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Abstract

Motivation: Structural variants are defined as genomic variants larger
than 50bp. They have been shown to affect more bases in any given
genome than SNPs or small indels. Additionally, they have great impact
on human phenotype and diversity and have been linked to numerous dis-
eases. Due to their size and association with repeats, they are difficult
to detect by shotgun sequencing, especially when based on short reads.
Long read, single molecule sequencing technologies like those offered by
Pacific Biosciences or Oxford Nanopore Technologies produce reads with
a length of several thousand base pairs. Despite the higher error rate
and sequencing cost, long read sequencing offers many advantages for the
detection of structural variants. Yet, available software tools still do not
fully exploit the possibilities.
Results: We present SVIM, a tool for the sensitive detection and precise
characterization of structural variants from long read data. SVIM con-
sists of three components for the collection, clustering and combination
of structural variant signatures from read alignments. It discriminates
five different variant classes including similar types, such as tandem and
interspersed duplications and novel element insertions. SVIM is unique
in its capability of extracting both the genomic origin and destination of
duplications. It compares favorably with existing tools in evaluations on
simulated data and real datasets from PacBio and Nanopore sequencing
machines.
Availability and implementation: The source code and executables
of SVIM are available on Github: github.com/eldariont/svim. SVIM has
been implemented in Python 3 and published on bioconda and the Python
Package Index.
Contact: heller d@molgen.mpg.de
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1 Introduction

A typical human genome differs from the reference genome at approxi-
mately 4 to 5 million sites amounting to approximately 20 million altered
bases [1]. These variations can be categorized into single nucleotide poly-
morphisms (SNPs), small insertions and deletions (Indels), and structural
variations (SVs) affecting a larger number of base pairs. Typically, differ-
ences larger than 50bp are considered SVs although definitions vary and
sometimes overlap with those of indels.

Studies have shown that in human more base pairs are altered due
to structural variation than due to SNPs [2, 3]. Additionally, SVs are
enriched 50-fold for expression quantitative trait loci when compared to
SNPs [4]. Unsurprisingly, SVs have a major influence on human diver-
sity and are implicated in a wide range of diseases from autism and other
neurological diseases to cancer and obesity [5, 3]. Consequently, the char-
acterization of SVs is of major importance to human medicine and genetics
alike. It can contribute to the early detection of disorders and can help
to elucidate their underlying genetic and molecular processes [6]. In other
organisms such as plants, SVs play an equally important role by driving
phenotypic variation and adaptation to different environments [7].

Next generation sequencing has enabled the identification of SNPs and
small indels to a high resolution. SVs, however, are much harder to detect.
One reason is that SVs encompass a diverse range of modifications. While
SNPs are simple base pair substitutions, the term “SV” summarizes many
different phenomena. Typically, different classes of SVs are distinguished,
such as deletions, inversions and insertions. Definitions for some of these
classes vary in the literature. For the purpose of this work, we define six
different SV classes which are visualized in Figure 1: deletions, cut&paste
insertions, tandem and interspersed duplications, inversions and novel el-
ement insertions. The main drivers behind interspersed duplications in
human are mobile element insertions, such as Alu, LINE1 and SVA el-
ements. They duplicate using retrotransposition and in total represent
approximately 25% of all human structural variation [8, 4]. DNA trans-
posons, although now inactive in mammals (excepts bats) are active in
plants and lower-order animals [9]. They use a cut&paste mechanism to
move in the genome and therefore motivated the inclusion of cut&paste
insertions as a separate SV class.

There exists a wide variety of tools for SV calling from short reads [10]
but despite ongoing efforts, the discovery of SVs from short-read data
remains challenging [11]. Studies have estimated that short-read methods
suffer from poor sensitivity down to 10% particularly for small SVs shorter
than 1kbp [12, 13]. In contrast to SNPs where discovery and sequence
resolution can be performed simultaneously, SVs are discovered mainly
indirectly using short paired-end reads. Their alignments are examined
for characteristic signatures, such as inconsistently mapping read pairs,
split reads and changes in read depth [14]. These signatures can only
be indirect evidence in favor of certain SV classes but are unable to fully
characterize the SV. The main limitation here is that most SVs are simply
larger than the short reads. The accurate detection of SVs is, besides their
diversity, hampered by their association with repeat regions, biases in the
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Figure 1: Schematic overview of different SV classes. Structural variations
can be categorized into deletions, cut&paste insertions, tandem and interspersed du-
plications, inversions and novel element insertions. Each SV class is depicted in an
individual genome (lower line) when compared to the reference genome (upper line).
The region being rearranged is marked in red.

sequencing technology and the additional complexity of diploidy [15, 16,
17].

