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Abstract: 24 

Tonal music the world over is characterized by a hierarchical structuring of pitch, whereby 25 

certain tones appear stable and others unstable within their musical context. Despite its 26 

prevalence, the cortical mechanisms supporting such a percept remain poorly understood. 27 

The current study probed the neural processing dynamics underlying the representation of 28 

pitch in Western Tonal Music. Listeners were presented with tones comprising all twelve 29 

pitch-classes embedded within a musical context whilst having their 30 

magnetoencephalographic (MEG) activity recorded. Using multivariate pattern analysis 31 

(MVPA), decoders attempted to classify the identity of tones from their corresponding MEG 32 

activity at each peristimulus time sample, providing a dynamic measure of their cortical 33 

dissimilarity. Time-evolving dissimilarities between tones were then compared with the 34 

predictions of several acoustic and perceptual models. Following tone onset, we observed a 35 

temporal evolution in the brain’s representation. Dissimilarities between tones initially 36 

reflected their fundamental frequency separation, but beyond 200 ms reflected their status 37 

within the tonal hierarchy of perceived stability. Furthermore, when the dissimilarities 38 

corresponding to this latter period were transposed into different keys, cortical relations 39 

between keys correlated with the well-known circle of fifths. Convergent with fundamental 40 

principles of music-theory and perception, current results detail the dynamics with which the 41 

complex perceptual structure of Western tonal music emerges in human cortex within the 42 

timescale of an individual tone. 43 

 44 

 45 

 46 

 47 
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Significance statement: 49 

In music, pitch is organized along a hierarchy of perceived stability. Applying stimulus 50 

decoding techniques to the Magnetoencephalographic activity of subjects during music-51 

listening, we examined the structure of this hierarchy in cortex and the dynamics with which 52 

it emerges at the timescale of an individual tone. Following its onset, we observed a temporal 53 

evolution in the brain’s representation of a tone. Activity initially reflected its pitch-value 54 

(fundamental frequency) before reflecting its status within the tonal hierarchy of perceived 55 

stability. ‘Transposing’ this later period of activity into different musical keys, we found that 56 

inter-key distances reflected the well-known circle of fifths. Our results provide a link 57 

between the complex perceptual structure of tonal music and its dynamic emergence in 58 

cortex. 59 

 60 

 61 

 62 

 63 

 64 
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 4 

Introduction 74 

In musical systems throughout the world, pitch is organized hierarchically (1). Depending on 75 

the prevailing key or tonality of a musical passage, certain pitch-classes occur more 76 

frequently and occupy positions of melodic, harmonic and rhythmic prominence (2). 77 

Perception mirrors this compositional hierarchy, whereby those privileged pitch-classes also 78 

have greater stability (3, 4). For example, within the Western key of C major, the first scale 79 

degree (C) is maximally stable and therefore heads the hierarchy. This is followed by the fifth 80 

and third scale degrees (G and E respectively), the other scale tones (D, F, G, A, B), and 81 

finally the non-scale or “out-of-key” tones (C#, D#, F#, G#, A#). We refer to this collective 82 

structure as the standard tonal hierarchy (STH; figure 1A).  83 

 84 

 85 

 86 

Figure 1. Perceptual descriptions of tonal structure. (A) The standard tonal hierarchy 87 

based on listener’s ratings of perceived stability reported in Krumhansl & Kessler (1982). 88 

(B) The “circle of fifths” conveying the relatedness between the different major musical 89 

keys. 90 

 91 

Despite functioning as the principle organizing schema of Western Tonal Music, the neural 92 

substrates supporting the STH remain unknown. After core auditory areas extract basic 93 
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frequency information from an acoustic signal, a representation of complex pitch is thought 94 

to emerge in lateral auditory regions (5-9). How does this isolated sensory representation then 95 

acquire the perceived attributes of musical pitch?  The surrounding musical context must be 96 

integrated, and cortical populations reflecting a prior knowledge of Western tonal structure 97 

must be recruited. Both lesion and neuroimaging studies have identified regions implicated in 98 

the processing of both melodic (10) and harmonic (11-13) structure, while 99 

electrophysiological research has identified cortical response components sensitive to the 100 

hierarchical status of evoking tones (14-15). More recently, Sankaran et al. (2018) (16) 101 

showed that, independent from acoustics, the tonal class of pitches can be decoded from their 102 

multivariate patterns of Magnetoencephalographic (MEG) activity, suggesting that the 103 

perceptual structure of musical pitch may be directly recoverable from cortical activity. 104 

Despite these advances, empirical work is yet to map the neural representational space of 105 

musical pitch and explicitly test the predictions of specific perceptual and music-theoretic 106 

models. The current study therefore evaluated two major questions: Firstly, do cortical 107 

populations encode musical pitch in a manner that precipitates the organization of the STH? 108 

Secondly, what are the temporal dynamics with which afferent sensory representations of 109 

pitch interface with high-level tonal-schematic ones?   110 

 111 

To probe these questions, we recorded the MEG activity of subjects listening to each pitch-112 

class presented within a tonal musical context. We used Multivariate Pattern Analysis 113 

