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ABSTRACT

Background The omnipresent 16S ribosomal RNA gene (16S-rRNA) is commonly used to identify and classify bacteria though
it does not take into account the distinctive functional characteristics of taxa. We explored functional domain landscapes of
over 5700 complete bacterial genomes, representing a wide coverage of the bacterial tree of life, and investigated to what
extent the observed protein domain diversity correlates with the expected evolutionary diversity, using 16S-rRNA as metric for
evolutionary distance.
Results Analysis of protein domains showed that 83% of the bacterial genes code for at least one of the 9722 domain classes
identified. By comparing clade specific and global persistence scores, candidate horizontal gene transfer and signifying
domains could be identified. 16S-rRNA and functional domain content distances were used to evaluate and compare species
divergence and overall a sigmoid curve is observed. Already at close 16S-rRNA evolutionary distances, high levels of functional
diversity can be observed. At a larger 16S-rRNA distance, functional differences accumulate at a relatively lower pace.
Conclusions Analysis of 16S-rRNA sequences in the same taxa suggests that, in many cases, additional means of classifica-
tion are required to obtain reliable phylogenetic relationships. Whole genome protein domain class phylogenies correlate with,
and complement 16S-rRNA sequence-based phylogenies. Moreover, domain-based phylogenies can be constructed over
large evolutionary distances and provide an in-depth insight of the functional diversity within and among species and enables
large scale functional comparisons. The increased granularity obtained paves way for new applications to better predict the
relationships between genotype, physiology and ecology.

Introduction
The most commonly used method to classify bacteria and to identify new isolates is the direct comparison of the omnipresent
16S ribosomal RNA (16S-rRNA) gene sequence1, 2 with highly curated 16S-rRNA gene sequence databases3–8.

Using only the 16S-RNA gene for taxonomic characterisations presents limitations and disadvantages. First, arbitrary
minimal sequence similarity thresholds are used as working boundaries for differentiating between taxonomic ranks. Although
these thresholds prove to be very useful for classification purposes, they are subject to progressive insights and are limited as
there is no biological meaning attached to it9. For instance, the minimal sequence similarity threshold for species delineation,
proposed for the 16S-rRNA gene, has changed over time from 97% to 98.7%10, 11 and even at this updated stringency level, the
resolution is too limited for a definite species classification of some phylogenetic groups,12. Second, a restriction to the analysis
of sequence variations in a single gene does not take into account the distinctive functional characteristics of the different
prokaryotic taxa nor can it explain the genotypic, and the consequently phenotypic, differentiation observed between strains
due to events such as gene loss or acquisition.

Alternative, inter-genomic BlastN-based sequence similarity methods exist that take into account full genome sequences.
Examples are Average Nucleotide Identity (ANI)13, 14, Genome Blast Distance Phylogeny (GBDP)15 or a combination of 16S-
rRNA sequence similarity and ANI values16. These methods help to increase taxonomic coherence at the smaller evolutionary
distances, but are less suitable to monitor the impact of mutation and (strain specific) gene loss and horizontal gene transfer
(HGT).

To better understand the impact of gene loss and HGT and to improve the characterisation of functional diversity, the
analysis needs to be performed beyond genome sequence similarity comparison by considering protein function. Protein
encoding genes reveal a modular design, with domains forming distinct globular structural and functional units. Bacterial
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Figure 1. 16S-rRNA copy number variation. A) 16S-rRNA gene copy number variation in the complete set B) Copy
number variation at family level; families represented by more than 50 strains were analysed.

innovation is in part driven by gain, loss, duplication and rearrangement of these functional units, resulting in the emergence of
proteins with new domain combinations17, 18. Thus, a direct comparison of protein domain content should be able to reconstruct
bacterial phylogeny independent of gene sequence similarity19 and as such may serve as a better indicator of shared physiology
and ecology20, 21.

In this study we present an exhaustive exploration of the functional landscape of over 5700 complete bacterial genomes
representing a wide coverage of the bacterial tree of life and investigated to what extent protein domain diversity correlates with
taxonomic diversity using the 16S-rRNA gene sequence as metrics for evolutionary distances.