To characterize the full spectrum of human genetic variation, long-
read sequencing technologies that generate reads with an average length
of tens of kilobases show many advantages. The long reads can be mapped
with greater accuracy which enables the sequencing of repetitive and
low-complexity regions [18, 19]. Unlike with short reads, SVs are often
spanned by a single long read. This enables the direct detection and full
characterization of the SVs. Consequently, several studies confirmed that
a substantial number of SVs that are missed by short-read approaches
can be identified with long reads [11, 20, 12]. Two commercial long-read
sequencing solutions exist to date: single-molecule real-time (SMRT) se-
quencing by Pacific Biosciences (PacBio) and nanopore sequencing by
Oxford Nanopore Technologies (ONT). Both technologies have the same
drawbacks: high error rates of approximately 5-15% with dominating in-
del errors and still high costs compared to short read sequencing.

Similarly to the detection of SVs from short read data, the first step
towards SV detection from long reads is often the alignment of the reads
to a reference genome. Depending on the alignment tool used to produce
the alignments, SV detection results can vary substantially as Sedlazeck
et al. showed for their tool Sniffles [21]. In that study, SV-spanning long
reads were aligned with seven different aligners. Their results showed that
one particular aligner, NGMLR, outperformed all the others (including
BWA-MEM, Minimap2, LAST and BLASR) on the task [21]. In our
study, we analyzed read alignments by NGMLR to detect SVs. In the
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Supplementary, however, we include results for Minimap2 which is an
order of magnitude faster than NGMLR [22].

Read alignments alone are not sufficient to detect and characterize
SVs. Dedicated SV callers are needed to collect and interpret evidence
from the read alignments. Recently, three methods have been developed
for calling SVs based on long reads [23]. PBHoney and SMRT-SV are
designed specifically for PacBio reads while Sniffles supports PacBio and
ONT reads [24, 12, 21].

PBHoney comprises two different variant identification approaches
[24]. The first approach, PBHoney-Spots, exploits the stochastic nature of
the errors in PacBio reads. It scans read alignments (usually produced by
the read aligner BLASR) and recognizes SVs by an increase in error and
a subsequent decrease in error along the reference sequence. The second
approach, PBHoney-Tails, analyzes the soft-clipped (i.e. unmapped) read
tails from a BLASR alignment. It extracts such tails from the BLASR
output and realigns them to the reference. Then, SVs are detected by
clustering the resulting piece-alignments based on their location and ori-
entation.

SMRT-SV scans PacBio alignments for SV signatures, such as spanned
deletions, spanned insertions and soft-clipped read tails [12]. Clusters
of such events are validated with a local de-novo assembly of the reads
overlapping the locus and subsequent alignment of the assembly to the
reference.

Sniffles uses signatures from split-read alignments, high-mismatch re-
gions, and coverage analysis to identify SVs [21]. To overcome the high
error rate in the reads, it evaluates candidate SVs based on features such
as their size, position and breakpoint consistency.

All three methods regard structural variation (i.e. deletions, inser-
tions, inversions) as rearrangements occurring in a single genomic locus.
However, structural variation often involves multiple genomic loci, such as
for a mobile element which is reverse-transcribed from a source region and
inserted at another location. The higher read lengths of PacBio and ONT
reads allow to link both loci much more efficiently and confidently than
was possible with short paired-end reads. Nevertheless, existing methods
ignore this type of information and are only able to detect the isolated
destination location of the mobile element insertion.

In this study, we introduce SVIM, a computational method for the
sensitive detection and accurate classification of five different classes of
SVs from long read sequencing data. We describe the three core compo-
nents of the approach and our methodology for evaluation on simulated
and real datasets. Our results demonstrate that SVIM reaches substan-
tially higher recall and precision than existing tools for SV detection from
long reads. Unlike other methods, SVIM has been specifically designed
to distinguish three separate classes of large insertions: interspersed du-
plications, tandem duplications and insertions of novel elements. To our
knowledge, it is the only tool capable of identifying not only the insertion
location of an interspersed duplication but also its potential genomic ori-
gin. We demonstrate this capability on a small number of high-scoring
interspersed duplications identified in the NA12878 individual. Further-
more, we compare SV callsets produced by SVIM on reads from PacBio
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and Nanopore data. Finally, we compare the runtimes of different SV
callers including SVIM.

2 Methods

SVIM implements a pipeline of three consecutive components (see Fig. 2).
First, SV signatures are collected from each individual read in the input
SAM/BAM file (COLLECT). Secondly, the detected signatures are clus-
tered using a graph-based clustering approach and a novel distance metric
for SV signatures (CLUSTER). Thirdly and lastly, multiple SV events are
merged and classified into higher-order events (i.e. events involving mul-
tiple regions in the genome) such as duplications (COMBINE). The three
components are explained in the following.

2.1 Collection of SV signatures from individual
reads

SVIM analyzes read alignments in SAM/BAM format [25] from a read
aligner. Modern aligners, such as NGMLR and minimap2, try to find
good linear alignments of entire reads. Nevertheless, they will split a
chimeric read if its different segments can be better aligned separately.
Due to these split alignments, the SAM/BAM output from these aligners
can contain multiple alignments for each read (one for each aligned read
segment). SVIM extracts signatures for SVs from the SAM/BAM file
by analyzing one read at a time. We define SV signatures as discordant
alignments of a read that point to the presence of one or several possible
SVs in the sequenced genome. SVIM searches for two types of signatures:

Intra-alignment signatures are large alignment gaps in the refer-
ence or in the read. They can be found in the CIGAR strings of individual
SAM/BAM entries.

