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 2 

Abstract 23 

Chronic rhinosinusitis (CRS) is a heterogeneous condition characterised by persistent sinus 24 

inflammation and microbial dysbiosis. This study aimed to identify clinically relevant sub-25 

groups of CRS patients based on distinct microbial signatures, with a comparison to the 26 

commonly used phenotypic subgrouping approach. The underlying drivers of these distinct 27 

microbial clusters were also investigated, together with associations with epithelial barrier 28 

integrity. 29 

Sinus biopsies were collected from CRS patients (n=23), and disease controls (n=8). 30 

Expression of 42 tight junction genes was evaluated using quantitative PCR, together with 31 

microbiota analysis and immunohistochemistry for measuring mucosal integrity and 32 

inflammation.  33 

CRS patients clustered into two distinct microbial sub-groups using probabilistic modelling 34 

Dirichlet (DC) multinomial mixtures. DC1 exhibited significantly reduced bacterial diversity, 35 

increased dispersion, and was dominated by Pseudomonas, Haemophilus, and 36 

Achromobacter. DC2 had significantly elevated B-cells, incidence of nasal polyps, and 37 

higher numbers of Anaerococcus, Megasphaera, Prevotella, Atopobium, and 38 

Propionibacterium. In addition, each DC exhibited distinct tight junction gene and protein 39 

expression profiles compared with controls. Stratifying CRS patients based on clinical 40 

phenotypic subtypes (absence or presence of nasal polyps (CRSsNP or CRSwNP 41 

respectively) or with cystic fibrosis (CRSwCF)) did account for a larger proportion of the 42 

variation in the microbial dataset compared with DC groupings. However, no significant 43 

differences between CRSsNP and CRSwNP cohorts were observed for inflammatory 44 

markers, beta-dispersion and alpha diversity measures.  45 
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 3 

In conclusion, both approaches used for stratifying CRS patients had benefits and pitfalls, but 46 

DC clustering did provide greater resolution when studying tight junction impairment. Future 47 

studies in CRS should give careful consideration into the patient subtyping approach used. 48 

 49 

 50 

Importance 51 

Chronic rhinosinusitis (CRS) is a major human health problem that significantly reduces 52 

quality of life. While various microbes have been implicated, there is no clear understanding 53 

of the role they play in CRS pathogenesis. Another equally important observation made for 54 

CRS patients is that the epithelial barrier in the sino-nasal cavity is defective. Finding a 55 

robust approach to subtype CRS patients would be the first step towards unravelling the 56 

pathogenesis of this heterogeneous condition. Previous work has explored stratification based 57 

on clinical presentation of the disease (with or without polyps), inflammatory markers, 58 

pathology, or microbial composition. Comparing between the different stratification 59 

approaches used in these studies has not been possible due to different cohorts, analytical 60 

methods, or sample sites used. In this study, two approaches of subtyping CRS patients were 61 

compared and the underlying drivers of the heterogeneity in CRS were also explored.   62 
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Introduction 63 

As the first line of defence against inhaled antigens from the external environment, the upper 64 

airway epithelium represents an important physiological barrier (1). Maintaining the close 65 

cell to cell proximity that is central to the integrity of this barrier are tight junctions, which 66 

play a critical role in host defence (2, 3). Tight junctions comprise a range of transmembrane 67 

and scaffolding adaptor proteins that include occludin, claudins, junctional adhesion 68 

molecules, and zonula occludens (ZO) (4). These proteins limit the passage of 69 

macromolecules by sealing off the paracellular spaces between epithelial cells. On the other 70 

hand, in cases of tissue inflammation, the opening up of tight junctions assists in the release 71 

of tissue fluids and the influx of inflammatory cells and by doing so helps speed resolution. 72 

Accordingly, tight junctions are considered as the gatekeepers of inflammatory disease. 73 

Recent studies have considered the role of epithelial barrier defects in a number of chronic 74 

inflammatory conditions, including chronic rhinosinusitis (CRS) (5, 6). CRS is an 75 

inflammatory condition of the upper respiratory tract persisting for over 12 weeks, affecting 76 

5% of the general population (7). Symptoms include nasal discharge, facial pain, loss of 77 

smell and headaches. CRS is a complex and heterogeneous disease, with many underlying 78 

factors that present with similar symptoms, making it challenging to separate CRS into 79 

clinically relevant subtypes. Traditionally, classification of CRS has been based on the 80 

clinical phenotypes – the presence (CRSwNP) or absence (CRSsNP) of polyposis. 81 

Approximately 25-30% of CRS patients present with nasal polyps (8), and this cohort is 82 

considered to have a Th2-predominated inflammatory response compared with idiopathic 83 

CRS without nasal polyps (CRSsNP) that has Th1-type responses. However, this simplified 84 

view misrepresents the true complexities of CRS.  85 

Recent efforts have investigated the pathogenesis of CRS based on inflammatory markers (9, 86 