Results
We analysed 5713 fully sequenced publicly available, bacterial genomes corresponding to a wide range of different bacterial
lineages (57 classes, 243 families, 818 genera and multiple strains of 1330 species), providing a good representation of the
bacterial diversity observed in nature (See supplementary file S1 for more information). Genome sizes varied from 0.1 Mbp up
to 13 Mbp. To avoid technical bias due to the use of different annotation strategies, all genomes were de-novo re-annotated with
SAPP22 (see Methods section for details). The total number of genes varied from 167 (Candidatus Tremblaya princeps) to
9968 (Streptomyces bingchenggensis BCW-1).

16S-rRNA variability within and between species
From the 5713 completely sequenced genomes, 25098 complete 16S-rRNA genes could be retrieved. On average the predicted
length of the 16S-rRNA gene was 1531±94 nt (See supplementary Figure Supplementary file S1) and 84% of the completed
genomes (4772) contained between two and fifteen copies of the 16S-rRNA gene (Figure 1). The 16S-rRNA genes from
phylogenetic cohesive groups of at least 50 strains were further analysed at family level. As can be seen in Figure 1B,
among different families there is a diverse variation in copy number. As already has been observed23, while in some families
the 16S-rRNA copy number is largely restricted to a single copy gene, copy number in others ranged from 1 to 15 copies.
Furthermore, 52% of the analysed genomes contained two or more non-identical copies of the 16S-rRNA gene. Intragenomic
sequence variation reflected an overall sequence identity of 99.6 (+0.4 / -2)%, which is higher than the currently accepted
98.7% threshold for species delineation.
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For the complete set of genomes, a species network based on pair-wise 16S-rRNA sequence similarity scores was built. In
this network, nodes represent genomes and edges were drawn between nodes when the 16S-rRNA showed at least 98.7% identity.
Network connectivity analysis identified 2025 connected components (subnetworks). For further study, 294 subnetworks
linking ten or more nodes, were were selected. In thirty-two of these subnetworks, taxonomic inconsistencies were observed as
they linked genomes assigned to two or more species. The majority (30) of these taxonomic inconsistent subnetworks linked
species belonging to the same genus. However, two subnetworks were identified that linked species from different genera.
The first contained species of the Escherichia and Shigella genera. The second subnetwork showed even more diversity and
contained members of the Citrobacter, Enterobacter, Klebsiella, Kosakonia, Raoultella and Salmonella genera (Figure 2). Both
subnetworks eventually belong to the Enterbacteriaceae family. Overall, network analysis suggested that in many cases the
98,7% identity threshold is not sufficient and additional means of classification are required to obtain reliable phylogenetic
relationships.

Figure 2. Topology of the similarity subnetwork of Enterbacteriaceae. Nodes represent genomes and edges are drawn if the 16S-rRNA
identity >98.7%. A) Network topologies with colours indicating the different species groups. Left panel, unambiguous species assignment;
strains A,B and C are directly connected to type strain T. Right panel: Observed topology. Leave node strain D is in the cluster but has no
direct link with type strain T. 16S-rRNA sequences of strain E and strain F are below the set similarity threshold and form an unlinked
subnetwork. Strain G of the blue species functions as an articulation point linking the pink and red species subnetworks. B) Subnetwork
linking six different genera based on the 16S-rRNA gene sequences using a sequence similarity threshold >98.7%. Size of each node is
dependent on the betweenness centrality. Enterobacter is the main component that connects the different genera as no direct linkage between
Salmonella and Klebsiella is observed. Three strains of Citrobacter have a direct connection to Salmonella and are disconnected from other
Citrobacter strains. One Enterobacter (Enterobacter sp. R4-368) is isolated from the rest and is only connected to Kosakonia. The Raoultella
genera have a close similarity to some of the Klebsiella strains. C) Topology of domain-class content subnetworks of the same strains using
as threshold a binary distance ≤0.1. Distinct subnetworks are observed. Salmonella is now completely separated from the other genera;
Enterobacter, Klebsiella and Citrobacter also form distinct clusters with a few members forming separate subnetworks.

