
Forecasting when cells die during antibiotic exposure using stochastic gene expression 
 

Nicholas A. Rossi1,2, Imane El Meouche2,3, Mary J. Dunlop1,2,3,* 
 
1 Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, 
Massachusetts, USA 
2 Biological Design Center, Boston University, Boston, Massachusetts, USA 
3 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA 
* Corresponding author: mjdunlop@bu.edu 
 
 
Abstract 
Antibiotic killing does not occur at a single, precise time for all cells within a population. 
Variability in time to death can be caused by stochastic expression of genes, resulting in 
differences in endogenous stress-resistance levels between individual cells in a population. This 
variability can be part of a bet-hedging strategy where cells leverage noise to ensure a subset of 
the population can tolerate the drug, while decreasing the overall cost of expressing resistance 
genes.  We asked whether single-cell differences in gene expression prior to antibiotic addition 
were related to cell survival times after antibiotic exposure for a range of genes of diverse 
function. We quantified the time to death of single cells under antibiotic exposure in combination 
with expression of reporters. For some reporters, the time to cell death had a strong relationship 
with the initial expression level of the genes. Reporters that could forecast cell fate included 
stress response genes, but also genes involved in a variety of other cellular processes like 
metabolism. Our results highlight the single-cell level non-uniformity of antibiotic killing and 
also provide examples of key genes where cell-to-cell variation in expression prior to antibiotic 
exposure is strongly linked to extended durations of antibiotic survival.  
 
Introduction 
Bacteria are killed by antibiotics, but their effect is not instantaneous nor uniform. Rather, 
antibiotic exposure results in a distribution of killing times, with some bacteria succumbing to 
antibiotic exposure quickly while others remain viable. In population-level experiments this 
effect is visible in time-kill assays, which for Escherichia coli typically demonstrate rapid killing 
within a window of 1-3 hours following antibiotic exposure (1). However, survival of even a 
small number of cells can be critical in clinical settings, resulting in recalcitrant and chronic 
infections. A well-studied example of this is bacterial persistence, where a subset of the 
population exists in a temporarily dormant state that renders those bacteria tolerant to antibiotics 
(2). Time-kill experiments in bulk population studies result in a biphasic killing curve, with a 
first phase where the majority of the cells are killed rapidly, followed by a second phase where 
death of the remaining “persister” cells is much more gradual (3). Single-cell studies have shown 
these bacterial persisters can survive and regenerate populations (4,5), leading to recalcitrant 
infections (6). Besides the discrete persister cells, populations of bacteria can also exhibit a 
continuum of resistance levels. In this case, the probability of survival under antibiotic exposure 
changes as a function of the expression of their stress response genes (7). In addition to their 
clinical impact in chronic infections, cell-to-cell differences in antibiotic susceptibility can play a 
critical role in the evolution of drug resistance (8-10). Temporal differences in survival times are 
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important, as recent studies have shown that drug resistance can evolve rapidly under ideal, 
selective conditions (10,11). 
 
Variability in gene expression arising from stochasticity in the order and timing of biochemical 
reactions is omnipresent, and populations of cells can leverage this variability (often called 
‘noise’) to introduce phenotypic diversity despite their shared genetics (12). For example, 
bacteria can exhibit heterogeneity in expression of stress response genes, allowing some 
individuals in the population to express these genes more highly, leading to their adaptation and 
survival under stress (7,9,13). Examples of stress response machinery driven by noise include 
sporulation and competence pathways in B. subtilis (14-16) and lysis and lysogeny in l phage 
(17). In addition, we have shown that expression of the multiple antibiotic activator MarA in E. 
coli is heterogeneous, which generates diverse resistance phenotypes within a population (7). 
Beyond stress response, fluctuations in gene expression can inform the future outcomes of a 
variety of cellular states. These include examples from development, where variability in the 
Notch ligand Delta can effectively forecast Drosophilia neuroblast differentiation (18). 
Additionally, knowledge of the number of lactose permease molecules in a cell can predict if 
individual E. coli induce lac operon genes (19). Moreover, combining information from multiple 
genes may increase the capacity to forecast future cell fate, as was shown in a yeast metabolic 
pathway (20). 
 