10), microbiota composition (11, 12), pathology or clinical factors (13, 14), but these studies 87 
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have produced little consensus on appropriate strategies to subtype patients. The role of 88 

microbes in CRS remains unclear due to the frequent lack of resolution with antimicrobial 89 

treatment. It has been suggested that a loss of overall microbiota diversity and deleterious 90 

community changes (collectively termed ‘dysbiosis’) are more characteristic of CRS patients 91 

than a single, disease-causing organism (15).  92 

Stratification of patients based on probabilistic modelling of the bacterial communities in 93 

lower respiratory diseases such as asthma and HIV-infected pneumonia patients has been 94 

used successfully to classify immunological or clinical phenotypic variation across cohorts 95 

(16, 17). Using a similar approach, a recent study subtyped CRS patients based on their 96 

microbial community profiles (11). Each distinct microbial state was dominated by one 97 

bacterial family and associated with a unique clinical and host immune response. Previous 98 

studies have found that large interpersonal variations in the sino-nasal microbiome of CRS 99 

patients (subtyped based on clinical diagnosis) can make classification difficult (12). 100 

Accordingly, a distinct advantage of stratifying patients based on microbial community 101 

profiles is that it will help to resolve the microbial heterogeneity of CRS and is a step towards 102 

implementation of a precision medicine approach. The underlying drivers of these distinct 103 

microbial states in CRS are yet to be investigated.  104 

Several studies have investigated epithelial integrity in CRS mucosa and found that CRS 105 

patients with nasal polyps (CRSwNP) have severely disrupted epithelia with decreased 106 

expression of occludin and ZO-1 (6, 18, 19). These efforts also suggest a role for cytokines 107 

(IFN-γ and IL-4) in disrupting tight junctions, whereas the influences of the microbes on the 108 

host are less understood.  109 

One common hypothesis is that a loss of tight junction integrity in CRS patients could lead to 110 

the entry of environmental agents, including microbes, into host tissues (20). It remains 111 

unclear whether the microbes are the cause of tissue damage or if microbial patterns or 112 
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associations are the consequence of a leaky epithelium, leading to a build-up of microbial 113 

cells in the tissue. The mechanism by which bacteria penetrate the epithelial barrier is 114 

unknown, but their presence in CRS tissue (in particular CRS with cystic fibrosis (CRSwCF)) 115 

presumably reflects a breakdown in mucosal integrity (21). Furthermore, any changes caused 116 

to the micro-environment (such as lack of mucociliary clearance, damaged surfaces for 117 

bacterial cell adherence) could have an impact on microbial composition and structure, as 118 

observed previously in gut studies (22).  119 

In this study, we aimed to stratify CRS patients based on their microbial community 120 

composition using a probabilistic modelling approach and using the traditional phenotypic 121 

approach. In addition, we investigated several possible underlying influences on these 122 

microbial states by measuring gene and protein expressions of host tight junction, epithelial 123 

integrity and inflammatory cells (T-cells, B-cells, and macrophages) in the sino-nasal tissue 124 

biopsies.  125 

 126 

 127 

Results 128 

Clinical parameters 129 

Non-parametric pairwise comparisons were made based on clinical factors in this cohort of 130 

31 subjects (CRS = 23, disease controls = 8). Patient demographics are included in Table S1.  131 

Dirichlet multinomial mixtures using probabilistic modelling in R were used to stratify 132 

patients based on their microbial communities (operational taxonomic unit (OTU)-level) (23). 133 

The Laplace approximation was used to find the model of best fit and determine the number 134 

of clusters from the dataset. Unique microbial states were labelled Dirichlet clusters (DC). 135 

None of the measured clinical factors were significantly different between the two DC groups 136 

(DC1 and DC2) and disease controls (Table S2). A similar analysis was performed on 137 
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phenotypic subtypes of CRS (CRSsNP, CRSwNP, CRSwCF) and disease controls (Table 138 

S3), where age and polyposis were found to be significant factors.  139 

 140 

Overall bacterial community composition 141 

Quality filtering resulted in 346,003 bacterial 16S rRNA gene sequences from 31 samples. 142 

Samples that did not meet a rarefaction threshold of 677 were removed from further analysis, 143 

including 3 CRSsNP samples. A final number of samples included in further analyses was 144 

thus 8 disease controls and 20 CRS patients (CRSsNP = 5, CRSwNP = 8, CRSwCF = 7; DC1 145 

= 13, DC2 = 7). The final, rarefied dataset included 200 taxonomically assigned OTUs at 146 

97% sequence similarity (ranging from 4-45 OTUs per sample) and this OTU table was used 147 

for all subsequent microbial-related analyses.  148 

Large inter-personal variation in microbial community composition was observed between 149 

individuals of each cohort (Fig. 1). The bacterial taxa Staphylococcus (OTU2), Streptococcus 150 

(OTU7), Propionibacterium (OTU6) and Corynebacteriaceae (OTU10) were prevalent in 151 

majority of the samples but only at low relative sequence abundances (Fig. 2A). 152 

