (table S5) and
306  was further supplemented by historical events (Fig. 3).

307  The very low presence of CHG signatures in Sardinia and in older Italian samples (Remedello and
308 Iceman) but the occurrence in modern-day Southern Italians might be explained by different
309  scenarios, not mutually exclusive: 1) population structure among early foraging groups across Italy,
310  reflecting different affinities to CHG; 2) the presence in Italy of different Neolithic contributions,
311  characterised by different proportion of CHG-related ancestry; 3) the combination of a post-
312 Neolithic, prehistoric CHG-enriched contribution with a previous AN-related Neolithic layer; 4) A
313 substantial historical contribution from Southern East Europe across the whole of Southern Italy.
314  No substantial structure has been highlighted so far in pre-Neolithic Italian samples (8). An arrival
315  of the CHG-related component in Southern Italy from the Southern part of the Balkan Peninsula is
316  compatible with the identification of genetic corridors linking the two regions (Figure 1E, (11)) and
317  the presence of Southern European ancient signatures in Italy (Figure 2). The temporal appearance
318  of CHG signatures in Anatolia and Southern East Europe in the Late Neolithic/Bronze Age suggests
319 its relevance for post-Neolithic contributions (37). Additional analyses of aDNA samples from
320  around this time in Italy are expected to clarify what scenario might be best supported.

321 Historical events possibly involving continental groups at the end of Roman Empire and African
322 contributions following the establishment of Arab kingdoms in Europe around 1,000 ya (20, 21,
323 38-40) played a role in further shaping the ancestry profiles of the Italian populations.

324  Despite Sardinia was confirmed as being the most closely related population to Early European
325  Neolithic farmers (Figure 2D, 1), there is no evidence for a simple genetic continuity between the
326  two groups. Sardinia, and the rest of Italy, experienced in fact historical episodes of gene-flow (4)
327  (Fig. 2, Fig. 3, table S3, table S4) that contributed to the further dispersal of ancient ancestries and

328  the introduction of other components, including African ones.
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329

330 It has been previously reported that variation in the effective population size might explain
331 differences in the amount of Neanderthal DNA detected in European and Asian populations (24,
332 27, 41). Additional Neanderthal introgression events in Asia and gene-flow from populations with
333  lower Neanderthal ancestry in Europe possibly provide further explanations for differences in
334  Neanderthal occurrence across populations (42). The spatial heterogeneity of Neanderthal legacy
335  within Europe here reported appears as the result of ancient and historical events which brought
336 together in different combinations groups harbouring different amounts of Neanderthal genetic
337 material. While these events have shaped the overall continental distribution of Neanderthal DNA,
338 locus-specific differences in the occurrence of Neanderthal alleles are also expected to reflect
339  selective pressures acting on these variants since their introgression in the populations (30, 31).
340  The variation in ancestry composition detected across Italy extends to neighbour regions and
341  appears to combine historical contributions and ancient stratification. The differences between
342 Northern and Southern Italian populations are possibly reflecting long-term differential links with
343  Central and Southern Europe respectively, with additional contributions from the African continent
344  for the Southern part of Italy and Sardinia.

345  The multifaceted admixture profile here sketched provides an interpretative framework for the

346  processes that have shaped Southern European genetic variation. The inclusion of ancient samples
347 spanning diachronic and geographic transects from the Italian peninsula and nearby regions will
348  help in clearing up further questions about the temporal and spatial dynamics of these processes.
349  Materials and Methods

350

351  Analysis of modern samples

352  Dataset. Two hundred and twenty-four samples are here present for the first time. Of these, 167

353 Italians and 6 Albanians were specifically selected and sequenced for this project with two versions
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354 (1.2 and 1.3) of the Infinium Omni2.5-8 Illumina beadchip, while 57 additional Italians and
355  Europeans were previously sequenced with Illumina 660W and are presented here for the first time
356  (Supplementary materials, table S1). Two separate world-wide datasets were prepared. The Full
357  Modern Dataset (FMD) included 4,852 samples (1,589 Italians) and 218,725 SNPs genotyped with
358  Illumina arrays; the High Density Dataset (HDD) contained 1,651 samples (524 Italians) and
359 591,217 SNPs genotyped with the lllumina Omni array (Supplementary materials).