Inter-alignment signatures are discordant relative alignment po-
sitions and orientations of a read’s alignment segments. To illustrate this
type of evidence, imagine an inversion that is spanned by a single read.
The aligner will split the read into three alignment segments: one seg-
ment upstream of the inversion, another segment for the inverted region,
and a third segment downstream of the inversion. Due to the inversion,
the middle segment will have a different mapping orientation than the
other two pieces. This and other types of inter-alignment signatures are
detected by SVIM in a heuristic fashion.

This analysis yields 6 different types of SV signatures: (1) deleted re-
gions (DEL), (2) inserted regions (INS), (3) inserted regions with detected
region of origin (DUP), (4) inverted regions (INV), (5) tandem duplicated
regions (TAN) and (6) translocation breakpoints (BRK). Some of these
evidence types (e.g. inverted regions) indicate one particular SV class.
Others could indicate several possible SV classes. An inserted region, for
instance, can indicate both a duplication or a novel element insertion.
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Figure 2: The SVIM workflow. (1) Signatures for SVs are collected from the in-
put read alignments. SVIM collects them from within alignments (intra-alignment
signatures) and between alignments (inter-alignment signatures). (2) Collected signa-
tures are clustered based on their genomic position and span. (3) Signature clusters
from different parts of the genome are combined to distinguish five different classes
of SVs: deletions, interspersed duplications, novel insertions, inversions and tandem
duplications.
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2.2 Clustering of SV signatures

The collection of signatures from the alignments is only the first step
to accurately detect SVs. Subsequently, signatures from multiple reads
need to be merged and criteria have to be found to distinguish correct
signatures from multiple types of error artifacts (e.g. sequencing error,
alignment error). To achieve this, we combine a graph-based clustering
approach with a novel distance metric for SV signatures. The aim is to
merge signatures of the same SV even if their positions vary slightly due
to sequencing or alignment errors. At the same time, signatures from
separate SVs need to be kept separate even if the two SVs lie close to
each other.

The collected SV signatures can be viewed as quadruples
Si = (Ti, Ci, Bi, Ei) where T is one of the six different signature types
defined above, C is the chromosome and B and E are the genomic start
(begin) and end positions. One of the few distance metrics defined for
such genomic intervals is the Gowda-Diday distance [26]. It combines (a)
the distance between two intervals, (b) their span difference, and (c) their
degree of overlap into a single numeric distance value. In our type of data
(i.e. long read alignments), however, we often observe little to no overlap
between signatures originating from the same SV but from different long
reads (see Suppl. Fig. S1). Nevertheless, signatures from the same SV
often possess similar positions and spans.

Therefore, we introduce span-position distance as a novel distance
metric for SV signatures. For two SV signatures S1 and S2, the span-
position distance SPD consists of two components SD and PD: SPD =
SD(S1, S2) + PD(S1,S2)

N
. SD is the difference in span between both sig-

natures (normalized to [0, 1)) and is defined as |(E1−B1)−(E2−B2)|
max(E1−B1,E2−B2)

. PD
is the difference in position between both signatures and is defined as
min(|B1 −B2|, |E1 −E2|, |B1+E1

2
− B2+E2

2
|). N is a user-defined normal-

ization constant which regulates the relative importance of SD and PD.
In our analyses, setting N = 900 returned the best results. Intuitively,
this setting means that two signatures that are 900bp apart (PD = 900)
but have the same span (SD = 0) would have the same SPD as two
signatures with extremely different spans (SD ≈ 1) but the same position
(PD = 0).

To perform clustering, we follow a graph-based approach similar to the
one used by the variant finder CLEVER [27]. Initially, we transform the
set of collected SV signatures into an undirected graph. While CLEVER
identifies nodes with alignments of short paired-end reads, each node in
our graph represents an SV signature. We draw an edge between two
nodes (i.e. signatures) if the span-position distance between the two sig-
natures is smaller than a user-defined threshold T . Systematic evaluation
of different settings for this parameter yielded T = 0.7 as an optimal
setting for our human datasets (data not shown). An edge between two
nodes expresses our confidence that the two signatures represented by the
nodes express the same SV allele. From the graph, we produce signature
clusters by extracting maximal cliques with an efficient implementation of
the Bron-Kerbosch algorithm [28, 29]. As a consequence, each signature
cluster is a maximal group of SV signatures that can be jointly assumed
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to express the same SV in the donor genome.
Finally, SVIM computes a score for each cluster based on four features:

1. The number n ∈ (0, 40] of signatures in the cluster where at most
20 of each class (intra-alignment or inter-alignment) are taken into
account.

2. An additional bonus b ∈ [0, 30] for the existence of at least one
signature from each of the two classes. One or more intra-alignment
signatures earn a bonus of 10 while one or more inter-alignment
signatures earn an additional bonus of 20.