 153 

Bacterial community composition of DC groups 154 

Samples were assigned into clusters based on bacterial community composition using 155 

Dirichlet distributions (23). Dirichlet cluster 1 (DC1) comprised samples from all three CRS 156 

sub-groups (CRSsNP = 4, CRSwNP = 2, CRSwCF = 7). In contrast, DC2 was dominated by 157 

CRSwNP samples (n = 6) along with one CRSsNP sample.  158 

A variety of alpha-diversity measurements revealed significant differences between DC1 and 159 

controls, however no significant differences were noted between DC1-DC2 and DC2-controls 160 

(Fig. 1B). The bacterial taxa Pseudomonas (average relative abundance 19% ± SD 37%), 161 

Achromobacter (7.6% ± SD 27%), and Haemophilus (8.5% ± SD 27%) dominated DC1, 162 
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while DC2 was dominated by Moraxella (18% ± SD 31.5%) and Stenotrophomonas (6.7% ± 163 

SD 17.7%), but these taxa all had low prevalence as shown in Fig. 2B. Interestingly, controls 164 

were not dominated by any single bacterial taxon but instead had a low abundance of 165 

multiple genera, some of which were highly prevalent.  166 

Taxa that were significantly different between groups were investigated through multiple 167 

pairwise comparisons at OTU- and genus-level (Table S4). OTUs that were significantly 168 

elevated in DC2 compared with DC1 were Anaerococcus (OTUs 12, 19 and 251), Prevotella 169 

(OTU200), Megasphaera (OTU179), and Atopobium (OTU203). Control samples were 170 

differentiated from DC1 and DC2 by significant increases in Streptococcus (OTUs 7, 18), 171 

Veillonella (OTU34), Massilia (OTU77), Peptoniphilus (OTU11) and Halomonadaceae 172 

(OTU109).  173 

The dispersion of samples based on microbial community profiles in each DC was compared 174 

by calculating the distances to the centroid in non-metric multidimensional scaling (nMDS) 175 

analyses. DC1 samples were significantly more dispersed than control samples (p = 0.011, 176 

Tukey’s honest test) (Fig. 3B). In addition, Permutational Multivariate Analysis of Variance 177 

(PERMANOVA) test confirmed that each of the clusters identified for the CRS cohort and 178 

control group explained a significant proportion (R
2
 = 12.2%, p = 0.014) of the overall 179 

variation in the bacterial dataset. However these PERMANOVA results should be interpreted 180 

with caution in light of the different beta-dispersion patterns of the groups assessed (24).  181 

 182 

Bacterial community composition of phenotypic groups 183 

Patients were also stratified based on clinical presentation of the disease, which includes the 184 

presence or absence of nasal polyposis and comorbidity of cystic fibrosis.  185 
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Alpha diversity was significantly (p <0.001) lower in CRSwCF patients compared with 186 

controls. Significant differences in diversity were also observed (p <0.05) between CRSwCF 187 

and CRSwNP samples.  188 

Similar to controls (as described above), CRSsNP did not show dominance of any single 189 

bacterial taxon. However CRSwNP samples were dominated by Moraxella (average relative 190 

abundance 16% ± SD 30%) and Stenotrophomonas (5.8% ± 16.5%), while CRSwCF samples 191 

were dominated by Pseudomonas (35.4% ± 46%), Staphylococcus (24.5% ± 41.6%), 192 

Achromobacter (14.1% ± 37%), and Haemophilus (13.9% ± 36.8%) (Fig. 2C). 193 

Pairwise comparisons between control samples and CRS subtypes (CRSsNP, CRSwNP, 194 

CRSwCF) were performed on OTU- and genus-level data. CRSwCF samples were 195 

significantly reduced in Propionibacterium, Corynebacterium, Anaerococcus and 196 

Peptoniphilus compared with controls. Furthermore, CRSsNP samples had significantly 197 

lower abundance of Peptoniphilus, while CRSwNP were reduced in Streptococcus and 198 

Veillonella, compared to controls. OTUs and genera that were significantly different between 199 

CRS subtypes can be found in Table S5.  200 

There were no significant differences in dispersion between phenotypic groups and controls 201 

when calculating analysis of variance. However, PERMANOVA tests were able to explain a 202 

larger proportion of the variation (R
2
 = 23.4%, p = 0.001) by phenotypic subtyping methods 203 

for CRS than with DC clustering.  204 

 205 

Tight junction protein and gene expression patterns in sino-nasal tissue 206 

Based on our initial aim to investigate the underlying drivers of each subtype in CRS, the 207 

expression of 42 tight junction genes in sino-nasal tissue biopsies was measured for each 208 

patient and compared to that of disease controls. After results were normalised to a 209 
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housekeeping gene, fold-changes in gene expression were recorded for each DC and CRS 210 

phenotypic subtype compared to controls.  211 

Ten tight junction genes were significantly under- or over-expressed in DC1 and/or DC2 212 

compared to controls (Fig. 4A). The gene ACTA1, which encodes a skeletal α-actin protein 213 

that maintains the cytoskeleton and cell movement, was the only gene to be significantly 214 

over-expressed in both DC1 and DC2. Each DC group exhibited unique tight junction gene 215 

expression patterns. Three genes were significantly under-expressed in DC1: CSDA, TCF7 216 

and PVRL1. In DC2, nine genes were significantly under-expressed compared with controls 217 