360  The merging, the removal of ambiguous C/G and A/T and triallelic markers, the exclusion of related
361 individuals and the discarding of SNPs in linkage disequilibrium (LD) were performed using
362  PLINKL.9 (43, 44). Only autosomal markers were considered.

363  Haplotype analysis (CHROMOPAINTER, CP, and fineSTRUCTURE, fs). Phased haplotypes
364  were generated using SHAPEIT(45) and applying the HapMap b37 genetic map.

365 CP was employed to generate a matrix of recipient individuals “painted” as a combination of donor
366  samples (copying vector). Three runs of CP were done for each dataset generating three different
367  outputs: (i) a matrix of all the individuals “painted” as a combination of all the individuals, for
368  cluster identification and GT analysis; (ii) a matrix of all Italians as a combination of all Italians,
369  for Fst analysis; (iii) a matrix of all the samples as a combination of all the other samples but
370  excluding Italians, for “local” GT analysis.

371 Clusters were inferred using fineSSTRUCTURE (fS). After an initial search based on the “greedy”
372 mode, the dendrogram was processed by visual inspection (18, 20) according to the geographical
373 origin of the samples. The robustness of the cluster was obtained by processing the MCMC pairwise
374  coincidence matrix (Supplementary materials).

375  Cluster Self-Copy Analysis. Recently admixed individuals were identified as those copying from
376  members of the cluster they belong less than the amount of cluster self-copying for samples with

377  all the four grandparents from the same geographic region (Supplementary materials).
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378  Principal Component Analysis (PCA). PCA was performed on CP chunkcount matrix
379  (Supplementary materials) and was generated using the prcomp() function on R software (46).
380  Allele frequencies PCA was performed using smartpca implemented in the EIGENSOFT (47) after
381  pruning the datasets for LD.

382  Characterization of the migration landscape (EEMS analysis). Estimated Effective Migration
383  Surfaces analysis (EEMS) (17) was performed estimating the average pairwise distances between
384  population using bed2diffs tool and the resulting output was visualised by using the Reems package
385  (17).

386 ADMIXTURE analysis. ADMIXTUREZ1.3.0 software (48) was used performing 10 different runs
387  using a random seed. The results were combined with CLUMPP (49) using the largeKGreedy
388  algorithm and random input orders with 10,000 repeats. Distruct implemented in CLUMPAK (50,
389  51) was then used to identify the best alignment of CLUMPP results. Results were processed using
390 R statistical software (46) .

391  Fst estimates among clusters. Pairwise Fst estimates among newly generated Italian clusters and
392 among originally generated European clusters (Supplementary materials) were inferred using
393  smartpca software implemented in the EINGESOFT package (47). Comparisons between the Fst
394  distributions were performed using a Wilcoxon rank sum test in R programming language
395  environment.

396  The time and the sources of admixture events (GT analysis and MALDER analysis). Times of
397  haplotype-dense data admixture events were investigated using GLOBETROTTERV2 software. GT
398 was employed using two approaches: complete and non-local (referred as ‘“noltalian”,
399  Supplementary materials), in default modality (13, 20, 52). The difference between the two
400 approaches was the inclusion or the exclusion respectively of all the Italian clusters as donors in
401 the CP matrix used as input file. To improve the precision of the admixture signals, “null.ind 17

402  parameter was set (52). Unclear signals were corrected using the default parameters and a total of
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403 100 bootstraps were performed. MALDER uses allele frequencies to dissect the time of admixture
404  signals. The best amplitude was identified and used to calculate a Z-score (Supplementary
405  materials). A Z-score equal or lower than 2 identifies not significantly different amplitude curves
406 (53, 54) (Supplementary materials).

407  Sources for both GT and MALDER were grouped in different ancestries as indicated in the legend
408  of Fig. 3, fig. S16.

409  The expression (1950 — (g +1)* 29), where g is the number of generation, was used to convert into
410  yearsthe GT and MALDER results, negative numbers were preceded by BCE (Before Current Era)
411 letters.

412

413 Analyses including ancient samples

414  Dataset. In order to explore the extent to which the European and Italian genetic variation has been
415  shaped by ancient demographic events, we merged modern samples from FMD with 63 ancient
416  samples selected from recent studies (6, 7, 10, 22, 37, 55-57) (data file S1).