3. A score sp ∈ [0, 10] based on the standard deviation spos of the
genomic positions of the signatures in the cluster normalized by their
average span.
sp = 10 ∗ (1−min(1, spos/span))

4. A score ss ∈ [0, 20] based on the standard deviation sspan of the
genomic spans of the signatures in the cluster normalized by their
average span.
ss = 20 ∗ (1−min(1, sspan/span))

By summing up these four components we obtain a score S ∈ (0, 100] to
discern trustworthy signature clusters from artifacts, such as sequencing or
alignment artifacts. Trustworthy events are characterized by many intra-
and inter-alignment signatures that exhibit high concordance regarding
their genomic position and span.

2.3 Combination and classification of SVs into
five SV classes

The third component in the workflow analyzes and combines the SV sig-
nature clusters to classify events into five SV classes: deletions, inver-
sions, novel element insertions, tandem duplicaitons and interspersed du-
plications. Because the confident distinction of interspersed duplications
and cut&paste insertions solely based on sequencing reads is impossible,
we classify both as interspersed duplications. Nevertheless, we annotate
duplications where the region of origin seems to be deleted in the se-
quenced individual (i.e. a deletion overlaps the genomic origin) as poten-
tial cut&paste insertions. While inversions, deletions and tandem dupli-
cation signature clusters can be directly reported as inversions, deletions
and tandem duplications, respectively, the other three signature classes
(INS, DUP and BRK) are more complex. The reason is that interspersed
duplications are not characterized by only one genomic region but two -
a genomic origin and a genomic destination. To capture and classify these
higher-order events, SVIM needs to combine multiple signature clusters
and therefore makes the following distinctions (see also Fig. 3):

• Insertion signature clusters with detected region of origin (DUP) are
called as interspersed duplications. If the genomic origin overlaps
a deletion call, the duplication is marked as potential cut&paste
insertion.
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Individual

Reference

Locus 1 Locus 2a Locus 2b

Figure 3: Read signatures for an interspersed duplication and a novel ele-
ment insertion. A genomic segment (yellow arrow) has been copied from locus 1 to
locus 2a in an individual genome. Additionally, a novel genomic segment (gray arrow)
has been inserted in locus 2b. Two reads are generated from the individual (top)
and mapped to the reference genome (bottom). The first read (blue-yellow) consists
of three segments. They are mapped individually to the reference genome. The two
blue segments are mapped to locus 2a exhibiting an insertion signature. The yellow
segment is mapped to locus 1 indicating the origin of the insertion. The second read
(orange-gray) exhibits a similar insertion signature at locus 2b but as the inserted gray
segment is unmapped its origin cannot be determined.

• Inserted region signature clusters (INS) that are close to match-
ing translocation breakpoints (BRK) are called as interspersed du-
plications. If the genomic origin (as defined by the translocation
breakpoints) overlaps a deletion call, the duplication is marked as
potential cut&paste insertion.

• The remaining inserted region signature clusters (INS) are called as
novel element insertions.

2.4 Implementation and usage

SVIM has been implemented in Python and is available at
github.com/eldariont/svim. It can be easily installed via bioconda or
the Python Package Index (PyPI). As input, SVIM expects either raw
reads (in FASTA or FASTQ format) and a reference genome (in FASTA
format) or already aligned reads in BAM format. It outputs detected
SVs in five separate BED files (one for deletions, interspersed and tandem
duplications, inversions and novel insertions, respectively). Additionally,
a VCF file with all SV results is produced.

2.5 Evaluation methodology

In this study, we compared our tool, SVIM (v0.4.1), to three other SV de-
tection methods: PBHoney-Spots, PBHoney-Tails (both PBSuite v15.8.24)
and Sniffles (v1.0.8). All three tools are designed for the application on
long read sequencing data. For Sniffles and SVIM, reads were aligned
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with NGMLR (v0.2.7) or minimap2 (v2.12-r836-dirty). For PBHoney,
reads were aligned with BLASR (v5.3.4323a52). We did not compare
against short read SV callers because they have been shown to exhibit
lower recall than methods relying on long reads [13, 12, 21]. We also did
not compare against SMRT-SV because it is not a stand-alone tool but
a software pipeline applying several alignment, detection, and assembly
steps with various other tools. It detects only three SV classes and is
computationally more demanding than pure alignment-based tools.

We evaluated all tools on two types of data. Firstly, we generated
a simulated genome from which we sampled in-silico PacBio sequencing
reads with known SVs. This provided us with a complete set of fully
characterized SVs for evaluation. Secondly, we used publicly available
sequencing reads from PacBio and Nanopore sequencers. We compared
the precision and recall of the three methods. Precision is defined as the
fraction of detected SVs that are correct (requiring 50% reciprocal overlap
between detected and correct SVs). Recall is defined as the fraction of
correct SVs that have been detected (with 50% reciprocal overlap). Re-
sults for a more lenient and a more stringent overlap requirement of 1%
and 90%, respectively, can be found in the Supplementary Material. Both
precision and recall require a suitable gold standard set of high-confidence
SVs for the given genome (i.e. a set of correct SVs).