Here, we measure single cell killing as a function of time under antibiotic exposure. By 
simultaneously measuring gene expression within single cells and cell survival, we identified 
genes whose instantaneous expression prior to antibiotic introduction correlates well with the 
ability to extend survival times under antibiotic exposure. To do this, we computed the mutual 
information between gene expression levels and the life expectancy of the cells expressing them. 
We found examples where gene expression can determine when the cell is likely to die, not 
simply if the cell is going to die. These results demonstrate the critical information contained 
within the stochastic expression of certain genes in their capacity to forecast cell fate.  We 
analyze a variety of factors, including cell size and mean expression levels, and reveal that 
expression of certain genes can effectively forecast cell fate, while many other features are at 
best weakly predictive at informing whether the cell will live or die in the presence of antibiotics. 
 
Results 
In order to quantify the relationship between stochastic gene expression and the time to cell 
death under antibiotic exposure, we grew cells with a plasmid containing the promoter for a gene 
of interest controlling expression of cyan fluorescent protein (cfp). At t = 0 we transferred cells 
with the reporter to agarose pads containing a lethal dose of carbenicillin and then monitored cell 
killing over time (Methods). We selected carbenicillin because of its clinical relevance (21), and 
its bactericidal activity, which makes it straightforward to pinpoint the exact time of cell death 
(22). At t = 0 we observed heterogeneity in gene expression, as quantified by CFP fluorescence 
levels (Fig. 1A). We then recorded the percentage of dead cells in the population at each time 
point using propidium iodide. Propidium iodide enters the cells and stains DNA if the membrane 
is depolarized (23). 
 
As an example, we observed a strong relationship between gene expression levels and cell killing 
for the gadX promoter. GadX is a positively auto-regulated transcription factor that controls the 
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expression of pH-inducible genes (24,25). Despite the fact that all imaged cells were isogenic 
clones, we observed heterogeneity in PgadX-cfp expression and also in antibiotic lethality over 
time. The time-dependent killing curve was consistent across replicates, with cells with higher 
expression of PgadX-cfp at t = 0 surviving for longer than those with low expression (Fig. 1B).  
 
To quantify this, we sorted the cells according to their fluorescence at t = 0 from low to high 
expression, then binned them so that each bin contained 10% of the cells. We tracked lysis of 
single cells over time, to quantify the difference in time to death as a function of the initial 
fluorescence of the PgadX-cfp reporter (Fig. 1C). We found that the brightest 10% of cells, 
corresponding to those with the highest expression of PgadX prior to antibiotic exposure, survived 
for longer times under antibiotics than cells with lower expression (Movie S1). 
 
Next, we extended this analysis to include additional genes, constructing reporters for a total of 
15 promoters. Our analysis included genes that covered the major branches of the gene ontology 
classification system for E. coli (26) (Fig. S1). They include reporters for genes involved in 
metabolism, cell processes, cell structure, transport, information transfer, and regulation. We 
repeated the antibiotic exposure experiments for each reporter and compared time of death for 
single cells to the initial fluorescence level of that cell. Each reporter had a unique distribution of 
initial fluorescence values, and ranking and dividing cells into ten equal groups gave us an 
unbiased way of ranking levels of gene expression given diverse means and distributions of 
fluorescence (Fig. S2).  
 
We quantified the percentage of the initial population that survived for each decile (10%) of 
initial fluorescence over time for all 15 promoters (Fig. 2A). Qualitatively, we observed that 
certain promoters have a clear relationship between the time to cell death and the fluorescence at 
t = 0 (PpurA, PinaA, Prob, PgadX), while others die at a uniform time regardless of initial fluorescence 
(e.g. Pfis). These features are visible in the heatmaps showing the percentage of dead cells over 
time as a function of the initial fluorescence. Interestingly, not all reporters with predictive power 
about the time to cell death have the same characteristic shape to their heatmaps. For instance, 
some reporters show a negative relationship between cell death and fluorescence (PinaA, Prob, 
PgadX) while others show a positive relationship (PpurA). Also, in some cases there is a distinct 
expression level that defines a cutoff for extended survival times (top 10% of cells for PgadX, 
bottom 30% of cells for PpurA). In other cases, there is a continuous relationship between 
fluorescence and survival (Prob). The differences in the shape of these heatmaps may reflect the 
biological mechanism by which these genes offer resistance.  
 