Protein domain architectures
By breaking proteins into domains and using precomputed profile hidden Markov models (pHMM) to classify these domains,
a semantically consistent classification of encoded protein functions can be obtained20. As a pHMM gives greater weight
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Figure 3. Frequency distribution of 1,2, ...,13 domain classes A) In the full data set. B) In each genome

Table 1. Overview of the number of proteins and corresponding protein domain content. The majority of the proteins (83.1%)
contained at least a single domain and only a few (1.74%) contained more than 3 domains.

Number of proteins Fraction
All proteins 18949996 100%
>0 domains 15747648 83.1%
1 domain 11196108 59.1%
2 domains 3345544 17.7%
3 domains 875863 4.6%
>3 domains 330133 1.74%
>10 domains 15457 0.08%
>50 domains 208 0.0011%

to matches at conserved sites they are also better for remote homology detection than standard sequence similarity-based
methods24. To obtain such protein classification the 18949996 inferred protein sequences were scanned for the presence of
Pfam domains25. A total of 15747648 protein sequences were found to contain at least one domain instance (83.1%) and in
total 9722 distinct protein domain classes were detected (See supplementary file S1 for more details). Two Pfam domains were
discovered in 17.7% (3345544) and three or more domains in 6.4% (1205997) of these proteins (Table 1). Thus, the majority
of the bacterial proteins appear to be single domain proteins (Figure 3A). Moreover, we observed that most multiple domain
proteins appear to contain domain repetitions. Similar domain distributions were obtained when individual genomes were
analysed, indicating that this is a general property of the architecture of bacterial genomes (Figure 3B).

Genome distribution of protein domains
The distribution of the domain classes across the studied genomes is shown in Figure 4. Panel A shows that there is a direct
correlation between the genome size and the total number of domains detected. A non-linear relationship is observed between
the total number of protein domains and the total number of protein domain classes indicating that domain copy numbers, but
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Figure 4. Distribution of the domain classes across bacterial genomes A) Correlation between genome size and number of protein
domains. B) Correlation between the total number of domains and total number of domain classes. A non-linear relation is observed,
suggesting that in the larger genomes an increase in domain copy number is favoured over an increase in domain classes.

not so much the number of domain classes, increase in the larger genomes (Figure 4 panel B). On average, we counted 2.02
domain copies per genome. This copy number, however, showed a large variability, ranging from 1.07 copies for Carsonella
ruddii (strain PV)26 to 4.58 copies for Streptomyces bingchenggensis (strain BCW-1)27.

Domain persistence and analysis of the pan- and core-domainomes
In total, 9722 domain classes were detected. The overall persistence (the fraction of the genomes sharing a given domain
class) is shown in Figure 5. Only 324 domain classes were ubiquitous in over 95% of the analysed genomes. Three domains,
PF00009, (GTP-binding elongation factor family), PF01479, (S4 domain) and PF03144 (Elongation factor Tu domain 2) were
shown to persist in all genomes. Additionally, a small number of domains were found to be present in over 99.9% of the
studied genomes, PF00012 (Hsp70 protein), PF00318 (Ribosomal protein S2), PF00380 (Ribosomal protein S9/S16), PF00679
(Elongation factor G C-terminus), PF01926 (50S ribosome-binding GTPase), PF02811 (PHP domain), PF07733 (Bacterial
DNA polymerase III alpha subunit) and PF14492 (Elongation Factor G, domain II). Among the studied genomes there are
domain classes with a high copy number. The domain with the highest copy number is PF00005, representing the ATP-binding
domain of ABC transporters, with on average 62.9 copies per genome, yet the domain is absent in twelve small-sized genomes.

Accurate measurements of the pan- and core- domainome sizes would entail knowledge of the functional content of every
single organism in the corresponding group. We have estimated their respective sizes for the 18 families that contained more
than 50 members each (Figure 6A). The largest observed pan-domainome was of Bacillaceae with 4783 protein domain classes.
The largest core was observed for Yersiniaceae (1844 domain classes) (Figure 6B).