As expected, recall and precision reached by the different tools de-
pend heavily on tool parameters, particularly score or support thresholds.
More relaxed thresholds (i.e. yielding more SVs) increase recall but de-
crease precision while stricter cutoffs achieve the opposite. Consequently,
we ran all four tools with different settings of their most important param-
eter: For SVIM we applied different score cutoffs (0 to 100). Sniffles was
run with different settings of the min support parameter (1 to 60). For
PBHoney-Spots, we varied the minErrReads parameter and for PBHoney-
Tails we varied the minBreads parameter (both 1 to 60). We visualized
the performance of the tools by plotting each parameter setting as a dis-
tinct point in Figures 4-6. Besides that one parameter, we used the default
settings for all other tool parameters except PB-Honey Spots’ spanMax
parameter which we set to 100,000 (100kb).

2.5.1 Simulated data

We simulated 600 homozygous SVs by altering the sequence of chromo-
somes 21 and 22 in the hg19 reference genome. More precisely, we im-
planted 200 deletions, 100 inversions, 100 tandem duplications, and 200
interspersed duplications with the R package RSVSim [30]. The package
estimates the distribution of SV sizes from real datasets and simulates
the association of SVs to various kinds of repeats. The resulting genome
contained SVs between 50bp and 10kbp in size. Subsequently, reads were
simulated from this genome to generate 10 different datasets with cover-
ages between 6x and 60x with the tool SimLoRD [31]. SimLoRD imitates
the error model of SMRT reads to simulate realistic PacBio reads.

To simulate heterozygous SVs, we adapted the previously described
approach only slightly. Instead of sampling all reads from the altered
reference genome, half of the reads were sampled from the original refer-
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ence genome. Consequently, reads from the original (wildtype) reference
genome and the altered genome each amounted to 50% of the total cov-
erage.

The comparison between different tools was complicated by the fact
that each tool is designed to detect different SV classes. PBHoney is
able to detect deletions, inserted regions, inversions and translocation
breakpoints. Sniffles is additionally capable of identifying tandem dupli-
cations and complex events. Because only SVIM distinguishes between
duplications and novel element insertions, we compared the tools on four
common basic SV classes in the simulated datasets: deletions, inserted
regions (i.e. inserted sequence from duplications and novel element inser-
tions), inversions and tandem duplications. Because Sniffles tends to call
intra-chromosomal duplications as very large deletions or inversions (see
github.com/fritzsedlazeck/Sniffles/issues/23), we omitted deletion and in-
version calls by Sniffles that were larger than 100kbp to ensure a fair
comparison. To obtain calls of inserted regions from SVIM, we use the
union of its interspersed duplication and novel element insertion calls.

2.5.2 Real data

Simulation cannot reflect all aspects of biological data. Therefore, we
used real PacBio and Nanopore data for the second part of our anal-
ysis. This part consisted of three separate experiments. For the first
two, we utilized a real 53x coverage dataset of the NA12878 individual
from a PacBio RS II machine (Genome in a Bottle consortium; Accession
SRR3197748) [32].. To assess the influence of sequencing coverage on SV
detection performance, we produced a corresponding low-coverage subset
of the dataset by sampling reads randomly to 6x coverage. With these
two PacBio datasets, we performed two separate analyses. Firstly, we
evaluated our method with a published benchmark sample of 2676 high-
confidence deletions and 68 high-confidence insertions [33]. Secondly, we
implanted SVs into the reference genome and aligned the PacBio reads
to this altered reference. Implanting an SV into the reference genome
causes the original reads to contain the inverse of the SV that was im-
planted. With this approach, three types of SVs were simulated: 1) 200
deletions were simulated by inserting sequence into the reference genome.
2) 100 inversions were simulated by inverting regions in the reference. 3)
200 insertions were simulated by deleting regions in the reference. Un-
fortunately, duplications could not be simulated because this would have
required the identification and alteration of existing duplications in the
reference genome.

In a third experiment, we compared the 53x coverage PacBio dataset
of the NA12878 individual with a 26x coverage Nanopore dataset of the
same individual ([34], release 5). We evaluated our method with the high-
confidence callset described above and analyzed the overlap between the
three callsets (PacBio, Nanopore and high-confidence callset).

The NA12878 datasets are more realistic than the simulated dataset
but impose the limitation that there exists no complete gold standard
set of SVs. As a consequence of using an incomplete gold standard for
evaluation, precision could not be accurately measured. Putative ”false
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Figure 4: Comparison of SV detection performance on a 6x coverage ho-
mozygous simulated dataset. SVIM consistently yielded better recall (x-axis) and
precision (y-axis) than the other tools for the recovery of inserted regions and tandem
duplications. For the recovery of deletions and inversions, Sniffles reached the same
recall as SVIM. The different points for each tool represent multiple settings of the
tools’ most important parameters (see Sec. 2.5). PBHoney-Spots only detects deletions
and inserted regions and PBHoney-Tails does not detect duplications. Recall and pre-
cision were calculated using a required reciprocal overlap of 50% between variant calls
and the original simulated variants.

positives” could have been true but simply not contained in the incomplete
gold standard. Therefore, we compared the tools only based on their recall
in relation to the number of calls.

