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Recent advances in image analysis and pattern recognition have paved the way to several
developments in plant science. In the present work, we report the comparative study, by using
the aforementioned approaches, of vascular bundles of Dracaena marginata. More specifically, we
used 33 measurements related to shape, density and regularity of imaged cross-sections of the stem.
By using individual, pairwise and PCA projections of the adopted measurements, we were able
to find the combinations of measurements leading to the best separation between the considered
tissues. In particular, the best separation was obtained for entropy taken at a particular spatial
scale combined with the equivalent diameter. The reported developments open several perspectives
for applications in content-based retrieval, diagnosis, and species identification.

I. INTRODUCTION

An organism can be defined as a group of organs
working together to perform one or more functions
(Raven et al., 2014). Each organ is constituted by
tissues, which are ensembles of similar cells. In plants,
the study of tissues can be divided into two types:
meristematic and permanent. Meristematic tissues, also
called embryonic, are composed of cells in constant
division. These tissues are of vital importance for plants
growth in length and thickness, being also responsible
for the derivation of all other tissues. Examples of this
type of tissue are: protoderm, procambium, cambium
and felogen. The permanent tissues are composed by
differentiated cells that have permanent shape, size and
a function. There are two types of permanent tissues:
simple permanent tissues (for example: parenchyma,
collenchyma, sclerenchyma, epidermis) and complex
permanent tissues (for example: xylem and phloem)
(Raven et al., 2014)

Xylem and phloem are plant tissues important for
transporting fluid and nutrients internally. The former
provides the main way to transport water and mineral
salts (raw sap) from roots into leaves, whereas the
latter is a tissue conducting elaborated sap (organic
substance, such as sugars, in solution) from leaves into
roots. The xylem and phloem can be primary or
secondary depending on the respective embryonic origin:
procambium or cambium, respectively (Raven et al.,
2014). Both xylem and phloem are known as plant
vascular tissues and, although they have no function in
plant growth, are present when growth occurs in length
and thickness in the plant.

The primary vascular tissue, composed by primary
xylem and phloem, is involved in the longitudinal growth,
known as primary growth. In dicotyledonous, this tissue
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is organized as concentric hollow cylinders in which the
internal cylinder is delimited by procambium and the
external is delimited by protoderm. The development of
xylem is endogenous in relation to procambium, whereas
the development of phloem is exogenous. On the other
hand, in most monocots, the primary vascular bundles
are produced by procambium and, subsequently, the
pericycle participates in the formation of these bundles
(Menezes et al., 2005; Lima and Menezes, 2009; Cattai
and Menezes, 2010). These vascular bundles can occur
in five different types: collateral closed, collateral open,
bicolateral, concentric periphloematic (also know as
amphicribral) and concentric perixylematic (also know
as amphivasal).

The secondary vascular tissue is composed by
secondary xylem and phloem and is related to the
diametric growth, known as secondary growth. In
general, in dicotyledonous, the procambium will originate
the cambium which, in turn, will develop secundary
xylem and phloem. Usually, monocots do not have
secondary growth. However, some species of this
class, such as Dracaena draco, Dracaena marginata,
Yucca aloifolia, Yucca brevifolia, Cordyline fruticosa,
among others (Tomlinson and Zimmermann, 1969), have
secondary growth and, consequently, secondary vascular
bundles.

The vascular system of monocots with thickness
growth is less known as a consequence of its complexity.
It has been studied since the 19th century to the
present day in works such as: Mirbel (1809), de Mirbel
(1843), von Mohl (1849), Metcalfe et al. (1960),
Tomlinson (1964), Tomlinson and Zimmermann (1969),
Menezes et al. (2005), Lima and Menezes (2009)
and Cattai and Menezes (2010). The work of the
Tomlinson and Zimmermann (1969) shows that some
studies believe that the secondary thickening meristem
originates from pericycle divisions, therefore being
longitudinally continuous and having histological and
functional similarity. In these cases, the pericycle will
give rise to the secondary thickening meristem, known as
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monocot cambium Carlquist (2012), which will produce
the secundary vascular bundles. One of the works cited
by Tomlinson and Zimmermann (1969) is Hausmann
(1908), which shows that the distinction between primary
and secondary meristems is complex and consequently
the characterization of primary and secondary vascular
tissues is also difficult.