(MVPA) (17) to decode the identity of tones from their corresponding MEG activity. Within 114 

this framework, the accuracy with which classifiers can discriminate between the 115 

spatiotemporal response patterns elicited by two different tones provides an intuitive measure 116 

of their dissimilarity in cortex. As MEG responses were sufficiently time-resolved, 117 

classification was applied using a sliding time window, enabling us to track the temporal 118 
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dynamics of the neural distinctions between tones. Finally, comparing the time-varying MEG 119 

dissimilarities with the predictions of relevant acoustic and perceptual models of pitch, we 120 

evaluated how the evolving cortical structure between tones relates to stimulus-driven 121 

features and the perceptual organization of the STH. 122 

 123 

In addition to examining the brain’s representation of pitch within one key, we also measured 124 

the relationship between different major keys in cortex. This was motivated by the musical 125 

practice of modulation, in which a passage shifts from one key to another. In music theory, 126 

inter-key distances are described by the circle of fifths (figure 1B). In this arrangement, keys 127 

separated by intervals of a fifth are closest, and the pattern of relatedness folds back on itself 128 

to form a closed circle. Perceptual research has shown that these key-relations emerge when 129 

correlating the STH of different keys with one another (4), suggesting that the cognitive basis 130 

of tonality resides in the “scaffold” of individual pitch relationships rather than the general 131 

accumulation of information across a tonal passage. While prior research has investigated 132 

key-relationships using fMRI (18), the relatively poor temporal resolution prohibits an 133 

understanding of the neural mechanisms underlying the emergence of tonal structure at the 134 

timescale of an individual tone. We therefore derived a neural representation of key-distances 135 

using the measured MEG distinctions between tones. Remarkably, the extent to which two 136 

keys were related in cortex was predicted by the circle of fifths. Thus, convergent with 137 

fundamental principles in both music-theory and perception, current results provide a 138 

neuroscientific conceptualization of how complex tonal structure emerges from individual 139 

pitch-relationships within music. 140 

 141 

Results and Discussion 142 
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Results are derived from MEG recordings during the presentation of twelve different “probe-143 

tones” that spanned all pitch-classes within an octave range following a C major context (see 144 

methods). Discriminant classifiers attempted to decode the MEG activity of two different 145 

tones at each time-point in the neural epoch (from -100 ms to 1000 ms relative to onset), and 146 

the resulting curve of time-varying accuracy provided a dynamic estimate of the dissimilarity 147 

in their neuronal population codes. Applying this classification procedure to every pairwise 148 

combination of the twelve different tones, we characterized the dynamic representational 149 

structure of musical pitch in cortex. 150 

 151 

Representational structure of musical pitch in cortex 152 

To examine the dynamics of stimulus-specific information in cortex, we first assessed the 153 

average decoding performance when classifying all pairwise combinations of tones (figure 154 

2A). As expected, average accuracy was at chance (50%) prior to the onset of tones (t=0) as 155 

stimulus-related information was yet to activate cortex. Following onset, neural distinctions 156 

between tones first emerged at 100 ms. Distinctions were maximal at 250 ms and remained 157 

above chance for the full extent of the neural epoch.   158 

 159 

Next, we studied the dissimilarity between specific tones whose acoustic or perceptual 160 

properties generated explicit predictions regarding their representational distance. Firstly, as 161 

tones acoustically differed from one another, we reasoned that their distinctions in cortex 162 

may be commensurate with their fundamental frequency (f0) separation, which we term pitch-163 

height (PH). Decoding performance was therefore examined for pairwise combinations of 164 

tones grouped based on whether their PH difference was small (1–4 semitones), medium (5–7 165 

semitones), or large (8–11 semitones). A period from approximately 100 to 250 ms was 166 

found in which the above hypothesis held true (figure 2B). For example, cortical distinctions 167 
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between tones that had large PH differences (blue curve) significantly exceeded those 168 

between tones that had small PH separation (red curve). Secondly, in addition to acoustic 169 

differences, tones differed in their perceived stability given the preceding musical context. 170 

We therefore hypothesized that distinctions in their cortical encoding may honor their 171 

perceptual differences, embodied by the Standard Tonal Hierarchy (STH) of stability. If so, 172 

MEG decoding performance would be greatest for tones located at opposite ends of the 173 

hierarchy, and poorest for tones that are hierarchically equal. In general, results confirmed 174 

this hypothesis (figure 2C). MEG responses to the most stable tone [C] were highly distinct 175 

from those of the unstable tones [F#, G#, D#, A#, C#] (green curve), but less discriminable 176 

from those of the second and third most stable tones [G and E respectively] (orange curve). 177 

Additionally, classifiers performed poorly when attempting to distinguish the neural activity 178 

of unstable tones from one another (purple curve). These results suggest that the extent to 179 

which the cortical activity elicited by two tones differ corresponds to the difference in their 180 

position within the STH. Unlike the earlier neural distinctions based on pitch-height, the 181 

correspondence between decoding accuracy and hierarchical distance only emerged 182 

approximately 200 ms after onset and persisted throughout the duration of the neural epoch. 183 