3 Results

3.1 Evaluation with simulated reads

As described in the Methods section, we implanted SVs from four differ-
ent classes into a reference genome. Reads sampled from this synthetic
genome were then analyzed with SVIM, PBHoney-Tails, PBHoney-Spots
and Sniffles. Results for the 6x coverage homozygous dataset can be found
in Figure 4. For a comparison of results across all coverages from 6x to
60x see Suppl. Fig. S2.

Regardless of coverage, SVIM achieved substantially better results
than all other tools in the recovery of inserted regions and tandem dupli-
cations. With 6x coverage and homozygous SVs, SVIM reached average
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precisions (AP) of 86% (inserted regions), and 83% (tandem duplications)
for the two classes while the second best tools, PBHoney-Spots and Sniffles
respectively, reached 25% and 54%. In the recovery of deletions and in-
versions, SVIM and Sniffles reached equal results with average precisions
of 94% (deletions) and 90% (inversions), respectively. In our experiments,
PBHoney-Tails performed very poorly across all settings. It did detect
only very few inserted regions, suffered from very low recall for inversions
and poor precision for deletions. All these trends remain true for higher
coverages as well (see Suppl. Fig. S2).

The simulated heterozygous dataset yielded similar results to those of
the homozygous dataset (see Suppl. Fig. S5). While all tools reached
slightly lower precision and recall, SVIM still outperformed the others
for inserted regions (AP=68% for 6x coverage) and tandem duplications
(AP=76%). In the detection of deletions and inversions, however, Sniffles
and SVIM reached nearly equal results (AP=90% and AP=87%, respec-
tively).

We explored whether more lenient (1%) or stringent (90%) overlap
requirements for the calls would change the results (see Suppl. Fig. S3,
S4, S6, and S7). As it turned out, the overlap requirement had little effect
on Sniffles and SVIM. Only PBHoney-Spots produced substantially worse
results for more stringent overlap requirements suggesting that the tool
has trouble finding accurate SV breakpoints.

To measure the influence of the input read alignments on SV calling,
we also compared results for two long read aligners, NGMLR and min-
imap2 (see Suppl. Fig. S8 and S9). The results indicate that SVIM is
relatively robust to the choice of the aligner but benefits slightly from the
more accurate alignment of reads covering insertions and tandem duplica-
tions by NGMLR. Sniffles, however, reaches considerably higher recall for
insertions when analyzing alignments by minimap2 compared to NGMLR.
Visual inspection of the alignments revealed a difference in the way that
reads covering insertions are aligned. While minimap2 expresses inser-
tions mainly as long reference gaps in the CIGAR string, NGMLR tends
to split reads at insertions. Because Sniffles does not call insertions of
sequence existing somewhere else in the genome (i.e. interspersed dupli-
cations) from split alignments, it reaches higher recall with minimap2.

3.2 Evaluation with real reads and high-confidence
calls

While simulated datasets enable the comprehensive comparison of tools
in a controlled and precise manner, they cannot reflect the full complexity
of real sequencing data. Therefore, we analyzed a publicly available 53x
coverage dataset of a human individual from a PacBio RS II machine
and a random 6x coverage subset (see Methods section). To evaluate the
detection performance of our tool, we first used a published benchmark
set of 2676 high-confidence deletions and 68 high-confidence insertions.

Among all tools, SVIM was the most consistent across the different
settings (see Fig. 5). It recovered substantially more deletions from the
high-confidence call set than the other tools with the same number of
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Figure 5: Comparison of recall on a 53x coverage public PacBio dataset and
a 6x coverage subset with 2676 high-confidence deletion and 68 insertion
calls. For each tool and different thresholds, the number of SV calls with score above
the threshold (log-scale) is plotted against the recall. The upper and lower panels
show performance on the full dataset and a randomly sampled 6x coverage subset of
the data, respectively. SVIM reached the same recall with fewer calls than other tools.
The vertical dotted lines denote the average number of deletions and insertions to
expect in an individual as recently reported using a de-novo assembly approach [35].
Recall was calculated using a required reciprocal overlap of 50% (deletion calls) and
1% (insertion calls), respectively, between variant calls and the gold standard variants.
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SV calls. To reach a recall of more than 50%, SVIM needed 1932 / 2577
calls (53x/6x coverage) while Sniffles needed 4320 / 6333 calls. PBHoney-
Spots needed even 5062 calls (53x coverage) and PBHoney-Tails did not
reach this level of recall at all. A recent study by the Human Genome
Structural Variation Consortium (HGSVC) used a multi-platform de-novo
assembly approach for SV detection and found an average of 12,680 dele-
tions per individual [35]. When we select tool thresholds closest to this
mark, SVIM, Sniffles, PBHoney-Spots and PBHoney-Tails recover 97%,
97%, 80% and 46% of the high-confidence deletions from the full coverage
dataset, respectively. All tools miss high-confidence calls across the entire
size range (50bp - 140kb). But while the false negatives of the first three
tools are evenly distributed across the size spectrum, PBHoney-Tails par-
ticularly misses small events. For instance, it misses all high-confidence
calls smaller than 100bp and 69% of calls between 100bp and 500bp but
only 24% of calls between 500bp and 1kb.