Among the group of monocotyledons with secondary
growth, the genus Dracaena has been studied for a long
time, but there are still gaps to be filled about the
characterization of the vascular tissues of these plants.
According to the work of Carlquist (2012) these studies
were limited by the knowledge and, mainly, by the
techniques available at the time. That is, most of
the research on the vascular system of monocotyledons
considers histology based only on optical microscopy
to recognize, differentiate and characterize tissues
(Metcalfe et al., 1960; Tomlinson, 1964; Tomlinson and
Zimmermann, 1969).

The characterization of plant tissues consisted
in identifying the histological visual characteristics
that made it a unique tissue, that is, it was
a relatively subjective technique based on human
cognition. Currently, the continuing advances in image
analysis concepts and methods, allied to the ever
improving pattern recognition approaches, have paved
the way to obtaining increasingly more comprehensive
and accurate characterizations of fruit plant tissue as
described in Ramos and et al. (2004), Mayor et al. (2005),
Mayor et al. (2008) and Sanyal et al. (2008) in which it
is possible to study the effect of dehydration of a tissue
in several organisms, and thus make inferences about the
quality of the fruit.

The search for microhistological descriptors through
the analysis of plant images has contributed to
identifying species (Rosito and Marchesan, 2003)
and to understanding the tissue architecture during
its development or when affected by diseases
(Sánchez-Gutiérrez et al., 2016). Within this context,
the present work set out to harness the benefits of digital
image analysis and pattern recognition in order to better
understand plant tissues, especially in the sense of
achieving more quantitative and objective results, and
generating new interpretations in the characterization
of monotiledoneous vascular tissues with secondary
growth. In particular, we aim at finding descriptors that
contribute to effective differentiation between primary
and secondary vascular bundles and that have biological
relevance aiding the understanding of the architecture of
these tissues.

As observed above, among the group of
monocotyledons with secondary growth, the genus
Dracaena is the most studied. However, the choice of a
particular species is inherently limited by geographical
availability. So, Dracaena marginata was chosen in this
work because of two main reasons: (i) This species is
easily cultivated in tropical and subtropical climates; and
(ii) It has both primary and secondary vascular bundles

of the amphivasal type, allowing a more controlled
investigation.

So, the present study aims at differentiating the
primary from the secondary vascular bundles of Dracaena
marginata in terms of a systematic application of digital
image analysis and pattern recognition. We analyzed
20 images of primary and secondary vascular bundles
of Dracaena marginata in order to try to characterize
these tissues and to search for attributes that were
capable of not only segregating them computationally,
but also that had biological significance. Images were
manually segmented using Paint.net software. We
extracted 33 attributes divided into 3 classes: shape
measurements, density measurements and structural
regularity measurements. These attributes were then
analyzed by 3 different methodologies: individual
measurement analysis; pairwise measurement analysis
and principal component analysis.

The methodology that best addressed the objectives
proposed in this study was the pairwise measurement
analysis. Respective results showed that the best
separation of the tissues was obtained when the
measurement entropy with sigma 30 was combined with
the average equivalent diameter. We show that these
attributes have significant biological relevance and are
therefore potential classifiers to distinguish primary and
secondary amphivasals vascular bundles. The obtained
results pave the way to several applications such as
species identification using vascular bundles, as well
as diagnosis of environment induced abnormalities and
developmental studies. Therefore, the methodology
applied in this work can be extended to other plant
species, as well as other types of vascular bundles.

II. RESULTS

A. Hystologic Interpretation

Monocotyledons that show secondary growth may have
vascular bundles of two types: concentric (amphivasal or
amphicribral) or collateral (open or closed) (Tomlinson
and Zimmermann, 1969; Cattai and Menezes, 2010;
Jura-Morawiec, 2017). The species Dracaena marginata
is characterized by having primary and secondary
vascular bundles of the amphivasal type (Jura-Morawiec,
2015).

Figure 1 illustrates images of the transverse
histological sections of the stem of the Dracaena
marginata. In the figure, we can observe that the
primary (see Figure 1 A) and secondary (see Figure 1
B) vascular bundles are of the amphivasal type. These
vascular bundles are characterized by having the phloem
surrounded by the xylem. That is, the analysis of the
transverse sections of the stem of Dracaena marginata,
as done in this work, are consistent with the literature.