To quantify the predictive power of each reporter in determining cell killing, we measured how 
the initial fluorescence decreases uncertainty about the future cell state. Because of the 
differences in the heatmaps, we sought to use a metric that was agnostic to the exact shape of the 
killing over time as a function of gene expression. To do this, we computed the mutual 
information between reporter florescence at t = 0 and the cellular state at each subsequent time 
point (Methods). To provide intuition into the results, we visualized several characteristic 
heatmaps (Fig. S3). If all cells are alive (as at t = 0) or if all cells are dead (as is the case after 
long periods of antibiotic exposure), the information is zero. If cells die linearly in precise 
proportion to their initial fluorescence, the corresponding information is a parabolic arc over 
time, where information peaks at the theoretical maximum of 1.0 bit when half the cells are dead 
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(Fig. S3A). Variations on this pattern decrease the information (Fig. S3B,C). Finally, if cell death 
is not related to initial fluorescence, then the information is always zero (Fig. S3D). 
 
Computing the information over time allowed us to compare the predictive power of each of the 
15 reporters (Fig.  2B). We found that the peak mutual information between initial fluorescence 
and cellular death varies among promoters. The peak information occurs at the point in the 
experiment where the initial fluorescence is most informative about the cellular state at that time. 
Considering the top four promoters when ranked by peak information (Fig. 2C) (PpurA, PinaA, Prob, 
PgadX), we found that each peak occurs at a different time point, indicating that temporal ordering 
of these genes may be significant in determining cell killing. For each reporter, we also 
calculated the difference between cell killing times by measuring the difference in time to 50% 
cell killing between the decile where cells were killed fastest and that where they survived the 
longest (Fig. 2D). Cells containing PpurA and PinaA reporters exhibited the greatest diversity in 
killing times.  
 
We next asked if the predictive power of a particular promoter was a result of the statistics of 
that promoter, not its cellular function. To do this, we calculated the correlation between the peak 
information and its strength (mean expression) and noise (coefficient of variation) for all 
reporters (Fig. S4). We found no correlation between mean expression and peak information 
(Fig. S4A) nor any significant correlation between the coefficient of variation and peak 
information (Fig. S4B). These results show that the naive statistics of a promoter are not the 
reason why it is or is not predictive for cell fate. 
 
We also computed the information between cell fate and cell size at t = 0, a measurement 
independent of the fluorescence. Cell size is variable at the initial time point because cells are at 
different stages in the division process. We found that initial cell size has modest predictive 
power about survival, and the heatmap shows slightly extended survival times for smaller cells in 
the presence of carbenicillin (Fig. S5). This finding on the relationship between cell size and 
killing time is consistent with previous research showing that the longer it has been since 
division, the more likely a cell is to lyse in the presence of carbenicillin (27). However, the 
modesty of its predictive capacity is a testament to the relative phenotypic importance of 
stochastic gene expression by comparison. Although this effect is present, expression of reporters 
like PpurA are far more predictive of survival than cell size. 
 
Our initial experiments used carbenicillin, however we next asked whether results on 
information between gene expression and cell killing were specific to this particular stressor or 
extended to other antibiotics. We repeated our experiments using a subset of reporters with 
ciprofloxacin. Ciprofloxacin is a clinically relevant antibiotic that inhibits DNA gyrase (28). 
Unlike carbenicillin, it exhibits both bactericidal and bacteriostatic affects (29). Comparing the 
peak mutual information between six of the promoters with the two antibiotics, we found distinct 
differences between their predictive power for carbenicillin and ciprofloxacin (Fig. 3A). First, 
PgadX has a peak mutual information of ~0.3 bits under ciprofloxacin treatment. This is 
considerably more than the information PgadX provides under carbenicillin. Contrary to this, PpurA, 
PinaA, and Prob all offer more predictive power under carbenicillin stress than ciprofloxacin. Pσ70 
and PhdeA offer comparable predictive power between the two antibiotics, with the constitutive 
promoter Pσ70 providing negligible capacity to forecast cell fate in either case. The heatmaps 
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from both antibiotics also show qualitative differences in how reporters predict cell fate. For 
instance, while cells with comparatively high PgadX fluorescence survive well in both 
carbenicillin and ciprofloxacin, it is only the top decile of cells in carbenicillin that have a 
comparative advantage, while the upper half do in ciprofloxacin. The opposite proves true for 
PhdeA where only the lowest decile of cells have an advantage in ciprofloxacin, but a there is a 
continuous advantage as a function of lower fluorescence in carbenicillin. Together, these results 
show that although gene expression may correlate well with cell death, the time to death and 
single-cell level killing effects can vary considerably with the type of stress.  
 