 184 

 185 

Figure 2. Temporal decoding of tones from evoked MEG responses. The time axis in all 186 

plots are aligned to onset of tones. (A) Average classification accuracy for decoding all 187 

pairwise combinations of the twelve tones. (B) Average classification accuracy when 188 

decoding tone-pairs grouped based on their pitch-height separation: large (8-11 semitones; 189 
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blue), medium (5-7 semitones; green) and small (1-4 semitones; red). (C) Classification of 190 

tone-pairs grouped based on their difference in the hierarchy of perceived stability: large 191 

difference (green), medium difference (orange), and little-to-no difference (purple). Colored 192 

boxes in the schematic legend specify the hierarchical position of tones being decoded for 193 

each curve, with blue and red boxes indicating stable and unstable tones respectively. Results 194 

in plots B-C are averaged across all appropriate pairwise combinations of tones. Colored 195 

markers underneath curves in B-C indicate timepoints when decoding performance differs 196 

significantly from chance levels (p<0.05; Wilcoxon sign-rank tests, FDR corrected). Black 197 

markers indicate timepoints during which two decoding curves, specified by the bottom-right 198 

colored boxes, are significantly different from one another. Shaded regions indicate standard 199 

errors across all participants (N=18). 200 

 201 

The results of MVPA suggest that early cortical distinctions between tones reflect their 202 

absolute pitch (i.e. f0) differences, while later distinctions reflect the musical pitch structure 203 

of the STH. We next sought to explicitly test this hypothesis within the framework of 204 

representational similarity analysis (RSA) (19). The set of dissimilarities corresponding to 205 

all pairwise combinations of tones were indexed in a time-varying representational 206 

dissimilarity matrix (RDM; figure 3A). For a given subject and timepoint, each cell of the 207 

diagonally symmetric RDM indicates the cortical dissimilarity between the tones indexed by 208 

the cell’s row and column. We found that the RDMs of individual subjects were correlated 209 

with one another from 100 ms onwards (figure 3B), verifying that the representational 210 

structure was consistent across listeners over the same temporal extent in which average 211 

stimulus-distinctions (in figure 3A) were apparent. 212 

 213 
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 10 

Next, we evaluated the predictive capacity of several models that attempt to explain the 214 

observed structure of time-varying cortical RDMs. Each model was coded as a candidate 215 

RDM, making its predictions about the expected dissimilarities between tones explicit (figure 216 

3C). One candidate RDM was based on the Standard Tonal Hierarchy (STH), where 217 

distances between tones corresponded to their difference in perceived stability, as reported by 218 

Krumhansl & Kessler (1982) (4). Another candidate RDM coded for differences in Pitch 219 

Height (PH) in order to evaluate whether distinctions between tones were driven by their f0 220 

separation. We additionally tested two purely sensory models; one based on the Spectral 221 

Distance (SD) between tone-pairs, and another based on the differences in their Spectral 222 

Overlap (SO) with the preceding musical context (see methods for details). Each listener’s 223 

cortical RDM at every time point was compared with the four-different candidate RDMs 224 

using a rank-order correlation measure, resulting in four curves tracking neural-model 225 

correlation across time (figure 3D). Consistent with the earlier findings from MVPA, the PH 226 

and STH models significantly explained cortical RDMs in early (100 – 250 ms) and later 227 

(190 ms onwards) regions of neural processing respectively. Crucially, both PH and STH 228 

correlations closely tracked the noise ceiling (20), indicating that these models offered 229 

optimal predictive power given the noise levels inherent in the MEG data (see methods). The 230 

temporal order of model correlations is consistent with dominant conceptions of melodic 231 

processing, which posit the extraction of complex pitch before the integration and analysis of 232 

broader tonal-harmonic structure (21). Interestingly, from 190 to 250 ms, PH and STH 233 

models were both significantly correlated with cortical RDMs, suggesting an intermediary 234 

period during which the brain holds a combined representation of both the tone’s f0 and pitch-235 

class.  236 

 237 
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To better visualize the above results, neural-model correlations were averaged into three time 238 

bins (figure 3E): the first corresponded to a period before stimulus-specific information was 239 

present in cortical activity (-100 to 100 ms); the second corresponded to the period during 240 

which cortical structure was most strongly correlated with PH differences (100 to 200 ms); 241 

and the third corresponded to the remainder of the neural epoch, during which cortical 242 

structure reflected the STH (200 to 1000 ms). Time-averaged neural RDMs corresponding to 243 

each of the three bins are displayed in the top panels of figure 3F-H. To more intuitively 244 

visualize their dissimilarity structure, we applied multidimensional scaling (MDS) to each 245 

RDM, obtaining a 2-dimensional solution in each case (Figure 3F-H; bottom panel). The 246 

MDS solution in figure 3G clearly demonstrates the organization of pitch from low to high as 247 

the space is traversed from upper-left to lower-right respectively. Similarly, the spatial 248 

organization of the MDS solution in figure 3H illustrates many key properties of the STH. 249 

Traversing the space from right to left reveals the structure of the hierarchy, with the most 250 

stable pitch-class (C) situated on the right side, closest to the next most stable classes (G and 251 