A total of 20 images containing primary and secondary
vascular bundles of the stem of Dracaena marginata
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was analyzed. A set of 33 morphological, density and
regularity measurements (described in Section IVB) was
extracted from each image, which was then studied using
three approaches: i) individual analysis; ii) pairwise
analysis and iii) PCA projection. These approaches are
described in detail in Section IVC. The aim was to search
for the attributes that could segregate well the primary
and secondary vascular bundles of monocotyledon with
secondary growth. The results obtained in each approach
will be described below.

(a) Primary vascular tissue

(b) Secondary vascular tissue

FIG. 1: Examples of tissues found in Dracaena
marginata. Tissues tags in blue are phloem and tissues

tags in purple are xylem.

B. Individual Measurement Analysis

In order to infer how much a measurement can
individually characterize and segregate the vascular
tissues from Dracaena marginata, graphs based on
the probability density function estimation of each
measurement were plotted. According to Bayesian
inference, the smaller the overlap region between
two curves, the better the groups will be separated
and, consequently, the classes will be better defined.
Graphs with the smallest overlapping region between the
probability density functions are shown in Figure 2.

Figure 2 A, B, C, and D presents the plots obtained
for the individual measurements, considering all images.
They show, respectively, the density functions of average
area, entropy with sigma 30, radial density with radius
of 125 and lacunarity with parameter R = 1.

(a) Average area

(b) Entropy with sigma 30

(c) Radial density with radius of 125

(d) Lacunarity with parameter R = 1

FIG. 2: Graphs showing the measurements yielding the
best separation between the tissues analyzed.

Analyzing Figure 2 A it is observed that the xylem,
both primary and secondary, have density distribution
curves of average cell area that have with little overlap
between them. Whereas, when evaluating the phloem
curves, primary and secondary, there is a great overlap
between them. As a consequence, we can infer that the
mean cell area measurement was able to separate the
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primary and secondary xylems from each other better
than from the primary and secondary phloem. Another
interesting observation about Figure 2 A is that the
primary and secondary xylem density curves are shifted
towards a larger cell area, whereas the curves of the
primary and secondary phloem are centered in the region
of the smallest cell area.

Figure 2 B shows the entropy attribute densities. The
primary tissues, both phloem and xylem, have density
distribution curves very close to the center point and
with relatively large dispersions, so they can not be well
differentiated by entropy 30. Secondary tissues resulted
well separated regarding this measurement. The entropy
of an image can be understood as a quantification of
randomness. Therefore, the greater the value of this
measure, the more irregular the analyzed image will be.
When we analyze Figure 2 B we can infer that the tissue
that presents the least entropy and greatest regularity, is
the secondary phloem. However, its density distribution
curve is markedly elongated, indicating that the entropy
of this tissue varies substantially among the considered
images.

Figure 2 C presents the radial density results for radius
equal to 125, from which we observe that there was a
significant separation of the primary phloem, which does
not present overlap with none of the other tissues. There
is no secondary phloem curve. This can be explained by
the fact that in this type of vascular bundle, the phloem is
enveloped by the xylem. The secondary tissue is smaller
than the primary tissue and, therefore, the radius of 125
was not able to measure the internal tissue, that is, the
secondary phloem. In this way, we can deduce that with
the radius of 125 it was possible to map the primary
phloem, but this ray was unsatisfactory to segregate the
other tissues.

Another measurement that led to tissue separation
was the lacunarity (see Figure 2 D). More specifically,
it promoted the separation of primary and secondary
xylems one another, and from the others. The behavior
of the curves shows that the primary xylem lacunarity is
slightly higher than for the secondary xylem. However,
this measurement was unable to separate the primary
and secondary phloem from each other as evidenced by
the large region of overlap between the density function
curves.

As shown and discussed above, although some
measures have allowed considerable separation between
the tissues, none of them was able to completely separate
all the tissues analyzed. It is therefore interesting to
consider a pairwise combination of measurements, which
is developed in the following section.