Although the results for insertions need to be considered with greater
caution due to the small size (n=68) of the high-confidence call set, SVIM
reached a higher recall than all other tools for small numbers of calls.
When we again select tool thresholds closest to the estimate of 18,919
insertions per individual from the HGSVC study [35], SVIM, Sniffles,
PBHoney-Spots and PBHoney-Tails recover 66%, 72%, 62% and 3% of
high-confidence insertions from the full coverage dataset, respectively.
Again, all tools miss high-confidence calls across the entire size range
of the callset (12bp - 379bp).

3.3 Evaluation with real reads and an altered ref-
erence genome

As described in the Methods section, we obtained another reliable gold
standard set of SVs (deletions, inversions, insertions) by implanting SVs
into the reference genome and aligning the PacBio reads (53x and 6x
coverage) to this altered reference. We evaluated all combinations of the
three SV types and the two coverages. SVIM outperformed the other tools
(see Fig. 6) in all six of these settings. In the recovery of deletions and
inversions, SVIM reached a substantially higher recall than PBHoney. It
also needed fewer SV calls to reach similar recall than Sniffles while the
difference decreased for higher recall. The most striking difference was
observed for the detection of insertions. While SVIM reached a recall
of 84% and 43% with 20,000 calls (53x and 6x coverage, respectively),
PBHoney-Spots reached 61% and 25% and Sniffles detected only 57% and
29% with the same number of calls. For full coverage, SVIM needed 2480
calls to reach a recall of 50% while Sniffles and PBHoney-Spots needed
both more than 10,000 calls.

3.4 Interspersed duplications in NA12878

SVIM’s ability to link the genomic origin and destination of an inter-
spersed duplication can yield interesting insights into the dynamics of
genomic rearrangements. Our analysis of the NA12878 PacBio dataset
with SVIM identified 27 high-confidence interspersed duplications with a
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Figure 6: Comparison of recall from NA12878 reads aligned to an altered
reference genome. For each tool and different thresholds, the number of SV calls
with score above the threshold (log-scale) is plotted against the recall. The upper
and lower panels show performance on the full dataset and a randomly sampled 6x
coverage subset of the data, respectively. In all six panels, SVIM outperformed all
the other tools and reached substantially higher recall for similar numbers of calls.
The improvement was most prominent for insertions. Recall was calculated using a
required reciprocal overlap of 50% between variant calls and the original implanted
variants.
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score > 30 (Supplementary Table 1). The genomic origin of 19 of them
overlapped annotated retrotransposons. Among those, 10 and 2 repre-
sented complete and incomplete Alu insertions, respectively. 2 and 2 rep-
resented insertions of complete and incomplete LINE1 elements, respec-
tively. 2 represented complete SVA elements and another one represented
human endogenous retrovirus HERVK14. Strikingly, six duplications oc-
curred from regions of the genome without annotated repeat elements
indicating other formation mechanisms. Finally, we observed two dupli-
cations in the untranslated regions of three genes, BAZ2A, RBMS2 and
PCMTD1.

3.5 Comparison of PacBio and Nanopore sequenc-
ing data

SVIM can detect SVs from both PacBio and Nanopore data. An evalua-
tion with real reads and high-confidence calls demonstrated that SVIM’s
performance on a 26x coverage Nanopore dataset is comparable to its
performance on the 53x coverage PacBio dataset (see Suppl. Fig. S14).
When we compared both SVIM callsets with the high-confidence callset,
we found that all three callsets together yielded a total of 45,729 SVs
(score cutoff of 40; see Figure 7). 22,461 or 49% of the calls were unique
to one of the callsets with 13,385 and 9,017 SVs detected exclusively from
the PacBio and Nanopore reads, respectively. However, 23,248 or 51% of
the calls were made on both PacBio and Nanopore reads. It is reassuring
that the vast majority (97%) of high-confidence calls were detected by
both sequencing technologies.

PacBio and Nanopore sequencing exhibit similar error rates but slightly
different error modes. While PacBio produces more insertion than deletion
errors [37], Nanopore shows the opposite tendency [38]. In concordance
to these biases, SVIM detected 17,292 deletions from the Nanopore reads
but only 12,782 deletions from the PacBio data (see Suppl. Fig. S15).
Conversely, it detected 23,858 insertions from PacBio but only 14,986 in-
sertions from Nanopore data (see Suppl. Fig. S16). Consequently, the
majority of PacBio-only calls were insertions (90%) and the majority of
Nanopore-only calls were deletions (65%). We could confirm the finding
by Sedlazeck et al. that a large fraction (80%) of Nanopore-only calls lay
in simple tandem repeats in contrast to only 35% of Pacbio-only calls.