417 Principal Component Analysis (PCA). We performed two principal components analyses with
418  the EIGENSOFT (47) smartpca software and the “Isgproject” and “shrinkmode ” option, projecting
419  the ancient samples on the components inferred from modern European, West Asian and Caucasian
420 individuals and, then, only on modern European clusters. In order to evaluate the potential impact
421 of DNA damage in calling variants from aDNA samples, we repeated the PCA with the 63 ancient
422 samples and modern European, Caucasian and West Asian samples by removing transition
423 polymorphisms and recorded significant correlations for the localisation of ancient samples along
424  PClandPC2 (r >0.99, p-value < 0.05).

425  ADMIXTURE analysis. We projected the ancient samples on the previously inferred ancestral

426  allele frequencies from 10 ADMIXTURE (48) runs on modern samples (see “Analysis of modern
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427  samples” section and Supplementary materials). We used CLUMPP(49) for merging the resulting
428  matrices and distruct (51) for the visualization.

429  D-STATISTICS. We tested for admixture using the D-statistics as implemented in the gpDstat tool
430 in the software ADMIXTOOLS v4.2 (58). We performed the D-statistic analyses evaluating the
431 relationship of Italian cluster with AN, ABA and SBA. In details, we performed the the D-statistics
432 D(Ital,1ta2, AN/ABA/SBA,Mbuti) where Ital and Ita2 are the different clusters composed mainly
433 by italian individuals as inferred by fineStructure.

434  CHROMOPAINTER (CP)/Non-Negative Least Squares (NNLS) analysis. We used an
435  approach based on the software CP (12, 59) and a slight adaptation of the non-negative least square
436 (NNLS) function (13, 18, 19) to estimate the proportions of the genetic contributions from ancient
437 population to our modern clusters. We run CP using the “unlinked” mode (55) and the same Ne and
438 O parameters of the modern dataset and we painted both modern and ancient individuals, using only
439  modern samples as donors (55, 56). Then we “inverted” the output of CP by solving an
440  appropriately formulated NNLS problem, producing a painting of the modern clusters in terms of
441  the ancients. We applied this combined approach on different sets of ancient samples (Ultimate and
442  various combinations of Proximate sources).

443 The goodness of fit of the NNLS was measured evaluating the residuals of the NNLS analysis. In
444  details, we focused on the Proximate sources, and compared the sum of squared residuals when
445  ABA or SBA were included/excluded as putative sources.

446  qpAdm analysis. We used the ancestral reconstruction method gpAdm, which harnesses different
447  relationships of populations related to a set of outgroups (eg. f4[Target, O1, 02, 03]).

448 In details, for each tested cluster of the FMD and HDD, we have evaluated all the possible
449  combinations of N “left” sources with N={2..5}, and one set of right/left Outgroups (Supplementary

450  materials).
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451  For each of the tested combinations we used gpWave to evaluate if the set of chosen outgroups is
452  able to I) discriminate the combinations of sources and Il) if the target may be explained by the
453 sources. We used a p-value threshold of 0.01. Finally, we used gpAdm to infer the admixture
454  proportions and reported it and the associated standard errors in Supplementary table S3 and table
455  S4. Inaddition, we performed the same analysis for Iceman, Remedello and Bell Beaker individuals
456 from Sicily and North Italy (table S5).

457

458  Archaic contribution

459  Dataset. We assembled an additional high density dataset by retaining only samples genotyped on
460  the Illumina Infinium Omni2.5-8 BeadChip from our larger modern dataset. In particular, we
461  included seven populations from the 1000 Genomes Project: the five European populations
462  (Northern European from Utah - CEU, England - GBR, Finland - FIN, Spain - IBS, Italy from
463  Tuscany - TSI), one from Asia (Han Chinese - CHB) and one from Africa (Yoruba from Nigeria -
464  YRI). We also retained 466 Italian samples, whose four grandparents were born in the same Italian
465  region. The Italian samples were broadly clustered according to their geographical origin into
466  Northern (ITN), Central (ITC), Southern (ITS) Italians and Sardinians (SAR), while TSI samples
467  from 1000 Genome Project formed a separate cluster (table S10).

468  From this dataset, we extracted 7,164 Neanderthal SNPs tagging Neanderthal introgressed regions
469  (24). In order to select which allele was inherited from Neanderthals, we chose the one from the
470  Altai Neanderthal (41) genome when it was homozygous and the minor allele in YRI when it was
471 heterozygous.