C. Pairwise Measurement Analysis

In order to analyze the degree of correlation
between the considered measurements, the Pearson’s
correlation coefficient between each measurement pair

was calculated. The results were organized into two
figures: 3 and 4. Figure 3 shows the Pearson correlation
matrix. It illustrates, by means of a color scale, how much
two measures are pairwise correlated so that the darker
the color intensity, the greater the correlation between
measurements. The negative values indicates negative
correlation. In this figure, two regions of darker shades
are observed: (i) the first one, at the top of the matrix,
with measurements related to shape; and (ii) a second
region, more to the center, involving density related
measurements. In order to have a better visualization of
the correlations, a network was also plotted as shown in
Figure 4. Each node corresponds to one of the measures
being studied. Edges are shown whenever −0.9 > p and
0.9 < p.

FIG. 3: Pearson correlation matrix obtained for
pairwise combinations of the adopted features.

Through the analysis of Figure 4, we have that the
measurements concerning the cellular shape have a high
correlation one another. On the other hand, out of
the measures related to density, only the entropy-related
features are correlated one another and with the average
polygonality. It is also noted that there is a correlation
between lacunarity measures 11 and 16.

After selecting the pairs of attributes with −0.9 < p <
0.9, the scatterplots of these measurements were plotted
and analysed. A total of 545 graphs were obtained
and had to be filtered for analysis so as to select the
cases exhibiting better separation between the tissues.
In this way, only 5 graphs with largest ratios of inter and
intracluster distances were selected, as given in Table I.
These graphs are shown in Figure 5 which illustrates the
graphs resulting from the combination of: A. Entropy 30
x Average equivalent diameter; B. Entropy 30 x Average
area; C. Entropy 30 x Average diameter; D. Entropy 48 x
Average equivalent diameter and E. Entropy 48 x Average
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FIG. 4: Network with Pearson correlation.

area.
By analysing Figure 5, we observe that the entropy

is present in all the selected cases, and in two of them
we have the entropy 48 and in the others the entropy 30.
The Pearson coefficient between these two measurements
is 0.99, as evidenced in Figure 4. The latter attribute had
already presented good results in the individual analysis,
as it was able to completely segregate the secondary
phloem. However, the other tissues had an overlap area.

Among the measurements referring to the cellular
shape, the graphs selected were those related to the
average equivalent diameter, average diameter and
average cell area. The attribute average area, which
yielded good results when used individually, appears
in two plots. In that individual case, due to the
characteristics of the tissues, it was possible to segregate
between phloem and xylem, but there were overlaps
between the primary and secondary tissues. Another
attribute that was also selected twice is the average
equivalent diameter. This measurement is based on the
cell area. For this reason, average area and average
equivalent diameter are strongly correlated as can be seen
in Figure 4, with absolute values of Pearson correlation
equal to 0.99.

The average diameter contributes to only one of the
graphs. Although it was not calculated based on the cell
area, using the farthest points of each cell instead, these
two measures present a high correlation with Pearson
coefficient equal to 0.98. Therefore, tissue groups that
present a biologically larger cell area will have larger
values of equivalent diameter and diameter. Xylem has
a larger cell area when compared to the phloem, so
the equivalent diameter and xylem diameter will also be
larger as shown in the graphs of Figure 5 A, C and D.

(a) Entropy 30 x Average equivalent diameter

(b) Entropy 30 x Average area

(c) Entropy 30 x Average diameter

(d) Entropy 48 x Average equivalent diameter

(e) Entropy 48 x Average area

FIG. 5: Scatterplots obtained by selecting pairs of
measurements exhibiting the largest separations between
the categories.
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TABLE I: Interclusters and intraclusters average
distance and relation (r) between distances for the five

selected graphs.

Plots Inter Intra r

Entropy 30 x Avg. Eff. Diameter 60,77 11,82 5,14
Entropy 30 x Avg. Area 58,53 11,52 5,08
Entropy 30 x Avg. Diameter 63,72 12,60 5,06
Entropy 48 x Avg. Eff. Diameter 59,50 11,79 5,05
Entropy 48 x Avg. Area 57,24 11,54 4,96

Another relevant conclusion is that all the selected
cases involve a measurement referring to the cellular form
and another related to density. Figure 5 C, for example,
was obtained by pairing entropy 30 and average diameter.
This graph presented the largest intercluster distance,
but also presented the greatest intracluster distance and
(see Table I). Therefore, it was not as effective in the
segregation of the groups when compared to the graphs
5 A and B. The graph in Figure 5 D has the entropy
attribute 48 on the y-axis and the average equivalent
diameter on the x-axis. Finally, the graph in Figure 5
E has the entropy 48 on the y-axis and the average area
on the x-axis. It had the smallest intracluster distances
as well as the smallest intercluster distances.