When analysing the genomes of the Chlamydiaceae family, 78% of the protein domain classes are conserved. In contrast,
the core of Enterobacteriaceae only covers 7% of the in total 4444 domains (Figure 6C). This is mostly due to the size of the
genomes from the Moranella, Riesia, Blochmannia and Ishikawaella28, genera as they are smaller than 1 Mbp, encoding as low
as 444 genes, whereas the average genome size of Enterobacteriaceae is 4.8 Mbp, encoding on average 4510 genes. When
excluding the small sized genomes, the core increases to 938 protein domains with a slightly smaller pan-domainome of 4441
yielding a 21% ratio between the core and pan-domainome. This shows the impact of including or excluding specific genomes
in the analysis, as a single or few genomes can reduce the core significantly, thereby possibly eluting important information.

Openness of the pan-domainome provides another indication of the relative impact of horizontal acquisition and vertical
transmission in shaping the domainome. Fitting a Heap’s law, we estimated whether the pan-domainome for each of the largest
families was either open or closed by fitting the decay parameter of a Heap’s law function, α . The pan-domainome is closed
when α >1.0 and open when α <1.0. The majority of the bacterial families here considered showed a closed pan-domainome
(Figure 6D). For Enterobacteriaceae the Heap’s parameter dropped from α=1.21 to α=1.17 upon removal of the previously
indicated smaller genomes.
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Figure 5. Distribution of domain classes over 5713 genomes
.

Signifying domains and horizontal domain transfer
Log persistence scores (log-P) were calculated for each of the domain classes present in the pan-domainomes from the five
most abundant monophyletic species groups (Chlamydia trachomatis (74), Escherichia coli (105), Helicobacter pylori (65),
Salmonella choleraesuis (350) and Staphylococcus aureus (74).) As null-model we consider the persistence of the domain in
the full set of 5713 genome sequences.

For a small set of domain classes high (log-P) scores were obtained and are likely signifying domain classes (Table 2,
Figure 7 and Supplementary Table S3 logP). On the other end of this scale we find a large amount of domain classes with
negative log-P scores. These incidental domains have a low to very low intra-species persistence which suggests that they may
have been acquired by horizontal gene transfer. Unlike the high scoring domains most of them have been assigned a molecular,
often metabolic, function.

Co-evolution of bacterial 16S-rRNA and whole genome domain content
Protein domains provide a formal description of genome encoded functionalities, each contributing to bacterial genotypic
complexity. The functional relatedness of an arbitrary pair of genomes can thus be determined by finding the fraction of
encoding domain classes in common relative to the the number of domain classes present in each of these genomes. Through
inclusion of the 16S-rRNA data the co-evolution of bacterial 16S-rRNA gene sequences with genotypic complexity can be
studied (Figure 8). In panel A the distribution of domain based distances is plotted using a binary dissimilarity score. Likewise
in panel D, the distribution of 16S-rRNA sequence distances is plotted. Panel C shows a pairwise comparison between
16S-rRNA distances and functional distances for the analysed genomes. Finally, panel B, presents a schematic representation of
the relationship between the two methods.

Overall, a good agreement is found between both approaches to evaluate species divergence. Analysis of the 16S-rRNA
distances shows a marked differentiation in the [0.3, 0.35] interval, which appears as a steep increase in the abundance of
instances of these distance values (Figure 8D). These differentiations correspond to lineage boundaries (specifically class and
phylum differences). This increased density corresponds to the higher density in the center of the plot (Figure 8C), that reflects
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Table 2. Salmonella choleraesuis top 25 signifying and incidental domains

.