E) but distant from the cluster of unstable classes (F#, G#, D#, A#, C#) in the lower left 252 

corner. Prior behavioral research has underscored the perceptual primacy of this hierarchical 253 

arrangement (4). Our findings now provide evidence of its origins in the cortex and reveal the 254 

temporal dynamics with which it emerges from the acoustic signal via an intermediate 255 

representation of pitch-height. 256 

 257 
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 258 

Figure 3. Representational similarity analysis of pitch-class. (A) Neural representational 259 

similarity matrix (RDM) indexing measured cortical dissimilarities between pairs of pitch-260 

classes at each time point in the neural epoch. (B) The mean rank-order correlation between 261 

the RDMs of individual listeners (N=18).  Significant time points are indicated underneath 262 
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the curve (p<0.05; randomization test, FDR corrected). (C) Four different candidate RDMs 263 

based on models that attempt to explain neural dissimilarities. (D) Rank-order correlations 264 

between each model and neural RDMs at each time point. Shaded regions indicate standard 265 

errors across listeners. Significant time points are indicated by colored markers beneath 266 

curves (p<0.05; Wilcoxon sign-rank tests, FDR corrected). (E) For visualization purposes, 267 

neural-model RDM correlations were averaged across three different peristimulus time bins. 268 

(F-H) Average neural RDMs (top) and multidimensional scaling solutions (bottom) for the 269 

three regions in E. Colormaps indicate pitch-height (low to high) or perceived stability 270 

(unstable to stable) in G and H respectively. 271 

 272 

Representation of major musical keys in cortex  273 

In tonal music, the perceptual structure that exists between individual pitch-classes is thought 274 

to generate the second-order percept of a harmonic center or “key” (22). Logically therefore, 275 

we reasoned that two keys should be related in the brain to the extent that they impose a 276 

similar neural structure amongst the constituent tones. Adapting the procedure of prior 277 

behavioral research (4) to the neural domain, we next used the MEG-based distinctions 278 

between tones to derive an empirical measure of inter-key distances, comparing the resulting 279 

structure with the circle of fifths (figure 1B).  280 

 281 

In order to only capture the cortical processing of tonal-schema in our analysis, neural RDMs 282 

were first averaged across 250–1000 ms; a time during which only the STH model 283 

significantly predicted cortical RDMs. Next, we used MDS to geometrically express the 284 

dissimilarity structure between the twelve tones as points in representational space. An 285 

eleven-dimensional MDS solution was found for each subject’s neural RDM, noting that n 286 

objects will perfectly fit into n-1 dimensions (23).  To transpose the representational structure 287 
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between tones (measured in the key of C major) into different keys, the configuration of 288 

tones was shifted in MDS-space by the appropriate number of steps entailed by a given 289 

transposition. For example, to transpose the MDS structure from C major to G major, the 290 

point representing the tone ‘C’ was shifted to that occupied by ‘G’, the point occupied by 291 

‘C#’ was shifted to that of ‘G#’, and the process was repeated for all twelve pitch-classes. 292 

The overall dissimilarity between two keys was computed as the mean Euclidean distance 293 

across all twelve tone-translations. Application of this procedure to all pairwise combinations 294 

of the twelve major keys resulted in a cortical inter-key RDM in which the rows and columns 295 

correspond to different keys and cells code the corresponding distance between two keys. 296 

The average inter-key RDM across subjects is displayed in figure 4A, alongside a candidate 297 

RDM based on the circle of fifths (figure 4B). Rows and columns are ordered such that 298 

adjacent cells progress in intervals of a fifth. We found that the two structures were 299 

significantly correlated (Kendall’s TauA = 0.26; p = 0.002) and shared several essential 300 

properties. For example, keys separated by fifths were most proximate (e.g. C major and G 301 

major), while those separated by 6-semitones were most distant (e.g. C major and F# major). 302 

The generative nature of tonal music has been established by decades of perceptual research - 303 

showing that the perceived structure between keys emerges directly from the constituent 304 

structure that exists between tones (24, 25, 26, 22). Current results establish the 305 

neurophysiological basis of this generative property, deriving the same musical key-relations 306 

directly from the MEG response structure to individual tones.  307 

 308 
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 309 

Figure 4. Inter-key relationships. (A) Neural RDM indicating the pairwise distances 310 

between the twelve different major keys. (B) A candidate RDM based on the “circle of 311 

fifths”.   312 

 313 

We have dynamically characterized distinctions in the spatiotemporal patterns of cortical 314 

activity encoding the different classes of Western musical pitch. Our results suggest that, as a 315 

tone is received by the auditory system, an evolution exists in the underlying information 316 

contained in its cortical population codes. Initially, they represent a localized and intrinsic 317 

attribute of the tone. Eventually however, they contain information reflecting its integration 318 

with the surrounding context and an acquired knowledge of the pitch-structure of Western 319 

tonal music. In elucidating the representational dynamics underlying musical pitch 320 

perception, we shed light on the neural underpinnings of domain-general perceptual 321 

processes in which incoming sensory signals interact with internal structural knowledge. It 322 

remains the goal of future work to further detail the neural computations involved in 323 

integrating these two sources of information to arrive at an ultimate percept. 324 

 325 

Materials & Methods 326 

Participants.  327 
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Eighteen subjects with a minimum of 5 years of formal music training (mean = 11.9 years) 328 

were recruited through the Sydney Conservatorium of Music and Macquarie University to 329 

partake in the study. All subjects reported having no known hearing loss or brain 330 

abnormalities and did not possess absolute pitch. The study was approved by the Human 331 

Research Ethics Committee at Macquarie University (REF 5201300804) and all methods 332 

were carried out in accordance with the stated guidelines. Informed consent was obtained 333 

prior to testing, after all experimental details and potential risks were explained. 334 