The attributes average equivalent diamenter and
average area are found on the x-axis in the graphs of
the figure 5 A and D and in the graphs of Figure 5 B
and E, respectively. The difference between the graphs
5 A and D and the graphs 5 B and E appears on the
y axis, which refers to the entropy attribute with sigma
30 and sigma 48. These two attributes distinguish one
another only by the sigma value assigned to the Gaussian
adopted for the kernel density estimation. In other
words, there is a difference in spatial scale between these
two measurements, with the entropy 48 characterizing
the tissues at a larger scale.

The good segregation between the tissue groups
studied was influenced by the discrimination power of
the considered paired measures. The high correlation
between the measurents of cellular shape and also
between those of entropy justify the similar behavior
among all presented graphs (see Figure 5).

Table II shows the ratio between the inter and
intracluster distances obtained for each pair of tissue
in the 5 cases shown in Figure 5. The primary and
secondary xylems resulted very close one another in all
the considered combinations. Bold values in Table II
indicate the separation obtained between the xylems. In
the following, we apply the PCA technique to verify if a
better separation between the tissues can be obtained.

D. Principal Component Analysis

PCA considers linear combinations of all the original
variables and, as a consequence, each new axis will

TABLE II: Intercluster distances for the five selected
graphs (Figure 5 A-E). P1 is primary phloem; P2 is
secondary phloem, X1 is primary xylem and X1 is

secondary xylem.

A B C D E

P1 x X1 65,10 60,18 71,05 65,28 60,37
P1 x P2 68,04 67,93 68,16 63,98 63,86
P1 x X2 40,21 33,75 47,02 38,28 31,42
X1 x P2 94,76 93,31 97,54 93,18 91,71
X1 x X2 33,55 35,29 32,53 31,04 32,91
P2 x X2 62,94 60,73 66,03 65,28 63,15

be obtained according to the weighted contribution of
each attribute in the original data. Please refer to
Section IVC3 for a more detailed explanation of this
method.

Table III shows that the first three main components
together account for 74.48% of the original data variance,
with the first major component having 47.06%, the
second 18.85% and the third 8.02%. In this way, the
feature space could be reduced from 33 to only three
dimensions, with a relatively small loss of information.
Table III also shows the weight of the 33 measures
analyzed and, in bold, those that had more relevance
in the calculation of the new axes. Interestingly, the
only attribute that appeared only in this section was
polygonality. The other attributes selected in this section
had already provided good separation in the previous
analyses.

Figure 6 illustrates the scatterplot obtained through
the PCA projection. In Figure 6 A we have the first
principal component (C1) on the x-axis and the second
(C2) on the y-axis. Together they account for 66.45%
of the total variance of the original data. In this graph,
there is a small region of overlap between the clusters for
the primary and the secondary xylem. In Figure 6 B, C1

is the x-axis while the third principal component (C3) is
the y-axis. Together, the two axes accumulate 55.63 % of
the total variance of the original data. In this graph, the
primary and secondary xylems are almost overlapping.

The intercluster distances of the graphs in Figure 6 are
presented in Table IV. The results show that Figure 6 B is
composed of clusters more dispersed along the axes when
compared to Figure 6 A, since the intracluster distance
is larger for this graph.

Although the graph obtained for C1 x C3, see Figure 6
B, has presented a greater distance between the primary
xylem (X1) and the secondary xylem (X2) if compared
to C1 x C2, see Figure 6 B, the distance between all
other groups has decreased, as evidenced in the Table V.
The greater proximity between the groups may generate
errors in a classification system. Thus, among the results
obtained by the PCA, Figure 6 A presented the best
separation.
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TABLE III: Absolute PCA weights for components C1,
C2 and C3. Bold values indicate the largest weights.
Measurements in the same connected component in
Figure 4 are indicated with a superscript (e.g., [a] for

component a).