3.6 Runtime evaluation

We compared the runtimes of PBHoney-Spots, PBHoney-Tails, Sniffles,
and SVIM on the same NA12878 dataset (53x coverage). Sniffles and
SVIM were given input alignments produced by NGMLR while PBHoney-
Spots and PBHoney-Tails were given BLASR alignments. The runtime
was measured on an AMD EPYC 7601 (128 cores, 2.7 GHz, 1 TB mem-
ory). Only the runtime of SV detection was measured, excluding the time
required for producing the alignments. All four tools analyzed the en-
tire dataset in under 3 hours (see Tab. 1). PBHoney-Tails, Sniffles, and
SVIM use only a single core and took 57, 160, and 156 minutes, respec-
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Figure 7: Venn diagram of three SV callsets for NA12878: SVIM calls on
a 53x coverage PacBio dataset, SVIM calls on a 26x coverage Nanopore
dataset and high-confidence calls from [33]. Callsets were produced by merging
SVIM calls with a score ≥ 40 for deletions, interspersed duplications and novel ele-
ment insertions. Subsequently, the diagram was generated using pybedtools [36] and
matplotlib venn.

tively. PBHoney-Spots is the only tool benefiting from multiple cores and
took 145 minutes on 4 cores (608 min on only 1 core).

4 Discussion

Structural variation is, besides single-nucleotide variation and small in-
dels, one of the main classes of genetic variation. The influence of SVs on
human phenotype and disease makes them an important research target
but their unique properties complicate their detection and characteriza-
tion. Particularly SV detection methods using short read technology suffer
from low sensitivity. Long read sequencing technologies such as PacBio
SMRT sequencing and ONT Nanopore sequencing have the potential to
alleviate these problems. In this study, we introduced the novel SV de-
tection method SVIM. It employs a three-step pipeline to collect, cluster
and combine SV signatures from long reads.

A comparison of SVIM with three competing tools on simulated and
real data demonstrated that our method combines high sensitivity with
high precision. Across all tools, deletions were the easiest to detect. Con-
sequently, Sniffles and SVIM reached almost perfect precision and recall
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Table 1: Runtime comparison on the 53x coverage NA12878 PacBio dataset.
Only the runtime of each tool is measured excluding the prior read alignment.

Tool Threads CPU time (min) Wall clock time (min)
PBHoney-Spots 1 601 608
PBHoney-Spots 2 561 284
PBHoney-Spots 4 558 145
PBHoney-Tails 1 56 57
Sniffles 1 159 160
SVIM 1 155 156

on the simulated data. On the real datasets, both tools still reached a
recall of over 90% when setting thresholds using the HGSVC estimate of
12,680 deletions per individual [35]. This level of recall was maintained re-
gardless of sequencing technology and evaluation method (high-confidence
callset or altered reference). SVIM generally required fewer calls to reach
the same recall as the other tools indicating that the best-scoring SVIM
calls are more enriched in true variants than the other tools’ callsets of
similar size. For the identification of inversions, Sniffles and SVIM exhib-
ited equally strong performance although SVIM showed a slightly higher
recall in the evaluation with an altered reference. It needs to be noted,
however, that the evaluation of inversions had to rely fully on simulation
due to the lack of a suitable gold standard set.

Differences between SVIM and the other tools were most prominent
for insertions (i.e. interspersed duplications and novel element insertions).
Across all simulations and real data evaluations, SVIM outperformed the
other tools by a wide margin. The difference to Sniffles can be largely
explained by their approach of analyzing split alignments. From such
alignments, Sniffles only calls insertions of novel elements but does not
detect insertions of sequence existing somewhere else in the genome (e.g.
from mobile elements). The detection performance of tandem duplications
could only be evaluated in the simulated dataset again due to the lack of a
gold standard. What we observed is a big difference in precision between
SVIM and Sniffles due to a large number of erroneous duplication calls
by Sniffles.

What sets SVIM apart from existing SV callers is not only its im-
proved detection performance but also its ability to distinguish three dif-
ferent classes of insertions purely based on alignment information. SVIM
enables researchers to determine whether an insertion event is due to a
tandem duplication, an interspersed duplication or the insertion of a novel
element. Moreover, SVIM identifies the genomic origin of duplications
which facilitates their functional annotation, e.g. into different classes of
mobile elements.

Because SVIM, similar to other SV callers, analyzes read alignments it
depends on the correctness of these alignments and inherits the limitations
of the used read alignment method. One of these limitations originates
from the repetitive nature of many genomes which keeps repetitive read
segments from being mapped confidently. This can affect SVIM’s sensi-
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tivity but might also cause SVIM to classify an interspersed duplication
as a novel insertion if the inserted segment cannot be uniquely mapped.
This might particularly affect mobile element insertions whose individual
copies are highly similar. Currently, SVIM is unable to detect chromoso-
mal translocations and nested structural variants. We intend to add this
functionality in the future. Additionally, we plan to implement genotyping
capabilities for the detected variants in an upcoming release of SVIM.
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