 335 

Apparatus.  336 

Data were collected with a whole-head MEG system (Model PQ1160R-N2; KIT, Kanazawa, 337 

Japan) consisting of 160 coaxial first-order gradiometers with a 50 mm baseline (27, 28). 338 

Prior to recording, each participant’s head shape was measured with a pen digitizer 339 

(Polhemus Fastrack, Colchester, VT, USA) and the positions of five marker coils on the 340 

surface of the scalp were registered. During recording, MEG data was bandpass filtered 341 

online from 0.1 – 200 Hz using first-order RC filters and digitized at 1000 Hz. Participants 342 

were in a supine position within a magnetically shielded room containing the MEG sensors. 343 

During experimental trials, they were instructed to direct their gaze at a fixation cross. Both 344 

the fixation cross and experimental instructions were projected by an InFocus IN5108 LCD 345 

back projection system (InFocus, Portland, Oregon, USA) to a screen located above the 346 

participant at a viewing distance of 113 cm. Sound stimuli were delivered via Etymonic ER-347 

30 insert headphones at a sampling frequency of 44.1 kHz.  348 

 349 

Stimuli & Design.  350 

Stimuli were piano tones recorded at 44.1kHz and sampled using Max/MSP (Cycling ’74, 351 

San Francisco, CA) to construct tones that were 500ms in duration with an additional 150ms 352 
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decay. Prior to testing, all tones were passed through a time varying loudness model (29) to 353 

normalize for differences in perceived loudness. For each tone, the maximum short-term-354 

loudness (STLmax) was computed and normalized to the mean value of all four tones. 355 

Differences in STLmax between all probe-tones did not exceed 3 phones. 356 

Subjects were presented with a series of trials while having their MEG activity recorded. 357 

Each trial consisted of a tonal context followed by a single tone (hereafter referred to as the 358 

probe-tone). The tonal context consisted of four major chords written in four-part harmony 359 

outlining an I-IV-V-I harmonic progression in the key of C major. The context and probe-360 

tone were separated by a silent period equivalent to one beat (650ms, 92 bpm). This temporal 361 

separation was introduced in order to prevent the sensory processing of the context from 362 

contaminating evoked responses to probe-tones whilst maintaining metric regularity. On a 363 

given trial, the subsequent probe-tone was one of twelve notes spanning the chromatic range 364 

between F#3 (185 Hz) and F4 (349 Hz). This range was chosen to minimize the average 365 

pitch-distance between the probe-tone and its preceding context. On each trial, presentation 366 

of probe-tones was randomized but constrained to avoid repeated presentation across adjacent 367 

trials. To ensure participants were attending to stimuli (30), participants judged whether the 368 

probe-tone on each trial was ‘in-key’ or ‘out-of-key’, registering their response after the 369 

occurrence of the probe-tone by pressing one of two buttons. Participants were instructed to 370 

use their left and right thumbs to register the two respective responses. The mapping of in-371 

key/out-of-key to left/right button was interchanged every two blocks to control for the 372 

effect, if any, of motor activity on the measured neural responses. No trial-by-trial feedback 373 

was provided during the MEG recording. On average, subjects responded correctly on 78% 374 

of the trials (SD = 16.3%). All trials, including those with incorrect responses, were included 375 

in the subsequent neural analysis (31). Once the response was registered, inter-trial-intervals 376 

were randomly roved between 0.5 - 1 sec. Before testing, subjects completed a training 377 
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session consisting of 20 trials with an identical behavioral task to that of the main 378 

experiment. Feedback was provided after each training trial and the experimenter ensured 379 

that subjects could perform the task (using a threshold of ³ 75% correct) before proceeding to 380 

the MEG recording session. Each participant's MEG data were collected in a single hour-long 381 

session. The total experiment comprised 672 trials, yielding 56 neural observations of each of 382 

the 12 probe-tones. Testing was divided into 8 blocks, each comprised of 84 trials and 383 

separated by one-minute breaks.  384 

 385 

Analysis. 386 

MEG pre-processing.  387 

Pre-processing of MEG data was performed in MATLAB. Data corresponding to each 388 

participant was first epoched from 100 ms before to 1000 ms after onset of probe-tones 389 

before being down-sampled to 100 Hz with a low-pass Chebyshev Type 1 filter. Down-390 

sampling improved the overall SNR while still retaining a suitable level of temporal 391 

resolution to examine the time course of neural pitch-processing. Next, spatial Principal 392 

Components Analysis (PCA) was applied to the dataset of each participant using the MEG 393 

sensor channels as input features. We retained components that cumulatively explained 99% 394 

of the variance. On average, PCA reduced the dimensionality of datasets from 160 sensor 395 

channels to 28 principle components (SD = 5.4). PCA has been found to be an efficient pre-396 

processing step for optimizing data for MEG decoding analyses (32). In a single step, PCA 397 

reduces the dimensionality of the data, and obviates the need for additional artefact rejection 398 

or de-noising procedures, as classifiers can “learn” to suppress nuisance variables isolated by 399 

PCA, e.g. eye-blinks and environmental noise.  400 

 401 

Multivariate pattern classification of MEG activity.  402 
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To measure the neural dissimilarity between tones, we applied Multivariate pattern analysis 403 