472 Number of Neanderthal alleles in present-day human populations. After pruning variants in
473 linkage disequilibrium, we counted the number of Neanderthal alleles considering all the tag-SNP

474  across all samples. Then, we compared the distribution of Neanderthal allele counts across
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475  populations with the two-sample Wilcoxon rank sum test. We repeated the same analyses after
476 removing outlier individuals.

477  Basal Eurasian ancestry and Neanderthal contribution. In order to infer the proportion of Basal
478  Eurasian present in European populations (6, 7), we used the f4 ratio implemented in the
479  ADMIXTOOLS package (58) in the form f4(Target, Loschbour, Ust_Ishim, Kostenkil4)/
480  f4(Mbuti, Loschbour, Ust_Ishim, Kostenkil4). We repeated this approach to infer the Neanderthal
481  ancestry, in the form f4 (Mbuti, Chimp Target, Altai)/ f4(Mbuti, Chimp, Dinka, Altai) (fig. S18,
482  fig. S19). We then performed the same analyses by grouping the modern individuals according to
483  the CP/fS inferred clusters (“Analysis of modern samples” section) and retained only clusters with

484  at least 10 samples (Fig. 4)

485  African ancestry and Neanderthal legacy. The impact of African contributions in shaping the
486  amount of Neanderthal occurrence was evaluated by exploring how the removal of the clusters
487  showing African gene-flow as detected by GT analysis (Fig. 3) and how individuals belonging to
488  these clusters affected the correlation between Basal Eurasian/Neanderthal estimates and the degree
489  of population differentiation in the amount of Neanderthal alleles, respectively (Supplementary

490  materials; fig. S17).

491  Comparison of Neanderthal allele frequencies across modern populations. We computed the
492  allele frequency differences for every SNPs for each of the possible pairs of the eleven populations
493  in our dataset, thus obtaining 55 distributions (Supplementary materials). Then, we selected the
494  NTT SNPs, i.e. the Neanderthal-Tag SNPs in the Top 1% of each distribution (data file S4).

495  The biological implications of Neanderthal introgression. Given the list of genes overlapping
496  the Neanderthal introgressed regions harbouring the NTT SNPs and the list of genes directly

497  harbouring the NTT SNPs, we performed different enrichment tests with the online tool EnrichR
498 (60, 61). Particularly, we searched for significant enrichments compared to the human genome

499  using the EnrichR collection of database, e.g. dbGaP (62, 63), Panther 2016 (64), HPO (65) and
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KEGG 2016 (66-68) (data file S4). We then investigated known direct associations between the
Neanderthal alleles of the NTT SNPs and phenotypes, by looking in the GWAS and PheWAS

catalogues (32, 33) and by applying the PheGenl tool (69) (Supplementary Data 5). We used the
circos representation as in Kanai et al. (70), to highlight different sets of NTT SNPs (Figure 4F).
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709  the first time (135 Italian samples and 6 samples from Albania, genotyped on the Infinium Omni2.5-

710 8 lllumina beadchip) can be downloaded at the following webpage: XXX
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Fig. 1. Genetic structure of the Italian populations.