(Fig. 4A).  218 

Subtyping patients based on phenotypic characteristics found 7 tight junction genes to be 219 

under expressed and ACTA1 gene to be over expressed in the CRS cohorts compared with 220 

the controls (Fig 4B). Genes PVRL1 and TCF7 were significantly under-expressed in all 221 

three CRS subtypes. The expression profile of CRSsNP and CRSwCF were very alike, with 222 

the only one exception (gene CSDA) which was under-expressed in CRSwCF patients 223 

 (Fig. 4B). Spearman correlation analysis of the dataset after adjustment for multiple 224 

comparisons showed a significant negative association between tight junction gene MTDH 225 

expression and members of the bacterial genus Pseudomonas (Fig. S1).  226 

Staining of sino-nasal tissue biopsies identified ZO-1 and occludin proteins at apico-lateral 227 

contact points of adjacent epithelial cells (Fig. S2). Claudin-1, by contrast, was 228 

predominantly seen in subapical regions, with concentrated, continuous staining amongst the 229 

mid-basal region of epithelial cells (Fig. S2). ZO-1 area staining was significantly (p = 0.03) 230 

lower in DC2 (mean 0.5 ± S.D 0.3%) compared with controls (1.1 ± 0.5%) (Table S3). There 231 

were no significant differences in claudin-1 and occludin staining in disease controls relative 232 

to DC1 and DC2. In addition, there were no significant differences in the staining of ZO-1, 233 

claudin-1 and occludin proteins in the three CRS subtypes compared with controls. 234 
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Furthermore, no correlations were observed between tight junction proteins and abundance of 235 

bacterial taxa (Fig. S1).  236 

 237 

Inflammatory state and mucosal integrity of tissue biopsies 238 

Inflammatory marker cells (T-cells, B-cells and macrophages) were enumerated in the tissue 239 

biopsies to assess the inflammatory state of the patients. Although all three cell types were 240 

reduced in the disease controls compared with DC1 and DC2 cohorts, B-cells (CD20+) were 241 

the only identified inflammatory marker with a significant difference between the groups, 242 

with higher numbers in DC2 (Table S2). 243 

In contrast, by traditional CRS subtyping approaches, all three inflammatory marker cells 244 

were significantly elevated only in CRSwNP cohort compared with controls. There were no 245 

significant differences between the CRS sub-type cohorts, except for the elevated amounts of 246 

macrophages (CD68+) in CRSwNP compared with CRSwCF.  247 

The sino-nasal tissue biopsies were also assessed for mucosal integrity. Goblet cell 248 

enumeration and cilia integrity in the biopsy specimens were significantly reduced in DC2 249 

compared with DC1 and control (Table S2). Similarly, when subtyping the same group of 250 

patients based on phenotypic approaches, goblet cell enumeration and cilia integrity were 251 

significantly reduced in CRSwNP patients compared with controls and CRSsNP patients. 252 

Interestingly, CRSwCF patients had no significant differences in mucosal integrity (collagen 253 

content, goblet cell enumeration and cilia integrity) compared with controls. Furthermore, 254 

Spearman correlation analysis showed a positive association between goblet cell counts and 255 

tight junction gene LEF1 expression (Fig. S1). No other significant associations were found 256 

between mucosal integrity, inflammatory marker cells and all other measured variables in this 257 

study. 258 

 259 
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 260 

Discussion 261 

Endotyping of CRS patients has been the subject of considerable recent research, as it is 262 

hoped that a sub-classification of this condition will allow for more specific and effective 263 

therapies to be administered. In this study, we defined microbial states for CRS using 264 

probabilistic modelling, in which patients with similar microbial states were clustered 265 

together. Furthermore, the same cohort of patients were also sub-typed based on phenotypic 266 

presentation of the disease. We then sought to understand the underlying influences on these 267 

cohorts by investigating sino-nasal mucosal integrity, tight junction gene/protein expression 268 

and inflammatory status. The two approaches of clustering CRS patients will be compared 269 

and discussed further. 270 

 271 

Resolving the microbial heterogeneity of CRS   272 

Phenotyping of CRS patients based on clinical factors can be subjective and provides little 273 

information about microbes and their involvement in this disease. As shown previously for 274 

gastrointestinal, lower and upper respiratory diseases (11, 16, 17, 23), distinct microbial 275 

states were identified for CRS patients, allowing for stratification based on bacterial 276 

composition. The advantage of the new clustering approach used in this study and by others 277 