(MVPA) (17), whereby a binary classifier learns features of the evoked MEG activity that 404 

best distinguishes two different tones. MVPA was applied to each subject’s pre-processed 405 

dataset using MATLAB. Prior to classification, we averaged the MEG responses of 2 trials 406 

within the same pitch category in order to boost the overall SNR of classification (32). We 407 

used a naïve Bayes implementation of linear discriminate analysis (LDA) (33) to perform 408 

classification for each pairwise combination of tones. Generalization of the classifier was 409 

evaluated using k-fold cross validation with a 9:1 training to test ratio. Specifically, MEG 410 

data corresponding to the two classes being classified were randomly assigned to 10 bins of 411 

equal size, with a balanced number of observations from each class in every bin. Next, nine 412 

of the bins were pooled together and used to train the classifier, and the trials in the 413 

remaining bin were used to test the classifier. This procedure was repeated 10 times such that 414 

each bin was utilized for testing once. The reported accuracy is the average across all 10 415 

cross-validation runs. A sliding classification time-window was used on the MEG time-416 

series, resulting in a curve of classifier accuracy across time that tracks the dynamic 417 

emergence of stimulus-related information in the cortex. The classifier window was 50ms 418 

long and adjacent classification runs traversed the neural epoch in 10ms steps. Importantly, 419 

the neural response at each adjacent time point within the 50 ms window mapped onto a new 420 

dimension in the classification feature space. In this fashion, classifiers not only 421 

discriminated between responses based on their spatial activation patterns at each time, but 422 

also their fine-grained temporal response structure across multiple time-points. Classifier 423 

performance at each time point was evaluated in terms of balanced accuracy (32), whereby 424 

accuracy is evaluated individually for each class and then averaged. Significance at the group 425 

level (N = 18) at each time sample was evaluated using two-sided Wilcoxon sign-rank tests 426 
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(p<0.05). Multiple comparisons were corrected by controlling the false discovery rate (FDR) 427 

(34, 35) with α = 0.05. 428 

 429 

Representational similarity analysis of tones. 430 

Application of MVPA as described above to every pairwise combination of the twelve tones 431 

resulted in a 12x12 diagonally symmetric Representational Dissimilarity Matrix (RDM) for 432 

every subject and time sample. To check for consistency across subjects, the mean inter-433 

subject RDM correlation (figure 3B) was calculated at each time sample by averaging the 434 

rank-order correlation (Kendall’s TauA) (20) of all pairwise combinations of individual 435 

subjects’ RDMs (N=18). Significance was assessed by way of randomization testing. Briefly, 436 

the columns of subjects’ RDMs were randomly permuted before being correlated, and this 437 

procedure was repeated 1000 times, resulting in a correlation noise floor. Significance was 438 

based on the true mean correlation rising above the 95% distribution of the noise floor (FDR 439 

corrected). Next, MEG RDMs for each subject and at each time sample were compared with 440 

four candidate RDMs coded according to the predictions of several perceptual and sensory 441 

models of pitch. Candidate RDMs were as follows: [1] An RDM based on the Standard 442 

Tonal Hierarhcy (STH) was constructed in which each cell coded the difference in perceived 443 

stability between the two corresponding tones using the major-profile ratings reported in 444 

Krumhansl & Kessler (1982). [2] In order to test the hypothesis that MEG dissimilarities 445 

reflected the difference in each tone’s fundamental frequency (f0), we constructed a Pitch-446 

Height (PH) RDM, in which each cell corresponded to the semitone difference in f0 for the 447 

two tones in question. [3] To assess whether neural dissimilarities between tones reflected 448 

their sensory differences, a Spectral Distance (SD) RDM was constructed in which each cell 449 

corresponded to the Euclidean distance between the 128-channel stimulus spectrograms of 450 

two tones. Spectrograms for each tone were extracted by passing the raw audio through a 451 
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biologically inspired model of the auditory periphery (36). The model consisted of three main 452 

stages: (i) a cochlear filter bank comprised of 128 asymmetric filters equally distributed in 453 

log-frequency, (ii) a hair cell stage consisting of a low-pass filter and nonlinear compression 454 

function, and finally (iii) a lateral inhibitory network modelled as a first-order derivative 455 

along the tonotopic axis followed by a half-wave rectifier. (4) Lastly, although the tonal 456 

context and probe-tone were separated by 650ms (see experiment design), models of auditory 457 

short-term memory involve time-constants of up to 4 seconds (37, 38). Thus, it was possible 458 

that neural dissimilarities between tones were driven by the sensory memory of the context. 459 

To test this possibility, we constructed a Spectral Overlap (SO) RDM. First, the context 460 

stimulus waveform was passed through the auditory peripheral model described above in 461 

order to obtain a context spectrogram. Next, the Euclidean distance between the context and 462 

each probe-tone was calculated from their respective spectrograms. Each cell in the SO RDM 463 

was then coded as the difference in spectral distance between context and probe-tone for the 464 

two tones in question. Additional perceptual models were considered - for example the “basic 465 

space” of the Tonal Pitch Space Theory (25). However, the candidate RDMs arising from 466 

such models shared an identical rank-order structure to that of the STH and were therefore 467 

precluded from the analysis. Using the framework of Representational Similarity Analysis 468 

(RSA) (19), we studied the brain’s emerging representation by comparing each candidate 469 

RDM with the empirical time-varying MEG RDM (see statistical analysis below). 470 