PFAM log-P Global persistence Description
PF09460 4.025 0.056 Saf-pilin pilus formation protein
PF06767 4.017 0.062 Sif protein
PF05364 4.013 0.062 Salmonella type III secretion SopE effector N-terminus
PF07108 4.013 0.062 PipA protein
PF16583 4.012 0.061 Zinc-regulated secreted antivirulence protein C-terminal domain
PF16728 3.991 0.061 Domain of unknown function (DUF5066)
PF15942 3.976 0.064 Domain of unknown function (DUF4751)
PF07824 3.969 0.064 Type III secretion chaperone domain
PF09052 3.965 0.064 Salmonella invasion protein A
PF05775 3.950 0.059 Enterobacteria AfaD invasin protein
PF11047 3.941 0.065 Salmonella outer protein D
PF05925 3.914 0.066 Enterobacterial virulence protein IpgD
PF08052 3.906 0.066 PyrBI operon leader peptide
PF13998 3.873 0.068 MgrB protein
PF02510 3.858 0.069 Surface presentation of antigens protein
PF13979 3.852 0.068 SopA-like catalytic domain
PF02090 3.840 0.070 Salmonella surface presentation of antigen gene type M protein
PF04741 3.815 0.071 InvH outer membrane lipoprotein
PF07487 3.811 0.071 SopE GEF domain
PF09119 3.801 0.072 SicP binding
PF05688 3.794 0.071 Salmonella repeat of unknown function (DUF824)
PF03433 3.759 0.074 EspA-like secreted protein
PF09599 3.759 0.074 Salmonella-Shigella invasin protein C (IpaC_SipC)
PF10940 3.737 0.074 Protein of unknown function (DUF2618)
PF05689 3.727 0.074 Salmonella repeat of unknown function (DUF823)
...
PF13442 -7.502 0.518 Cytochrome C oxidase, cbb3-type, subunit III
PF09424 -7.522 0.525 Yqey-like protein
PF01769 -7.533 0.529 Divalent cation transporter
PF06750 -7.546 0.534 Bacterial Peptidase A24 N-terminal domain
PF09084 -7.555 0.537 NMT1/THI5 like
PF03309 -7.557 0.538 Type III pantothenate kinase
PF06271 -7.573 0.544 RDD family
PF12802 -7.610 0.558 MarR family
PF01628 -7.642 0.571 HrcA protein C terminal domain
PF01593 -7.680 0.586 Flavin containing amine oxidoreductase
PF10397 -7.689 0.589 Adenylosuccinate lyase C-terminus
PF00355 -7.732 0.607 [2Fe-2S] domain
PF01220 -7.743 0.612 Dehydroquinase class II
PF14693 -7.769 0.623 Ribosomal protein TL5, C-terminal domain
PF01809 -7.769 0.623 Haemolytic domain
PF02616 -7.771 0.624 Segregation and condensation protein ScpA
PF04079 -7.781 0.629 Segregation and condensation complex subunit ScpB
PF03448 -7.815 0.644 MgtE intracellular N domain
PF07521 -7.823 0.647 Zn-dependent metallo-hydrolase RNA specificity domain
PF01883 -7.868 0.668 Iron-sulfur cluster assembly protein
PF02686 -7.969 0.716 Glu-tRNAGln amidotransferase C subunit
PF02637 -8.019 0.741 GatB domain
PF02934 -8.026 0.744 GatB/GatE catalytic domain
PF01425 -8.173 0.824 Amidase
PF00825 -8.196 0.838 Ribonuclease P

Number of strains analysed 350; α=0.89
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Figure 6. Persistence analysis of families with more than 50 members. The estimated pan-domainome (Panel A) and estimated core
(Panel B) shows a large degree of variability ranging from 78% for Chlamydiaceae and 7% for Enterobacteriaceae. The conservation ratio of
the pan/core (Panel C) shows that in only Chlamydiaceae more than half of the protein domain content is conserved. The family pan-genome
is closed (Panel D) when α>1.

that most of the performed comparisons involve members distantly related in the evolutionary scale. This is also apparent on
the higher number of instances of functional differences in the [0.6, 0.7] interval (Figure 8A), however functional differences
accumulate more gradually, and no steep increase is observed.

The relationship between the two methods to evaluate species differences can be approximated through a sigmoidal curve
and three regimes can be distinguished (Figure 8B). Species at close evolutionary distances show a broad range of functional
similarity (Figure 8B region 1). A high diversity is observed, so that genomes with high similarity regarding their 16S-rRNA
can show high functional diversity. The second region shown in Figure 8B, region 2, corresponds to regions of relatively large
genetic differentiation (class differences) that accumulate functional differences at a relatively lower pace. Finally, the third
region (region 3) corresponds to very distant species that as expected, have a large degree of functional differentiation.