(11) is that it reflects a patient’s microbial state at the time and places the patient into a 278 

distinct microbial cluster type. Appropriate targeted treatment strategies could then be 279 

prescribed for patients in the future based on their distinct microbial pattern. 280 

In this study, two distinct microbial states of CRS patients were identified that were 281 

significantly different to each other in diversity, beta-dispersion and the relative abundance of 282 

members from the genus Anaerococcus. Although this novel way of classifying CRS samples 283 

could explain some of the microbial variations in the dataset, there was still a large 284 
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proportion of variation that could not be accounted for. This is most likely due to the sizeable 285 

inter-patient variation observed in this study and reported previously (15, 25). We anticipate 286 

with larger cohort sizes these microbial states would be more pronounced and less obscured 287 

by individual variation. While studies that use less invasive approaches to obtain samples 288 

such as nasopharyngeal swabs and rinses are able to increase cohort sizes (26, 27), these 289 

samples are not suitable for analyses of histology and mucosal integrity. In addition, tissue 290 

biopsies are required to study host gene expression levels. For these reasons, tissue biopsies 291 

were used in the analyses within this study.  292 

Subtyping patients based on the phenotype of the disease (with or without nasal polyps or 293 

with cystic fibrosis) has been the most common approach to date. The results of the microbial 294 

communities from each of these subtypes is confirmatory to those previously described by 295 

our group (28, 29). Interestingly, a greater amount of the variation (23.4%) observed in the 296 

dataset from this study could be explained through this patient phenotypic clustering 297 

approach rather than by the DC approach.  298 

 299 

Potential drivers of microbial signatures for CRS patients 300 

Understanding the underlying factors that shape the sino-nasal microbial community of a 301 

CRS patient is essential for defining the pathogenesis of this complex disease and for 302 

developing better treatment protocols. The most common hypothesis for the pathogenesis of 303 

CRS is that the epithelial barrier is defective (30). Allergens (such as pollen), host genetics, 304 

bacteria, viruses or inflamed tissue could all contribute to the disruption of the sino-nasal 305 

epithelial barrier (31). In this study, we chose to investigate several of these potential host 306 

factors that could contribute to CRS pathogenesis and determine their influence on the sino-307 

nasal microbial state. Out of the 42 measured tight junction genes, nine exhibited reduced 308 

expression in CRS patients compared with controls. Reduced expression of tight junction 309 
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genes in CRS patients compared with controls have been observed previously (6). The reason 310 

for the overexpression of ACTA1, which encodes for proteins involved in cell motility, 311 

structure and integrity (www.uniprot.org) is unclear but presumably reflects the host’s 312 

response to an impaired epithelial surface. Each DC in this study had a unique tight junction 313 

gene expression profile, suggesting that the two identified CRS DCs are functionally different 314 

from each other. It remains unknown whether specific tight junction gene expression could 315 

play a role in determining distinct microbial states in the nasal cavity, or vice versa. The 316 

significant association between tight junction genes and bacterial community composition 317 

observed in this study needs further validation with in vitro tests. However, this observation 318 

does provide some evidence of interactions between host tight junction gene expression and 319 

sino-nasal microbial communities.  320 

Stratification of patients based on the traditional phenotypic approach were not able to clearly 321 

separate out the tight junction gene expression profiles of CRSsNP and CRSwCF cohorts. 322 

This lack of clarity, would suggest that future studies studying tight junction gene expression 323 

profiles in CRS patients should consider using alternative patient stratification approaches. 324 

Of the three measured tight junction proteins in this study, only ZO-1 was significantly 325 

downregulated in DC2 relative to controls. ZO-1’s adhesive function between transmembrane 326 

proteins and the underlying actin skeleton denotes its critical role at the epicentre of the tight 327 

junction complex (32, 33). Furthermore, depletion of ZO proteins in mammary epithelial 328 

cells results in failure of tight junction strands to assemble and consequent loss of barrier 329 

function (33). These findings suggest an important role for ZO-1 in the establishment of 330 

functioning tight junction complexes. It is possible that reduced expression of ZO-1 protein 331 

could underlie subsequent downregulation of integral tight junction proteins, resulting in a 332 

loss of barrier properties. A loss of claudin-4, ZO-1, occludin and E-cadherin in tissue 333 

biopsies of CRS patients has been found previously (6, 34). The lack of any significant 334 
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observations on the tight junction protein measurements in the phenotypic CRS sub groups 335 

compared with controls, also emphasises the need to look at other ways to stratify CRS.  336 

Another potential driver of microbial states in CRS is mucosal integrity. Several studies have 337 

reported significant changes in the structure and composition of the mucosa in CRS (35-37). 338 