Correlations between neural and model RDMs were assessed by computing a rank-order 471 

correlation measure (Kendall’s TauA). We used the ‘noise ceiling’ as a benchmark for testing 472 

model performance (20). The noise ceiling uses inter-subject variance in RDMs to estimate 473 

the magnitude of the expected correlation between a “true” model RDM and the empirical 474 

RDM given measurement noise. To visualize the structure of RDMs, Multidimensional 475 

Scaling (MDS) was applied using Kruskal’s normalized stress 1 criterion. 476 
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 477 

Representational similarity analysis of musical keys. 478 

Inter-key distances in the cortex were derived by adapting the analytical approach established 479 

in Krumhansl & Kessler (1982) (4) to the neural domain. First, MEG RDMs from 250 – 1000 480 

ms were averaged to obtain a single time-averaged neural RDM for each subject. In order to 481 

geometrically express the RDM distances between tones as points in representational space, 482 

we applied nonmetric MDS to the time-averaged RDMs of each subject. Because n objects 483 

will always fit into n-1 dimensions (23), MDS solutions were obtained in eleven dimensions. 484 

Accordingly, all solutions had stress equal to zero, indicating that the MDS decomposition 485 

perfectly preserved distance information in the RDMs. To transpose the representational 486 

structure between the twelve tones into different keys, the twelve points corresponding to 487 

each pitch-class were shifted in MDS-space by the appropriate number of steps implicated by 488 

the transposition. For example, to transpose the MDS structure from C major to G major 489 

(seven semitone steps), the point representing the tone ‘C’ was shifted to that occupied by 490 

‘G’, the point occupied by ‘C#’ was shifted to that of ‘G#’, and the process was repeated for 491 

all twelve pitch-classes. The distance between two keys was then defined as the mean 492 

Euclidean distance between the original and new positions of all twelve tones. In this fashion, 493 

distances were computed between all twelve major keys, resulting in a neural inter-key RDM 494 

for each subject, in which rows and columns correspond to different musical keys and each 495 

cell codes the corresponding distance between two keys (figure 4A). Finally, neural inter-key 496 

RDMs of each subject were rank-order correlated (using Kendall’s TauA) with a candidate 497 

inter-key RDM based on the circle of fifths (figure 4B). 498 

 499 

Acknowledgements. 500 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 23 

This research was supported by a grant awarded to the authors from the Australian Research 501 

Council Centre of Excellence in Cognition and its Disorders, Grant CE110001021 and by a 502 

Future Fellowship awarded to TAC by the Australian Research Council, Grant 503 

FT120100816. 504 

 505 

References. 506 

1. Lerdahl F (1992) Cognitive constraints on compositional systems. Contemporary 507 

Music Review, 6(2), 97-121. 508 

 509 

2. Vos P-G, Troost J-M (1989) Ascending and descending melodic intervals: Statistical 510 

findings and their perceptual relevance. Music Perception: An Interdisciplinary 511 

Journal, 6(4), 383-396. 512 

 513 

3. Krumhansl C-L, Shepard R-N (1979) Quantification of the hierarchy of tonal 514 

functions within a diatonic context. Journal of experimental psychology: Human 515 

Perception and Performance, 5(4), 579. 516 

 517 

4. Krumhansl C-L, Kessler E-J (1982) Tracing the dynamic changes in perceived tonal 518 

organization in a spatial representation of musical keys. Psychological review, 89(4), 519 

334. 520 

 521 

5. Hall D-A, Johnsrude I-S, Haggard M-P, Palmer A-R, Akeroyd M-A, Summerfield A- 522 

Q (2002) Spectral and temporal processing in human auditory cortex. Cerebral 523 

Cortex, 12(2), 140-149. 524 

 525 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 24 

6. Wessinger C-M, VanMeter J, Tian B, VanLare J, Pekar J, Rauschecker J-P (2001) 526 

Hierarchical organization of the human auditory cortex revealed by functional 527 

magnetic resonance imaging. Journal of cognitive neuroscience, 13(1), 1-7. 528 

 529 

7. Zatorre R-J, Evans A-C, Meyer E (1994) Neural mechanisms underlying melodic 530 

perception and memory for pitch. Journal of Neuroscience, 14(4), 1908-1919. 531 

 532 

8. Griffiths T-D, Büchel C, Frackowiak R-S, Patterson R-D (1998) Analysis of temporal 533 

structure in sound by the human brain. Nature neuroscience, 1(5), 422. 534 

 535 

9. Patterson R-D, Uppenkamp S, Johnsrude I-S, Griffiths T-D (2002) The processing of 536 

temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767-776. 537 

 538 

10. Lee Y-S, Janata P, Frost C, Hanke M, Granger R (2011) Investigation of melodic 539 

contour processing in the brain using multivariate pattern-based 540 

fMRI. Neuroimage, 57(1), 293-300. 541 

 542 

11. Klein M-E, Zatorre R-J (2011) A role for the right superior temporal sulcus in 543 

categorical perception of musical chords. Neuropsychologia, 49(5), 878-887. 544 

 545 

12. Foo F, King-Stephens D, Weber P, Laxer K, Parvizi J, Knight R-T (2016) Differential 546 

processing of consonance and dissonance within the human superior temporal 547 

gyrus. Frontiers in human neuroscience, 10, 154. 548 

 549 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 25 

13. Fedorenko E, McDermott J-H, Norman-Haignere S, Kanwisher N (2012) Sensitivity 550 

to musical structure in the human brain. Journal of Neurophysiology, 108(12), 3289-551 