A) Simplified dendrogram of 3,057 Eurasian samples clustered by the fS algorithm using the CP output
(complete dendrogram in fig. S2A); each leaf represents a cluster of individuals with similar copying
vectors; clusters with more than five individuals are labelled in black; Italian clusters are colour coded;
grey labels ending with the D letter refer to clusters containing less than five individuals or individuals of
uncertain origin that have been removed in the following analyses. B) Pie charts summarizing the relative
proportions of inferred S genetic clusters for all the 20 Italian administrative regions (colours as in A).
C) PCA based on CP chunkcount matrix (colours as in A); the centroid of the individuals belonging to
non-Italian clusters is identified by the label for each cluster. D) Between-clusters Fy estimates within
European groups; clusters were generated using only individuals belonging to the population analysed
(Materials and Methods, Supplementary materials); the number of genetic clusters analysed for each
population is reported within brackets; for the comparisons across Europe, the cluster NEuropel contain-
ing almost exclusively Finnish individuals was excluded (Fy estimates for Italian and European clusters
are in data file S3); F distributions statistically different from the Italian set are in grey. E) Estimated
Effective Migration Surfaces (EEMS) analysis in Southern Europe; colours represent the log10 scale of
the effective migration rate, from low (red) to high (yellow).
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Fig. 2. Ancient ancestries in Western Eurasian modern-day clusters and Italian ancient samples.
A, D) CP/NNLS analysis on all Italian and European clusters using as donors different sets of ancient
samples and two modern clusters (NAfrical: North Africa, EAsia2: East Asia) (full results in fig. S8).
A) Ultimate sources: AN, Anatolian Neolithic (Bar8); WHG, Western Hunter Gatherer (Bichon); CHG,
Caucasus Hunter Gatherer (KK1); EHG, Eastern Hunter Gatherer (I0061); IN, Iranian Neolithic (WC1).
B) EHG and C) CHG ancestry contributions in Western Eurasia, as inferred in A and fig. S8A (Sup-
plementary materials). D) Same as in A, using Proximate sources: WHG, Western Hunter Gatherer
(Bichon); EEN, European Early Neolithic (Stuttgart); SBA, Bronze Age from Steppe (10231); ABA,
Bronze Age from Anatolia (12683). E) SBA and F) ABA ancestry contributions, as inferred in D and fig.
S8B. Triangles refer to the location of ancient samples used as sources (see data file S1). G): ratio of the
residuals in the NNLS analysis (Materials and Methods, Supplementary materials) for all the Italian and
European clusters when ABA was excluded and included in the set of Proximate sources; H) as in G), but
excluding/including SBA instead of ABA; J) Ancient Italian and other selected ancient samples projected
on the components inferred from modern European individuals. Labels are placed at the centroid of the
individuals belonging to the indicated clusters.
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Fig. 3. Admixture events inferred by GLOBETROTTER (GT).

A) Dates of the events inferred in the GT “noltaly” analysis on all the Italian clusters (els as in Fig. 1A and
data file S2; full results in fig. S16 and table S7; see Materials and Methods, Supplementary materials);
lines encompassed the 95% CI. GT events were distinguished in “one date” (black squares; 1D in table
S7) and “one date multiway” (white squares; IMW). B) Correlation values between copying vectors of
1% source(s) identified by GT and the best proxy in the noltaly analysis (circles) or the best proxy among
Italian clusters (diamonds). C) Same as in B, referring to 2" source(s) copying vectors. Empty symbols
refer to additional 1% (B) and 2™ (C) sources detected in multiway events. African best proxies in (B)
for clusters Sltalyl and Sltaly2 were plotted on the 0.90 boundary for visualisation only, the correlation
values being 0.78 and 0.87 respectively. Colours of symbols refer to the ancestry to which proxies were
assigned (see Materials and Methods, Supplementary materials).
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Fig. 4. Neanderthal ancestry distribution in Eurasian populations.

A) Neanderthal allele counts in individuals from Eurasian populations, sorted by median values on 3,969
LD-pruned Neanderthal tag-SNPs. CEU, Utah Residents with Northern and Western European ances-
try; GBR, British in England and Scotland; FIN, Finnish in Finland; IBS, Iberian Population in Spain;
TSI, Tuscans from Italy; ITN, Italians from North Italy; ITC, Italians from Central Italy; ITS, Italians
from South Italy; SAR, Italians from Sardinia; CHB, Han Chinese. B) Matrix of significances based on
Wilcoxon rank sum test between pairs of populations including (lower triangular matrix) and removing
(upper) outliers (Materials and Methods, Supplementary materials; dark blue: adj p-value < 0.05; light
blue: adj p-value > 0.05). C) Correlation between Neanderthal ancestry proportions and the amount of
Basal Eurasian ancestry in European clusters (Materials and Methods, Supplementary materials). D, E)
Neanderthal allele frequency (AF) for selected SNPs within the indicated genes: D) high frequency alle-
les in Europe; E) North-South Europe divergent alleles. F) Comparisons between Northern European and
Italian populations (excluding Sardinia). Bars refer to comparison for reported pairs of populations; the
number of NTT SNPs is reported within bars. Each section of the circos represents a tested chromosome;
points refer to NTT SNPs. Colours, same as for bars; igr: intergenic region variant.
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Fig. S1. Geographic location of populations included in FMD and HDD.
A) European, North African and Western Eurasia samples; B) World-wide samples. Numbers as in table
S1.
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Fig. S2. fineSSTRUCTURE dendrogram of all the 4,852 (A, FMD) and 1,641 (B, HDD) samples.
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to the Italian clusters. The details of cluster assignation are reported in data file S2.
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Fig. S3. Allele frequency Principal Components Analysis (PCA) of modern samples (genotype-
based).