Measurement C1 (47.6%) C2 (18.8%) C3 (8.0%)

Avg. area[a] 0.042 0.025 0.021
Std. dev. area[a] 0.042 0.021 0.004
Avg. residual[a] 0.039 0.035 0.005
Std. dev. residual 0.035 0.018 0.013
Avg. diameter[a] 0.042 0.030 0.009
Std. dev. diameter[a] 0.044 0.015 0.011
Avg eff. diameter[a] 0.042 0.028 0.019
Std. dev. eff. diameter[a] 0.044 0.016 0.009
Avg. elongation 0.026 0.034 0.070
Std. dev. elongation 0.021 0.025 0.082
Avg. polygonality[b] 0.029 0.058 0.011
Std. dev. polygonality 0.029 0.008 0.011
Entropy 30[b] 0.036 0.047 0.008
Entropy 48[b] 0.037 0.045 0.015
Entropy 65[b] 0.038 0.041 0.022
Entropy 83[b] 0.039 0.035 0.027
Entropy 100[b] 0.039 0.028 0.030
Iso. circularity 30 0.026 0.029 0.002
Iso. circularity 48 0.024 0.055 0.003
Iso. circularity 65 0.025 0.053 0.017
Iso. circularity 83 0.024 0.038 0.033
Iso. circularity 100 0.016 0.017 0.017
Radial dens. 25 0.038 0.030 0.004
Radial dens. 75 0.022 0.046 0.004
Radial dens. 125 0.007 0.071 0.003
Radial dens. 175 0.000 0.034 0.014
Radial dens. 225 0.039 0.023 0.017
Radial dens. 275 0.034 0.021 0.030
Lacunarity 1 0.028 0.033 0.039
Lacunarity 6 0.029 0.017 0.079
Lacunarity 11[c] 0.033 0.005 0.107
Lacunarity 16[c] 0.023 0.002 0.132
Lacunarity 21 0.009 0.016 0.132

TABLE IV: Interclusters and intraclusters average
distance and relation between distances (r) for the PCA
projection. C1 is first principal component and C2 is

second principal component.

Inter Intra r

C1 x C2 58,46 13,11 4,46
C1 x C3 44,71 18,76 2,38

(a) Plot of C1 x C2

(b) Plot of C1 x C3

FIG. 6: Scatterplot obtained through the PCA
projection.

TABLE V: Intercluster distances for the PCA
projection (6 A and B).P1 is primary phloem; P2 is
secondary phloem, X1 is primary xylem and X1 is

secondary xylem.

A B

P1 x X1 69,24 46,65
P1 x P2 75,06 25,80
P1 x X2 60,17 32,93
X1 x P2 72,95 70,84
X1 x X2 18,04 34,42
P2 x X2 55,31 57,64

III. DISCUSSION

Recent advances in image analysis and pattern
recognition have paved the way to several applications
in biology. In particular, we have the interesting
problem of characterizing plants images so as to identify
structural elements such as tissues and cells. Results
from this type of research would contribute to developing
methods for content-based retrieval, diagnostics, species
identification, among other possibilities. The current
work addressed the characterization of primary and
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secondary vascular bundles by using several methods and
concepts from image analysis and artificial intelligence,
with special attention given to the issue of finding a
reduced set of measurements capable of good separation
of the considered types of tissues.

A total of 20 images containing primary and secondary
vascular bundles of the stem of Dracaena marginata
was analyzed. Although these tissues have the
functionality of transporting water and nutrients, each
of them presents particularities and is involved in specific
subfunctions, resulting in unique characteristics making
them biologically and computationally differentiable.

A set of 33 morphological, density and regularity
measurements was extracted from each image, which
was then studied using three approaches: i) individual
analysis; ii) pairwise analysis and iii) PCA projection.
The aim was to search for the attributes that could
segregate well the primary and secondary vascular
bundles of monocotyledon with secondary growth. This
work showed that the most relevant attributes always
belonged to the subgroup of attributes: area, diameter,
entropy, polygonality, lacunarity and radial density,
regardless of the approach used (individual analysis,
pairwise analysis and PCA). In addition, the results for
pairwise analysis resulted in better results than the other
two approaches used in this work.