Discussion 
We have demonstrated that differences in gene expression associated with noisy promoter 
activity have the potential to forecast information about the future fate of a cell. This approach 
allowed us to quantify how phenotypically meaningful the stochastic expression of a particular 
promoter is for survival in the presence of antibiotics. The promoters we selected for our 
reporters occupy a variety of roles. Of those we tested, reporters for metabolism, cell processes, 
and information transfer had the most predictive power (Fig. S6), however not every promoter 
within those classes is predictive. Surprisingly, some genes known to be involved in antibiotic 
resistance were not detected to have a strong relationship to when the cells died. For instance, the 
reporter for the acrAB multi-drug efflux pump had a low peak information value, despite the 
pump’s ability to export both carbenicillin and ciprofloxacin (30). This could be because 
promoter activity is not necessarily representative of actual proteins within the cell, where direct 
measurements of protein levels would provide better information (31). Alternatively, the 
advantages of additional acrAB at the levels provided due to endogenous variability in promoter 
activity may simply be too subtle to produce a detectable phenotypic difference. 
 
Interestingly, we observed some variation in the exact killing curves between the strains with the 
reporters (Fig. S7A). Some strains were killed more rapidly than others, and this effect was 
reproducible across replicates. While the time to reach 50% dead cells does vary among strains 
bearing the reporter plasmids, this time does not correlate with their peak information (Fig. S7B). 
The exact source of the variation in killing curves is unclear, but it may be that the promoter 
copies on the reporter plasmids operate as competitive binding sites for transcription factors and 
other cellular machinery necessary for resistance (32).  
 
An additional question raised by this work is whether the information offered by the various 
reporters could be used together to further improve predictions about time to cell death. To tackle 
this problem, the notion of multivariate information could be applied to include multiple genetic 
reporters (33). If multiple reporters contain non-redundant information about cell fate, it may be 
possible to predict the outcome of a cell based on sufficient initial data, even prior to antibiotic 
exposure.  
 
By showing how life expectancy varies as a function of initial fluorescence, we demonstrate an 
important relationship between gene expression and time to cell death across genes of varying 
function. Differences in the time to death are important because they may point to underlying 
mechanisms by which a particular gene grants resistance and could expose potential gateways in 
the evolution of drug resistance. Expanding this research to include additional reporters and 
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antibiotics has the potential to provide a global overview of how stochasticity in gene expression 
propagates to variability in survival times. 
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Methods 
 
Plasmids and Strains 
All reporter plasmids have a low-copy SC101 origin of replication with a kanamycin resistance 
cassette and a promoter transcriptionally controlling cyan fluorescent protein (cfp). We isolated 
each promoter region based on annotations in the EcoCyc database (34). The selected sequences 
include all known regulatory binding sites within the database. In the absence of any binding 
annotations, we selected a 200 bp fragment ending with the transcriptional start site. For primers, 
see Supplementary Information. 
 
All plasmids were transformed into E. coli strain MG1655. 
 
Time-lapse Microscopy 
Overnight cultures were grown from single colonies in LB medium with 30 µg/ml kanamycin 
for plasmid maintenance. From these cultures, a 1:100 dilution was used to inoculate fresh LB 
with kanamycin. Cultures were incubated for 4 hrs at 37 °C with shaking. Cells were then 
diluted 3:10 in M9 minimal medium containing 0.2% glycerol, 0.01% casamino acids, 
0.15 µg/ml biotin, and 1.5 µM thiamine (which we denote MGC medium). Cells were then 
placed on 1.5% MGC low melting temperature agarose pads contain either 50 µg/ml 
carbenicillin or 2 µg/ml ciprofloxacin along with 10 µg/ml propidium iodide. Cells were 
imaged at 100× using a Nikon Instruments Ti-E microscope. The temperature of the 
microscope chamber was held at 32 °C for the duration of the movies. Images were taken 
every 5 minutes for 5 hours for at least 5 pad positions per strain, with each image containing 
~100 cells. 

We tracked cell death by a combination of custom MATLAB scripts and manually scanning 
through the movies to locate the time of death. Our MATLAB scripts adapted the 
SuperSegger software for the initial segmentation (35). We used propidium iodide 
fluorescence as well as other visual markers (loss of contrast in phase images, compromises to 
the cell wall) to ascertain the moment of cell death. 