A) PCA of 3,057 modern samples included in Eurasian CP/fS inferred clusters; all the samples are la-
belled and coloured as in Fig. 1A. B) PCA of 2,469 modern European samples as displayed from the
dendrogram resulting from CP/fS (Fig. 1A).
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Fig. S4. Individual-level ADMIXTURE analysis of modern samples.
Samples are grouped according to the genetic clusters inferred by the CP/fS pipeline and named as in fig.

S2.
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Fig. S5. “Cluster self-copy” analysis.

Box plots refer to the distributions of the self-copying vectors for each cluster for samples with same
birthplace region for the four grandparents; coloured points refer to individual samples with other/no
information; outliers are indicated as white circles. Coloured points refer to: A) subjects with no in-
formation available on their place of birth (red); B) subjects with only their own birthplace information
(yellow); C) subjects with parents birthplace information (violet); D) subjects with “mixed” parental
ancestry (parents from different regions) (blue); E) same as in D), red crosses identify individuals with
parents born in different macro-areas (North and South Italy) indicated as suffix in each Italian population
(table S1), while green dots refer to samples with parents born in the same macro-area.
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Fig. S6. PCA with Admixed Italian individuals.

Individuals with parents known to be born in two different macro-areas (see Materials and Methods,
Supplementary materials - Cluster Self-Copy analysis) are plotted in red together with all the other Italian
individuals, these coloured according either to the clusters they belong to (A) or in grey (B). Macro-areas
are separated in Northern and Southern, where the central regions of Tuscany and Emilia are considered
as part of the Northern macroarea and Latium, Abruzzo, Marche and Sardinia were considered as part of
the Southern macro-area.
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Fig. S7. Results of the EEMS analysis on Italy-only populations.
A) Colours represent the logl0 scale of the effective migration rate from low (red) to high (yellow).
Samples as reported in table S1. B) Physical map of Italy.
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Fig. S8. CP/NNLS results for Ultimate and emphProximate sources for all modern clusters.

A) Ultimate (A) and Proximate (B) sources analysis reporting all modern Eurasian and African clusters

and including WHG among the sources (main text; Supplementary Material).
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Fig. S9. CP/NNLS results for emphProximate sources for all modern clusters using alternative SEE

sources.

Proximate sources analysis replacing ABA with alternative SEE sources: A) Minoan, MIN: B) Myce-
naean , MYC: C) Peloponnese Neolithic, PN. In all the analyses, WHG was included among the possible

sources (Supplementary Material).
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Fig. S10. D statistics in the form D(X,Y, AN,Mbuti) for all the possible pairs of Italian clusters.
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Fig. S11. Comparison of AN and ABA affinity to Italian clusters using D-statistics. Scatter plot
of D(Ital, Ita2, AN, Mbuti) and D(Ital,Ilta2, ABA ,Mbuti) for all the Italian clusters. Points for pairs
of clusters from the same (grey points) or closely related geographic location fall in proximity of the
grey line, reflecting a similar affinity to AN (x-axis) and ABA (y-axis). Comparisons of clusters from
Nltaly/Sardinia and Sltaly/Sicily fall above the grey line, reflecting a closer affinity of the latter to ABA.
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Fig. S12. Principal component analysis projecting 63 ancient individuals onto the components
inferred from modern individuals. A) Principal component analysis projecting 63 ancient individuals
onto the components inferred from 3,282 modern individuals assigned, through a CP/fS analysis, to
European West Asian and Caucasian clusters (data file S2). B) Principal component analysis projecting
63 ancient individuals onto the components inferred from 2,469 modern individuals assigned, through a
CP/1S analysis, to European clusters (data file S2). The labels are placed at the centroid of the macroarea.
The centroids are calculated by computing the means of the coordinates of individuals in modern clusters
within each macroarea.
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Fig. S13. ADMIXTURE analysis of 63 ancient samples.