The pairwise measurement analysis was able to
completely separate the vascular tissue groups of the
Dracaena marginata. More specifically, a combination
between the entropy 30 and average equivalent diameter
measurements led to the best separation between tissues
and a good distance between the groups. In general, the
entropy with sigma of 30 or 48 when analyzed together
with measures concerning the cellular form, such as
area and diameter, also presented satisfactory results for
tissue segregation.

Biologically, the entropy, area and diameter
characteristics were expected to play an important
role in distinguishing vascular plant tissues. The
entropy can be interpreted as the degree of regularity
and organization of a geometric structure such as the
considered tissues. More organized tissues have smaller
entropy. The primary tissues are organized according
to the axial system while the secondary tissues are
organized according to the axial and radial systems
(Cutler et al., 2009; Raven et al., 2014). Thus, the
secondary tissues are more regularly organized and,
therefore, have lower values of entropy when compared
to the primary counterparts, as presented in the sections
above. The difference in entropy between xylem
and phloem may be related to the condition of the
constituent cells. The phloem is composed of living cells,
which can lead to a less organized tissue when compared
to the phloem, which is composed of dead and lignified
cells.

The results related to the cellular shape led to a
relevant biological interpretation. Xylem is the tissue
responsible for transporting water and minerals, while

the phloem carries the organic compounds resulting
from photosynthesis. Thus, the transport capacity of
the xylem exceeds that of the phloem since the fluid
transport rate is higher in the xylem than in the phloem
(Hölttä et al., 2009; Wu et al., 2011; Lucas et al., 2013).
This hydraulic difference between the tissues justifies the
distinction between the diameter of the xylem and the
phloem (Santarosa et al.; 2016). The xylem, because it
has a greater flow capacity, tends to consist of larger cells
when compared to the phloem (Jura-Morawiec; 2015).
The area and diameter resulted in a high and positive
Pearson correlation coefficient, indicating that cells with
large areas also tend to have a high diameter. Therefore,
all measures related to the cellular shape considered in
the analysis showed a similar behavior when analyzed
together with the entropy.

The other attributes highlighted in this work
(lacunarity, polygonality and radial density) also have
biological relevance. The lacunarity characterizes the
homogeneity of the distribution of holes in an image.
If the image contains irregularly distributed holes of
many different sizes, the lacunarity of the image is
high. Contrariwise, if the holes have similar size
and are homogeneously distributed, the lacunarity is
low (Rodrigues et al., 2005). The main constituent
cells of xylem of monocot with secondary growth are
tracheids (Raven et al., 2014). These cells, during
their development, undergo a process called intrusive
growth (Jura-Morawiec, 2017), that is, a cell will
penetrate between the adjacent cells (Cutler et al.,
2009). According to de Oliveira Santos and Nogueira
(1977), intrusive growth occurs in both the primary and
secondary tissues, but in the latter it is more significant.
This process results in the occupation of intercelular
spaces (Wenham and Cusick, 1975; Jura-Morawiec,
2017), thus, it may promote a greater homogeneity in
the distribution of the secondary xylem in relation to the
primary one. The intrusive growth does not occur in the
phloem because it is a characteristic of tracheid cells.

The polygonality is the measurement that quantifies
the regularity of the angular distribution of neighboring
cells. The phloem constituent cells are alive throughout
the plant development, while the xylem cells, as they
mature, undergo lysis of the cytoplasm and parts of
the cells wall give rise the formation of a secondary
lignified wall culminating in cell death, which then
become apt for transport processes. As the xylem is
composed of mostly of dead cells, the changes that occur
in the xylem are irreversible (Raven et al., 2014). This
characteristic of this tissue indicate that in a tissue
composed mostly of living cells, it is reasonable to
expect that the properties of neighboring cells have a
greater variation than in dead tissues (Jura-Morawiec,
2017). In relation the origin of tissues: primary vascular
tissues reach their maximum degree of differentiation
and remain functional throughout the individual’s life
without further differentiation (Raven et al., 2014).
Thus, it is reasonable to expect that primary tissues
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exhibit less variation in the angular distribution of
neighboring cells when compared to secondary tissues
that undergo differentiation throughout plant life.