Computing Mutual Information 
We compute the mutual information between cellular state (alive or dead) at time t (xt) and the 
initial fluorescence of that cell for a given promoter (y).  
 

𝐼(𝑥$, 𝑦) = 𝐻(𝑥$) − 𝐻(𝑥$|𝑦) 
 
We compute the entropy of xt from the binary entropy formula. p(xt ) is computed as a fraction of 
cells dead at time t, across all initial fluorescence values for that time point. 
 

𝐻(𝑥$) = −𝑝(𝑥$) log0 𝑝(𝑥$) − (1 − 𝑝(𝑥$)) log0(1 − 𝑝(𝑥$)) 
 
Finally, the conditional entropy is computed for a given initial fluorescence level (yi). Where i is 
one of the ten deciles of initial fluorescence (Fig. S2). We then average the conditional entropy 
across all fluorescence bins to calculate the average conditional entropy over time. We optimized 
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the number of bins given the number of individual cells analyzed for each strain (~500 cells) 
(36). 
 

𝐻(𝑥$|𝑦) =
1
𝑛3−𝑝(𝑥$|𝑦4) log0 𝑝(𝑥$|𝑦4) − (1 − 𝑝(𝑥$|𝑦4)) log0(1 − 𝑝(𝑥$|𝑦4))

5

467

 

 
 
Gene Ontology 
To map our data to the functions of each gene, we looked up the role of each gene from the 
multifunctional classification scheme (26,34).  We pooled the categories of information transfer 
and regulation, as they were entirely overlapping for the promoters we selected. 
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Figure 1: Differences in single-cell carbenicillin susceptibility. 
(A) Snapshots of cells demonstrate variable lethality of carbenicillin. PgadX-cfp fluorescence 

(cyan); propidium iodide is a cell death marker (red). 
(B) Cellular populations die progressively after carbenicillin exposure. Line represents mean 

killing curve as a function of time. Shaded region represents standard deviation across 5 
replicate microscopy positions containing ~100 cells each. Cartoon schematic 
demonstrates how lethality is variable among individuals within the population, but 
depends on initial PgadX-cfp fluorescence. 

(C) Cells die at different times as a function of their initial PgadX-cfp fluorescence. x-axis 
shows the cumulative percentage of dead cells at each time point. Initial fluorescence at t 
= 0 is split in deciles with equal numbers of cells in each of the 10 bins along y-axis (Fig. 
S2).  
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Figure 2: Different bacterial promoters have different predictive power in the presence 
of carbenicillin. 
(A) Variable death times of cells depending on initial fluorescence. As in Fig. 1C, x-axis 

shows cumulative percentage of dead cells over time and y-axis represents binned deciles 
according to initial fluorescence at t = 0. For the bins and initial fluorescence 
distributions for each reporter see Fig. S2. At least 5 replicate microscopy positions with 
~100 cells each were pooled before binning.  

(B) Peak mutual information between initial fluorescence and cell fate for each reporter 
strain.  

(C) Information over time for each strain. For visual clarity, the data are divided onto two 
plots, one of which shows the four reporters with the highest peak information and the 
other showing the remaining reporter data. 

(A) Differences in time to reach 50% cell death between the fluorescence decile with the 
fastest dying cells and the decile with the slowest dying cells. Savitzky-Golay filter was 
used to smooth data across deciles before calculating minimum and maximum values. 
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Figure 3: Promoters show different predictive power under ciprofloxacin versus 
carbenicillin. 

(A) Peak mutual information for ciprofloxacin and carbenicillin. 
(B) Variable death times for six strains under ciprofloxacin treatment. Binning on x and y-

axes performed as in Fig. 1C. 
(C) Variable death times under carbenicillin treatment. Data are reproduced from Fig. 2A for 

comparison. 
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Supplementary Information 
 