In addition to functional similarities between evolutionary close strains, Figure 8C also indicates the presence of functionally
very similar but evolutionary distant genomes. These are to be found in the region with low domain content variation (<0.05) and
a large 16S-rRNA distance (>0.4). Gluconacetobacter diazotrophicus PAl 5, Moraxella catarrhalis BBH18 and Pseudomonas
aeruginosa 39016 are some examples. Similar results are obtained when the analysis is repeated considering all available
genomes. The presence of more than one copy of the 16S-rRNA gene may introduce a larger variability, however the overall
agreement of 16S-rRNA classification remains the same.
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Figure 7. Persistence scores of Salmonella choleraesuis protein domain classes. For each domain class present in the S. choleraesuis
pan-domainome, persistence scores are compared with the pan-domainome persistence scores obtained from the complete set of 5713
genomes.

Discussion
For several decades 16S-rRNA sequence similarity scores provided a good working metric for prokaryotic taxonomic classi-
fications, but because of the ever-expanding sequence databases and the increased taxonomic complexity the limitations of
this approach are emerging. Here, we have used a set of 5713 complete genomes to evaluate the predictive power of pair-wise
16S-rRNA sequence similarity scores on the diversity and taxonomic classification of these genomes.

We observed intragenomic variation of 16S-rRNA gene sequences, but further analysis showed that within the selection,
this variation is limited and well above the currently advised species threshold of 98.7%, meaning that regardless of the selected
copy, the same taxonomic classification should be obtained.

A network approach was subsequently used to study pair-wise 16S-rRNA sequence similarities between the 5713 sequenced
strains (Figure 2). By using the currently accepted 98.7% minimal sequence similarity threshold, optimally this approach should
lead to 1330 separate species networks, each containing all sequenced strains of a defined species and each individual node
within such subnetwork should at least have a direct link to the node that represents the reference or type strain (Figure 2 panel
A). However, many more subnetworks were obtained and what was observed is that strains of the same species are in separate
subnetworks. Additionally, strains with intermediate 16S-rRNA sequences were present functioning as articulation points
merging what should have been independent species subnetworks. (Figure 2 panel B and C). With the continuous addition
of new 16S-rRNA sequences it is likely that species amalgamation will become more frequent. In the light of this, a more
appropriate approach would be to consider the similarity threshold as a confidence level. In this way, there is a high probability
that two sequences with a 16S-rRNA sequence identity below the selected threshold belong to different species. This provides a
probabilistic interpretation to the threshold.

We used Pfam protein domain-class content to study strain diversity. Protein domains are considered to be distinct functional
units and as such responsible for a particular function or interaction. The Pfam 30 protein family database consists of 16306
domain families or classes29 of which 9721 were present in the studied dataset. Furthermore, we found that approximately 83%
of the protein-encoding genes harbour at least one Pfam domain suggesting that the encoded domain-class content may provide
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Figure 8. Distance comparison of the 16S-rRNA gene with the functional diversity. A) Distribution of domain based distances. B)
Schematic representation of the three stages of diversification. 1) a fast-short-term evolution, as evolutionary distances measured by
16S-rRNA remain small, while functional diversification has already taken place. 2) long-term evolution, in which functional diversification
occurs at a scale compatible with diversification by 16S-rRNA sequence evolution. 3) The distance of the 16S-rRNA remains behind the
functional diversity as the 16S-rRNA distance can only diverse so far without loss of function. C) Comparison between pairwise 16S-rRNA
distances and pairwise functional distances. Color indicates density of points, blue and red indicate lower and higher density respectively D)
Distribution of 16S-rRNA based distances.
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a good metric to study strain diversity.
The core-genome of a taxonomic group contains genes that are present in all members of that group whereas the pan-genome

contains all the different genes that can be found in any member of the population30. Here we extended the idea to protein
domain classes, as has been previously reported21, 31. We observed that most domain classes have a low persistence overall
(Figure 5), but as shown in Figure 6, by adding taxonomic information, distinct sets of domain classes accumulate in the core
domainomes of the various clades, suggesting that these core sets are somehow contributing to the physiology and ecology of
these clades.