CRS subjects exhibited polarising results in regards to evidence of mucus hypersecretion, 339 

with a significantly higher goblet cell count compared with controls. Interestingly, DC2 340 

cohorts had significantly lower goblet cell counts and reduced integrity of cilia compared 341 

with DC1 and controls. This observation was also made for subgroup CRSwNP patients 342 

compared with other CRS cohorts and controls. Mucociliary function in CRS is essential for 343 

the physiological function and immunity of the nose (38). A loss in function promotes 344 

formation of biofilms and bacterial infections. Certain species of Pseudomonas, Haemophilus 345 

and Streptococcus produce ciliostatic or ciliotoxic agents that could result in loss of ciliary 346 

function (39). In this study, correlations with cilia integrity and goblet cell numbers and 347 

bacterial taxa were not observed. However, further research into toxin production by 348 

signature members of each cohort that results in cilia loss is required.  349 

Previous studies have shown pro-inflammatory cytokines (IFN-γ and IL-4) to disrupt 350 

epithelial integrity in vitro, which in turn could cause changes to the sino-nasal micro-351 

environment by disrupting surfaces for attachment or increase the permeability of microbes 352 

to the underlying tissue (6, 40). In addition, Cope et al. (11) found distinct microbial clusters 353 

to have unique patterns of immune response. Evidence from these studies suggests that 354 

microbial states are influenced by various host factors, possibly including cellular junctions. 355 

Furthermore, consistent with findings from other groups, CRS patients in this study based on 356 

microbial states (DC1 and DC2) or phenotypic subtyping (CRSwNP) had higher abundance 357 

of B-cells in the mucosa, compared with controls. Previous efforts have shown a proliferation 358 

of B-cells in the sino-nasal mucosa when exposed to antigens (41). Inflammatory cytokine 359 
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IL-13 is a key factor in stimulating antibody production (such as IgE and IgA) by B-cells in 360 

response to antigen exposure in airway inflammatory diseases (42). IgE levels are elevated in 361 

eosinophilic CRSwNP patients (43). Accordingly, the elevated levels of B-cells in CRS 362 

patients is a good indication of the inflammatory status of the sino-nasal tissue of CRS 363 

patients.  364 

 365 

Stratification approach for CRS 366 

The traditional approach of stratifying CRS patients based on their phenotypic presentation of 367 

the disease is standard practice, however such approaches are struggling to unravel the 368 

complexities of the disease. This study showed that, while phenotypic subtyping approaches 369 

can help explain some of the variation in the microbial community dataset, alternative 370 

methods using microbial signatures can also have some benefit. Each microbial state of CRS 371 

in this study was found to have a unique tight junction expression profile, which was not 372 

observed for the phenotypic subtyping approach. Accordingly, it remains unclear whether 373 

microbial states influence, or are being influenced by, barrier impairment. To answer these 374 

questions, in vitro studies will need to be undertaken in the future. 375 

 376 

 377 

Materials and Methods 378 

Patient recruitment and sample collection 379 

Twenty-three adult patients undergoing functional endoscopic sinus surgery for CRS by a 380 

single surgeon (RD) were recruited for this study. Diagnosis and subsequent recruitment of 381 

CRS patients were based on EPOS 2012 guidelines (44). These included CRS patients with 382 

polyps (CRSwNP; n = 8), CRS patients without polyps (CRSsNP; n = 8), and CRS patients 383 

with cystic fibrosis (CRSwCF; n = 7). Control subjects (n = 8) without any signs of sinus 384 
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disease undergoing endoscopic surgery for the removal of pituitary tumours or medial orbital 385 

decompression were also recruited. Control patients exhibited no evidence of mucosal 386 

inflammation on endoscopy or computed tomography scans. Exclusion criteria included 387 

patients being administered systemic corticosteroids or antibiotics within four weeks prior to 388 

surgery, age less than 18 years, immunodeficiency, pregnancy, and other comorbidities (apart 389 

from cystic fibrosis). This study was approved by the Health and Disability Ethics Committee 390 

of New Zealand (NTX/08/12/126). Prior to sample collection, informed written consent was 391 

obtained from all patients.  392 

Patients completed a symptom score sheet, prior to surgery, in which the following CRS 393 

symptoms were rated on a scale of 0-5: nasal obstruction, anterior nasal discharge, posterior 394 

nasal discharge, facial pain or fullness, and loss of smell. These scores were summated to 395 

give the ‘Symptom Severity’ score in Table S1. Lund-Mackay scoring was used to quantify 396 

radiological disease severity (45). Tissue biopsies were collected intraoperatively from the 397 

ethmoidal sinus under general anaesthesia prior to administration of topical vasoconstrictors 398 

or intravenous antibiotics. Biopsied specimens were rinsed in sterile saline and partitioned. 399 

Samples for quantitative PCR and bacterial community analysis were fixed in RNAlater for 400 

24 h, then stored at -20°C. Samples for immunohistochemistry analysis were fixed in 401 

Carnoy’s solution (60% ethanol, 30% chloroform, 10% glacial acetic acid) before paraffin 402 

embedding. 403 

 404 

Bacterial community analysis 405 

DNA extraction 406 

DNA was extracted from tissue biopsies using sterile Lysing Matrix E bead tubes (MP 407 