Ancestral allele frequencies were inferred from ten different ADMIXTURE runs on 4,606 modern sam-
ples and projected onto the ancient samples. Each bar represents an individual grouped into ancient
groups (data file S1).
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Fig. S14. ADMIXTURE analysis of 63 ancient samples and 4,606 modern samples for K=15.

A-B) Results of the ADMIXTURE analysis as in fig. S4 and fig. S13 for K=15 including both modern
(A) and ancient samples (B). C) Box plots of the ten CV-errors of each K from 2 to 20. D) Detailed box
plots for the ten CV-errors for each K from 10 to 17.
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Fig. S15. Mixture proportions on modern Italian clusters inferred by qpAdm as a combination of
ABA, SBA and European Middle-Neolithic/Chalcolithic.

For each tested cluster, we have evaluated all the possible combinations of N “left” sources with N={2..5},
and one set of right/left Outgroups (Supplementary materials).
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Fig. S16. GT and MALDER analyses for all the Eurasian and North African clusters.

Dates of the events inferred by “noltaly” GT (squares) and MALDER (circles) for clusters as in Fig.
1A and data file S2 are reported in the central part of the plot; lines encompassed the 95% CI for GT
and *+1 Standard Error for MALDER. GT events were distinguished in “one date” (black squares; 1D
in table S7), “one date multiway” (white squares; IMW) or “two events” (two black squares; 2D). The
best sources are indicated in a staggered way as circles and squares for MALDER and GT, respectively
(“1%/2" event” columns, on the left; four sources are highlighted for IMW events). Colours refer to the
ancestry to which the sources were assigned (see Materials and Methods; Supplementary materials). We
additionally included a sub-Saharan African ancestry comprising CAfrica and EAfrica clusters (Fig. S2,
data file S2). GT sources for single date events are plotted in the column “2" event”, as overlapping
with second events detected by MALDER. The composition of the sources for GT and the geographical
regions of the sources in MALDER, for which no significant differences in the amplitude of the fitted
curve were found, are reported in the “1%/2™ event” columns on the right. GT sources are divided by a
white space; the length of the bars indicates the contribution of each source; for IMW events, two bar
plots are indicated in the “1%/2™ event” columns on the right.
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Fig. S17. Exploring the relationship between Neanderthal ancestry and admixture with African
sources.

Same as in Fig. 4A, B, C but removing either the individuals belonging to clusters where the GT analysis
identified signatures of African admixture (clusters Sltalyl, Sltaly2, Sicilyl, Sardinia2, NWEurope3,
WEuropel, WEurope3 and WEurope4, Figure 3 and fig. S16) or the whole set of the clusters listed
above (see Supplementary materials). Specifically: A) Neanderthal allele counts in individuals from
Eurasian populations, on 3,969 LD-pruned Neanderthal tag-SNPs; B) Matrix of significances based on
Wilcoxon rank sum test between pairs of populations including (lower triangular matrix) and removing
(upper) outliers (dark blue: adj p-value < 0.05; light blue: adj p-value > 0.05). C) Correlation between
Neanderthal ancestry proportions and the amount of Basal Eurasian ancestry in European clusters. D)
Same as C) but removing the cluster NEuropel (see Supplementary Materials). Clusters with less than
10 individuals were excluded in C and D.
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Fig. S18. Correlation between the proportion of Neanderthal allele sharing and the amount of
ancestry derived from a Basal Eurasian population in European populations.

A) Correlation considering FIN (Finnish in Finland) population. B) Correlation excluding FIN (Finnish
in Finland) population (see Materials and Methods, Supplementary materials).
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Fig. S19. Correlation between the proportions of Neanderthal allele sharing computed with F4-
ratio and the counts per population of Neanderthal alleles in European populations.

A) Correlation between the proportions of Neanderthal allele sharing computed with F4-ratio and the
means per population of Neanderthal allele counts. B) Correlation between the proportion of Neanderthal
allele sharing computed with F4-ratio and the medians per population of Neanderthal allele counts.
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Fig. S20. Absolute allele frequency differences (AXAF, where X is the minor allele for each SNP or
the Neanderthal allele when considering Neanderthal regions tag-SNPs) for each pair of European
populations.

We reported in grey the boxplot representing the total distributions of the variants, and in orange the
distribution of Neanderthal inherited variants. The red dots are the Neanderthal SNPs in the top 1% of
the distributions, as also reported in data file S4.
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