At family level, the pan to core domainome ratio is observed to be on average below 0.4 (Figure 6), but at lower taxonomic
ranks this ratio increases. For C. trachomatis this ratio was determined to be 0.96, for Escherichia coli 0.58, for Helicobacter
pylori 0.83 and for Staphylococcus aureus 0.76. We assumed that species core domainomes would consist of signifying or even
species-specific domain classes and domain-classes representing essential metabolic functions. We expected that signifying
domain-classes are only highly persistent within a clade but that domain-classes representing metabolic functions would be
widely spread. For each domain class present in the pan-domainome of five selected species we calculated the ratio between
clade specific persistence and global persistence (log-P scores) using a null-model that assumes that domain-classes are evenly
distributed over the strains. The analysed species contributed to 6.2% or less of the total number of strains.

Top log-P scoring domains mostly corresponded to domains of unknown function (DUF) or domains involved in signal
transduction whereas, being omnipresent, metabolic functions were underrepresented. Of the 25 top scoring domains, 6 in
Salmonella choleraesuis, 15 in Chlamydia trachomatis, 8 in Escherichia coli, 3 in Helicobacter pylori and 11 in Staphylococcus
aureus corresponded to a DUF class. For the Mycoplasma species it has been established that many DUFs are essential for
growth32, 33 and at least four of the DUFs in the present study, two specific for Escherichia coli (PF07041 and PF10897) and
two for Helicobacter pylori (PF12033 and PF10398) indeed have been characterised as being essential34. Between these five
species, top scoring domains also show no significant overlap suggesting that they are evolutionary conserved and may have a
prominent role in shaping the species. Protein domain classes with the lowest persistence ratio’s are likely HGT candidates.
Functionally, most of them represent a metabolic function suggesting, as has been reported35, 36, that horizontal gene transfer is
an important source of metabolic diversity.

The impact of the presence of these signifying domains in the core domainome is demonstrated in Figure 2C. Nodes from
the Enterobacteriaceae subnetwork (Figure 2B) were re-analysed using pair-wise domain-class content distance analysis. A
similarity threshold of 90% resulted in clade specifc domain-class subnetworks for Salmonella, Enterobacter and to a lesser
extent for Klebsiella. Note that by adopting a whole-genome domainome approach, the history of every domain-class present in
the pan-domainome, is taken into account. However, signifying domain classes are the main contributors and similar to what
has been observed in Ochman et al.37, we observed that the many incidental HGT candidate domain classes appear to have little
impact on whole-genome domainome based phylogenetic reconstructions.

The ratio between the core- and pan-domainome size of groups of organisms at different phylogenetic levels provided a
good estimate for beta-diversity. A relatively low ratio between the core and pan-domainome reduces the functional assignments
that can be inferred from the 16S-rRNA classification. Conversely, a high ratio gives more certainty that functionalities are
present. Overall the majority of the analysed families showed a low ratio indicating that only a reduced functional landscape can
be extrapolated using 16S-rRNA analysis and the ratio can differ significantly among families. For example, Chlamydiaceae
shows a large ratio whereas Enterobacteriaceae has the lowest observed ratio, indicating that the Chlamydia genus which
consists mostly of pathogenic bacteria that are obligate intracellular parasites have evolved through simplification instead of
complexification and are therefore less diverse38. Whereas Enterobacteriaceae is a diverse family consisting of members that
are part of the gut flora and also contains a wide range of pathogenic species, showing a more diverse functional landscape.

Combining the information from the functional landscape with 16S-rRNA sequences, allowed us to relate the functional
diversity with evolutionary distances (Figure 8). This analysis revealed that three stages of diversification can be defined39.
The first stage represents a fast-short-term evolution, as 16S-rRNA evolutionary distances remain small, though functional
diversification has already taken place. This happens in closely related, near identical, related strains where gene acquisition
could play a significant role in functional diversity. The second stage represents a long-term evolution, in which functional
diversification occurs at a scale compatible with evolutionary time, as reflected by 16S-rRNA evolution. In the third stage
diversification of the functional landscape continues but, due to 16S-rRNA genetic constraints, does not align well with
16S-rRNA sequence distances.