Biomedicals, Australia) and the AllPrep DNA/RNA Isolation kit (Qiagen, Germany) as 408 

previously described (46). A negative DNA extraction control using 200 µL sterile water was 409 

carried out simultaneously.  410 
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 411 

Bacterial community sequencing  412 

The V3-V4 region of the bacterial 16S rRNA gene was amplified using primers 341F and 413 

806R (47), with Nextera DNA library Prep Kit adapters attached. PCR reactions, 414 

amplification conditions and purifications were carried out as previously described (12). In 415 

brief, genomic DNA (~100 ng) from each sample was amplified in duplicate PCR reactions 416 

of 35 cycles then pooled to a final volume of 50 µL. Negative PCR controls were included in 417 

all PCR reactions and yielded no detectable amplicons. Eluent from the negative extraction 418 

control was also subjected to PCR amplification and yielded no detectable product. 419 

Purification using Agencourt AMPure magnetic beads (Beckman Coulter Inc., USA) was 420 

carried out as per the manufacturer’s instructions. Purified PCR products were quantified 421 

using Qubit dsDNA High-Sensitivity kits (Life Technologies, New Zealand), standardised to 422 

~5 ng per sample, and submitted to the University of Auckland Genomics Centre for library 423 

preparation and sequencing using Illumina MiSeq (2 x 300 bp paired-end reads). Raw 424 

sequence reads were deposited into the SRA-NCBI database (BioProject ID: PRJNA482256). 425 

 426 

Bioinformatics 427 

Sequences were merged and quality filtered in USEARCH (version 8.0) with default settings 428 

as previously described (12). OTU clustering based on a 97% 16S rRNA gene sequence 429 

similarity threshold was performed using the UCLUST algorithm in USEARCH (48). Each 430 

OTU was taxonomically assigned in QIIME (49) using the RDP classifier 2.2 against the 431 

SILVA 16S rRNA gene database (version 128) (50, 51). Sequences mapping to the human 432 

genome were removed from subsequent analyses. Samples were rarefied to an even 433 

sequencing depth of 677 reads. Alpha-diversity (including Shannon, Simpson, and richness 434 

(observed OTUs)) and beta-diversity (including weighted and unweighted UniFrac distances, 435 
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and Bray-Curtis dissimilarity) were calculated in QIIME. Graphical outputs were created in R 436 

(version 3.4.1) (52) and GraphPad Prism (version 7.03).  437 

 438 

RNA extraction and quantitative PCR (qPCR) 439 

RNA extraction of biopsied tissue was carried out in parallel to the DNA extraction using the 440 

AllPrep DNA/RNA Isolation Kit (Qiagen) as per the manufacturer’s instructions. Extracted 441 

RNA was transferred to a collection tube and re-eluted in 30 µL DNA/RNA-free sterile 442 

water. 443 

Recovered RNA was treated with DNaseI (Invitrogen) for selective degradation of 444 

contaminant DNA as per the manufacturer’s instructions. The quantity and quality of RNA 445 

were measured using a Nanodrop 3000 spectrophotometer. Successful removal of genomic 446 

DNA from DNase-treated RNA samples was demonstrated by PCR targeting the human beta-447 

actin gene (53). DNase-treated RNA (standardised to ~100 ng/µL) was converted into cDNA 448 

using iScriptTM Reverse Transcription Supermix for RT-qPCR (Bio-Rad, New Zealand) as 449 

per manufacturer’s instructions.  450 

Pre-designed, 384-well qPCR arrays (TJ H384) were obtained from Bio-Rad Laboratories 451 

Inc. (Auckland, New Zealand) for analysis of 42 known tight junction genes and one house-452 

keeping gene (GAPDH). Each sample was assessed for PCR performance, reverse 453 

transcription efficiency, DNA contamination, and RNA quality. Analysis of results was 454 

carried out using the ABI Prism 7900HT detection system (version 2.4). Each sample was 455 

run in duplicate on separate qPCR arrays and averaged for further analysis. Tight junction 456 

gene expression was normalised to the house-keeping gene GAPDH. Mean fold-change of 457 

gene expression in CRS-affected patients compared to control was calculated using the 458 

equation 2
-ΔΔCt

 (54).  459 

 460 
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Histological analysis of sino-nasal tissue 461 

Paraffin-embedded tissues were prepared into 4 µm-thick sections then mounted on 462 

Superfrost Plus positively-charged microscope slides (Thermo Fisher Scientific). Detailed 463 

procedures for staining and analysis of tight junctions (ZO-1, claudin-1 and occludin), goblet 464 

cells, cilia, collagen and inflammatory cells (CD4: T cells, CD20: B cells, CD68: 465 

macrophages) can be found in the Supplementary Material.  466 

 467 

Statistical analysis 468 

Statistical analyses were carried out using GraphPad Prism software (CA, USA) and R. 469 