Construct Primers 
PpurA F: TTTATACAGTTCATCCATGCCCAGG 

R: CCTGGGCATGGATGAACTGTATAA 
PinaA F: CAATGCTTTTCAGCGTTAACTCTG 

R: ACGACAATGACTATAGGTGGT 
Prob F: CAAAATCTCAATACTTTTATTTCCG 

R: TAATTGGATAATAGCATTTTTTGC 
PgadX F: GTTGACTACCTGGGTGGTC 

R: ACTGTTTATTAATGTAGCACGCC 
PhdeA F: CCCCTGCTATCAATCTATGC 

R: CACTGAGGTTATAACCTGGTTTTC 
Pcrp F: ACAGAGTACGCGTACTAACCAAATC 

R: GGGCTATCAACTGTACTGCAC 
Pσ70 F: AATAATTCTTGACATTTATGCTTCCG 

R: AATTGCACGTATTATACGAGC 
Prrnb P1 F: CTGAACAATTATTGCCCGTTTTACAG 

R: GAATTAAACTTCGTAATGAATTACGTGTTC 
PacrAB F: GCCAGTAGATTGCACCGCG 

R: TCGTGCTATGGTACATACATTCACA 
PsodA F: GGCAATCACGGCATTAAG 

R: TTGGTTCATTATAGTTAATTAAATG 
PsoxS F: CACGTTTATATCGCCGCTGATTG 

R: TGTTGGGGAGTATAATTCCTCAAG 
PcodB F: GATAATTTTTCCCCCACCTTTTTGC 

R: CCGCCGCATTCTATTCATCTG 
PompF F: CAAGTTATCTGTTTGTTAAGTCAAGCAATC 

R: TGCAGGCATCTTTCCATTCAAAC 
PdnaQ F: GTTATGGATCCACTGGGTGATAC 

R: CGCTATTTTACGCTATCGCGG 
Pfis F: GCGAAGTGCGAGCAAGC 

R: AGTTAAGAAATGACCATACTGTGACTGC 
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Figure S1: Genetic ontology map for the 15 promoters selected for study. 
The genetic ontology of each promoter is represented as a line connecting it through to each of 
its functional roles in the cell (Methods). 
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Figure S2: Distributions and decile bins for all 15 promoters tested. 
Gray lines show histograms of the distributions of initial fluorescence at t = 0 for each of the 15 
promoters. The colored lines show where each of the decile bins fall. 
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Figure S3: Schematics of heatmaps showing variable information over time. 
Cartoon heatmaps of possible experimental patterns. A demonstrates a perfect split between alive 
and dead cells; the theoretical maximum information (1.0 bits) is achieved at the time of 50% 
cell death. B and C represent variations on this pattern. D demonstrates a heatmap schematic 
with the minimum information (0.0 bits) contained in initial fluorescence. Plots in the right panel 
show information over time for each of the heatmaps. 
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Figure S4: Relationships between reporter statistics and information. 

(A) Scatter plot for all 15 strains’ mean expression versus peak information from Fig. 2B. 
Mean expression data taken from microscopy snapshots of each strain under the same 
CFP exposure time to ensure comparable statistics. Pearson’s r-value calculates linear 
correlation between the two values (1.0 = positively correlated, 0.0 = uncorrelated). 

(B) Scatter plot of coefficient of variation versus peak information for each of the promoters. 
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Figure S5: Cell size as a predictor of cell fate. 

(A) Heatmap that mirrors Fig. 1C but uses initial cell size instead of fluorescence on the y-
axis. Data are pooled from all carbenicillin reporter experiments. 

(B) Information over time for cell size. 
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Figure S6: Peak information from carbenicillin experiments mapped onto gene ontology. 
The gene ontology map from Fig. S1 with the thickness of each connection dependent on the 
peak information from the carbenicillin data in Fig. 2B. 
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Figure S7: Killing curves for all reporter strains over time under carbenicillin. 

(A) Killing curves for each strain extracted from time-lapse microscopy data. Solid lines 
represent the mean for at least 5 replicates while the shaded region represents the 
standard deviation across replicates.  

(B) Scatter plot of time to reach 50% cell death versus peak mutual information.  Pearson’s r-
value calculates linear correlation.  
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Movie S1: Single-cell death under carbenicillin exposure for PgadX-cfp. 
(A) Cell death over time. Red dot indicates particular point in time. 
(B) Example microscopy movie of cells expressing PgadX-cfp reporter (cyan) under 

carbenicillin exposure. Cell death is indicated by propidium iodide staining (red). 
(C) Heatmap of cell death over time as a function of fluorescence at t = 0. White bar indicates 

particular point in time. 
(D) Image showing fluorescence of individual cells at t = 0. As cells die they are eliminated 

from the image. Note that brighter cells tend to survive longer than dim cells. 
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