Conclusions
16S-rRNA similarity scores can still be used as a metric for taxonomic classification but we propose a more probalistic
interpretation as its performances will be better at higher taxonomic levels.

Whole genome protein domain phylogenies correlate with, and complement 16S-rRNA sequence-based phylogenies.
Moreover, domain-based phylogenies reveal rapid functional diversification, allowing for large scale functional comparisons
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between clades and can be constructed over large evolutionary distances.
Protein domain persistence ratio’s highlight both signifying domain classes and HGT candidates. The increased granularity

obtained will pave the way for new applications to better predict the relationships between genotype, physiology and ecology.

Methods
Genome annotation
A total of 5713 publicly available complete bacterial genomes were downloaded from the NCBI repository (November 2016)40.
To prevent technical bias due to the use of different annotation tools and pipelines and different thresholds for assessing the
significance of the inferred genetic elements, genomes were consistently structurally and functionally de-novo annotated using
SAPP22, an annotation platform implementing a strictly defined ontology41.

16S-rRNA prediction was performed using RNAmmer 1.242. Genes were predicted using Prodigal (2.6.3)43 and the
identified proteins were functionally annotated using the Pfam library (version 30.0) within InterProScan (version 5.21-
60.0)25, 44. Annotations were automatically converted into RDF according to the GBOL ontology41 and loaded into a semantic
database for high-throughput annotation and analysis. For the retrieval of information, SPARQL was used (See supplementary
file S5 for all queries used).

Quality analysis
Scaling laws have been identified in the genomic distribution of protein domains45. These laws result in linear relationships in
the number of domain classes with n copies and the total number of domain classes in a genome (See supplementary Figure
S5). We have verified the linear relationships in the analysed genomes. These indicators have been used here to further verify
the integrity of the assembled genomes46. Overall, the previously reported scaling laws also hold true when a higher number of
genomes is studied.

Estimation of pan- and core-domainome size
The estimated number of domain classes in the pan- and core-genomes expected, if the sequences of every existing strain were
to be included in the analysis, were computed using binomial mixture models as implemented in the micropan R package47

using default values for the parameters. Heap’s analysis as implemented in the micropan R package was used to estimate
openness or closeness of the pan-genome using 500 genome permutations and repeating the calculation 10 times.

Domain persistence
The following formulas were used to calculate persistence ratios

Persistence =
number o f genomes encoding the domain

total number o f considered genomes

log-P = log2
clade speci f ic persistence

overall persistence

16S-rRNA distance calculations
From the de-novo annotation, 16S-rRNA sequences were obtained from the semantic database through a SPARQL query
(See supplementary file S6 for all queries used). In total 25098 16S-rRNAs were retrieved. rRNA’s that were of low quality
(containing N’s) or differed in size greater than the standard deviation were removed from the analysis. Duplicated 16S-
rRNAs were merged into a single copy for the multiple alignment. For each 16S-rRNA the orientation was validated using
OrientationChecker48. The complete gene was used for calculation of pairwise alignment distances using the clustal omega
suite for all possible 16S-rRNA pairs (Dataset 1 aligned). The resulting matrix was binarized using 98.7% sequence similarity
as a cutoff. The binary matrix was then represented as networks using igraph49 in R50.

Domain based distance calculations
Genome distances based on protein domain class content were computed using the asymmetric binary method in which vectors
are regarded as binary bits. Non-zero elements are on and zero elements are off. The distance is the proportion of bits in which
only one is on amongst those in which at least one is on (dist function in R). A similarity cutoff of ≤ 0.1 was used.

Statistical software
Statistical analysis and visualisations were performed using R and the following packages, data.table51, reshape252, plotly53,
Biostrings54, devtools55, micropan47, gridExtra56, hexbin57 and RColorBrewer58.

12/15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494625doi: bioRxiv preprint 

https://doi.org/10.1101/494625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary files
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