Dirichlet multinomial mixtures using probabilistic modelling in R was used to stratify 470 

patients based on their microbial communities (OTU-level) (23). The Laplace approximation 471 

was used to find the model of best fit and determine the number of clusters from the dataset. 472 

Unique microbial states were labelled Dirichlet clusters (DC). Sample dispersion between 473 

groups was compared using analysis of variance, permutation test (PERMDISP), and Tukey’s 474 

honest significant differences in R. The software package ‘adonis’ PERMANOVA using 475 

distance matrices (Bray-Curtis dissimilarity (weighted and unweighted), UniFrac distances 476 

(weighted and unweighted)) was used to compare between centroids of groups. 477 

Multiple non-parametric pairwise comparisons for categorical variables (diagnosis, gender, 478 

ethnicity, polyposis, smoking status, antibiotic and steroid usage, and co-morbidities) were 479 

tested using Fisher’s exact test, with Bonferroni adjustment for multiple comparisons. 480 

Pairwise comparisons between continuous variables for bacterial diversity, age, Lund-481 

Mackay scores, symptom severity scores, tight junction gene expressions, histological 482 

analyses, bacterial OTUs and genera were tested using Dunn’s test, with Bonferroni 483 

adjustment for multiple comparisons. Heat maps depicting Spearman correlations, with 484 

significance calculated using Spearman coefficients, including multiple comparisons 485 
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adjustment using Benjamini & Hochberg False Discovery Rate (BH-FDR) with hierarchical 486 

clustering of correlation coefficients were generated in R. Factors with significant (p < 0.05) 487 

positive or negative correlations were plotted.  488 

 489 
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Figure legends 647 

Fig. 1: Bacterial community composition and alpha diversity for the CRS cohorts and disease 648 

controls. Grouped and patient-level profiles at genus-level are shown in the bar graphs for 649 

(A) DC groupings and (C) phenotypic grouping. Box-and-whisker plots represent group 650 

summaries for bacterial richness, Shannon diversity and Simpson diversity for (B) DC 651 

groupings and (D) phenotypic groupings. Horizontal lines represent significant differences (p 652 

< 0.05) between cohorts. 653 

 654 

Fig. 2: Mean OTU relative abundance per sample (when present in a sample) plotted against 655 

prevalence (occurrence) across (A) all samples, (B) each DC and control, and (C) each 656 

phenotypic CRS subtype and control. All OTUs are plotted. The 14 most abundant OTUs are 657 

color-coded, and all other OTUs are presented as black dots. 658 

 659 

Fig. 3: Non-metric multidimensional scaling plot using Bray-Curtis dissimilarity distances 660 

(weighted) for all samples for (A) DC clustering and (C) phenotypic subtyping. Ellipses 661 

represent the 95% CI spread from centroids. Box-and-whisker plot of distances between each 662 

subject to the centroid of their respective group (B) and (D). Beta-dispersion was 663 

significantly different between DC1 and controls (p = 0.0114; Tukey’s multiple comparisons 664 

of means). 665 

 666 

Fig. 4: Tight junction genes that were significantly different in expression for (A) DC groups 667 

and (B) phenotypic subgroups compared with controls are displayed in the heatmap. Blue 668 

represents genes that have low level expression, and red represents higher expression. Values 669 

displayed are log-transformed mean fold-change (2
-ΔΔCt

). * represents p values below 0.05 670 

and ** represents p values below 0.01. 671 
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Fig. 1: Bacterial community composition and alpha diversity for the CRS cohorts and disease 

controls. Grouped and patient-level profiles at genus-level are shown in the bar graphs for (A) DC 

groupings and (C) phenotypic grouping. Box-and-whisker plots represent group summaries for 

bacterial richness, Shannon diversity and Simpson diversity for (B) DC groupings and (D) 

phenotypic groupings. Horizontal lines represent significant differences (p < 0.05) between cohorts.
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Fig. 2: Mean OTU relative abundance per sample (when present in a sample) plotted 

against prevalence (occurrence) across (A) all samples, (B) each DC and control, and 

(C) each phenotypic CRS subtype and control. All OTUs are plotted. The 14 most 

abundant OTUs are color-coded, and all other OTUs are presented as black dots.
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Fig. 3: Non-metric multidimensional scaling plot using Bray-Curtis dissimilarity distances 

(weighted) for all samples for (A) DC clustering and (C) phenotypic subtyping. Ellipses 

represent the 95% CI spread from centroids. Box-and-whisker plot of distances between each 

subject to the centroid of their respective group (B) and (D). Beta-dispersion was significantly 

different between DC1 and controls (p = 0.0114; Tukey’s multiple comparisons of means).
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Fig. 4: Tight junction genes that were significantly different in expression for (A) DC groups and 

(B) phenotypic subgroups compared with controls are displayed in the heatmap. Blue represents 

genes that have low level expression, and red represents higher expression. Values displayed are 

log-transformed mean fold-change (2-ΔΔCt). * represents p values below 0.05 and ** represents p

values below 0.01.
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