3300. 552 

 553 

14. Krohn K-I, Brattico E, Välimäki V, Tervaniemi M (2007) Neural representations of 554 

the hierarchical scale pitch structure. Music Perception, 24(3), 281-296. 555 

 556 

15. Brattico E, Tervaniemi M, Näätänen R, Peretz I (2006) Musical scale properties are 557 

automatically processed in the human auditory cortex. Brain research, 1117(1), 162-558 

174. 559 

 560 

16. Sankaran N, Thompson W-F, Carlile S, Carlson T-A (2018) Decoding the dynamic 561 

representation of musical pitch from human brain activity. Scientific reports, 8(1), 562 

839. 563 

 564 

17. Haxby J-V, Connolly A-C, Guntupalli J-S (2014) Decoding neural representational 565 

spaces using multivariate pattern analysis. Annual review of neuroscience, 37, 435-566 

456. 567 

 568 

18. Janata P, Birk J-L, Van Horn J-D, Leman M, Tillmann B, Bharucha J-J (2002) The 569 

cortical topography of tonal structures underlying Western music. science, 298(5601), 570 

2167-2170. 571 

 572 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 26 

19. Kriegeskorte N, Mur M, Bandettini P-A (2008) Representational similarity analysis-573 

connecting the branches of systems neuroscience. Frontiers in systems 574 

neuroscience, 2, 4. 575 

 576 

20. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N (2014) A 577 

toolbox for representational similarity analysis. PLoS computational biology, 10(4), 578 

e1003553. 579 

 580 

21. Koelsch S (2011) Toward a neural basis of music perception–a review and updated 581 

model. Frontiers in psychology, 2, 110. 582 

 583 

22. Krumhansl C-L (2001) Cognitive foundations of musical pitch. Oxford University 584 

Press. 585 

 586 

23. Kruskal J-B, Wish M (1978) Multidimensional scaling. Sage University Paper series 587 

on quantitative applications in the social sciences (11). Beverly Hills, CA: Sage. 588 

 589 

24. Lerdahl F (2004) Tonal pitch space. Oxford University Press. 590 

 591 

25. Lerdahl F (1988) Tonal pitch space. Music Perception: An Interdisciplinary 592 

Journal, 5(3), 315-349. 593 

 594 
26. Chew E (2000) Towards a mathematical model of tonality (Doctoral dissertation, 595 

Massachusetts Institute of Technology). 596 

 597 

 598 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 27 

27. Kado H, Higuchi M, Shimogawara M, Haruta Y, Adachi Y, Kawai J, Ogata H, 599 

Uehara G (1999) Magnetoencephalogram systems developed at KIT. IEEE 600 

transactions on applied superconductivity, 9(2), 4057-4062. 601 

 602 

28. Uehara G, Adachi Y, Kawai J, Shimogawara M, Higuchi M, Haruta Y, Ogata H, 603 

Kado H (2003) Multi-channel SQUID systems for biomagnetic measurement. IEICE 604 

transactions on electronics, 86(1), 43-54. 605 

 606 

29. Glasberg B-R, Moore B-C (2002) A model of loudness applicable to time-varying 607 

sounds. Journal of the Audio Engineering Society, 50(5), 331-342. 608 

 609 

30. Loui P, Grent T, Torpey D, Woldorff M (2005) Effects of attention on the neural 610 

processing of harmonic syntax in Western music. Cognitive Brain Research, 25(3), 611 

678-687. 612 

 613 

31. VanRullen R (2011) Four common conceptual fallacies in mapping the time course of 614 

recognition. Frontiers in psychology, 2, 365. 615 

 616 

32. Grootswagers T, Wardle S-G, Carlson T-A (2017) Decoding dynamic brain patterns 617 

from evoked responses: A tutorial on multivariate pattern analysis applied to time 618 

series neuroimaging data. Journal of cognitive neuroscience, 29(4), 677-697. 619 

 620 

33. Duda R-O, Hart P-E, Stork D-G (2012) Pattern classification. John Wiley & Sons. 621 

 622 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294


 28 

34. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple 623 

testing under dependency. Annals of statistics, 1165-1188. 624 

 625 

35. Nichols T-E (2012) Multiple testing corrections, nonparametric methods, and random 626 

field theory. Neuroimage, 62(2), 811-815. 627 

 628 

36. Chi T, Ru P, Shamma S-A (2005) Multiresolution spectrotemporal analysis of 629 

complex sounds. The Journal of the Acoustical Society of America, 118(2), 887-906. 630 

 631 

37. Leman M (2000) An auditory model of the role of short-term memory in probe-tone 632 

ratings. Music Perception: An Interdisciplinary Journal, 17(4), 481-509. 633 

 634 

38. Huron D, Parncutt R (1993) An improved model of tonality perception incorporating 635 

pitch salience and echoic memory. Psychomusicology: A Journal of Research in 636 

Music Cognition, 12(2), 154. 637 

 638 
 639 

 640 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494294doi: bioRxiv preprint 

https://doi.org/10.1101/494294