The radial density is calculated from the center of
mass of the centroid of each cell of the tissue. The
tissue organization itself of the vascular bundles justifies
the relevance of this attribute. As the vascular bundle
type studied was amphivasal, that is, concentric with
the phloem being surrounded by the xylem (Tomlinson
and Zimmermann, 1969), this attribute had interesting
results mainly in the characterization of the primary
phloem.

The reported results suggest that image analysis
methods can help the classification process of vascular
bundles, since clusters referring to each tissue type
were well segregated in a 2D space. The obtained
results pave the way to several applications such as
in content-based retrieval, species identification and
diagnosis. Other future works include extending the
proposed methodology to other plant species, as well
as other types of vascular bundles. It would also be
interesting to study the evolution of these structures
along time and the position along the stem.

IV. EXPERIMENTAL PROCEDURES

A. Image Database

The image database was generated using slides with
transverse sections of the stem of Dracaena marginata,
which was kindly supplied by Prof. Dr. Marcos Arduin
of the Department of Botany at Federal University of São
Carlos (UFSCar).

Image acquisition was carried out by a photo camera
(Canon - PowerShot A650IS 12.1MP Digital Camera)
attached to an optical microscope (Carl Zeiss - Axiostar
Plus Transmitted Light Microscope). All images were
captured with 2400x magnification. Images of the
primary and secondary vascular bundles were captured
and separated into two groups according to the bundles
specification, that is, primary or secondary tissue.
The groups consisted of 20 images that were analyzed
separately as described in Section IV B.

B. Image Analysis

1. Cell segmentation

The primary and secondary vascular bundles are
composed of xylem and phloem, so this step was
performed with the intention of manually segmenting
these tissues into the two types of bundles studied.
Segmentation was done using the software Paint.net
(v3.08) [dotPDN LLC] according to the following steps:

1. the original image was used as background for
segmentation;

2. a transparent mask was added over the original
image;

3. xylem cells were outlined and filled with gray levels
from 1 to 255;

4. the unselected region, that is, the region of the
image that did not correspond to xylem cells was
filled with the level 0 gray tone.

5. the mask containing the cells was saved;

6. on the original image, a new transparent mask was
added;

7. the cells related to the phloem were outlined and
filled with gray levels from 1 to 255;

8. the unselected region, that is, the region of the
image that did not correspond to phloem cells was
filled with gray level 0.

The steps were repeated for all images of both the
primary and secondary vascular bundle groups. At
the end of this stage, the group consisting of images
of primary vascular bundles was subdivided into xylem
and primary phloem. Similarly, the group consisting
of images of secondary vascular bundles was subdivided
into secondary xylem and phloem. Figure 7 illustrates
the separation of the groups that will be considered
throughout this study.

FIG. 7: Division of four groups: primary xylem and
phloem, secondary xylem and phloem. Each group is

composed of 20 tissue samples.

2. Measurements related to cell shape

Measurements described in this section were calculated
for individual cells, and the average and standard
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deviation over all cells in a tissue was obtained for tissue
characterization.
Cell area: The number of pixels representing the cell

(da Fontoura Costa and Cesar Jr, 2009).
Convex hull residual: First, the convex hull

(De Berg et al., 2000) of the cell is calculated. Then,
the convex hull residual is given by the difference between
the convex hull area and the cell area (da Fontoura Costa
and Cesar Jr, 2009).
Max cell distance: The maximum distance between

any two points in the cell (da Fontoura Costa and
Cesar Jr, 2009).
Equivalent diameter: The equivalent diameter is

calculated as

Deq = 2

√
A

π
(1)

where A is the cell area. Deq is the diameter of a disk
having the same area as the cell (da Fontoura Costa and
Cesar Jr, 2009).
Elongation : Let ~p = ((x1, y1), (x2, y2), . . . , (xN , yN ))

be a vector containing the image row and column
positions of all N pixels representing the cell. The
principal component analysis (PCA) (Jolliffe, 1986) is
applied to vector ~p, resulting into two axes that can
represent the shape with optimum variance. The square
root of the ratio between the eigenvalues of the first
and second principal components indicates the overall
elongation of the shape (da Fontoura Costa and Cesar Jr,
2009).

Elong =

√
λ1√
λ2

(2)

where λ1 e λ2 are eigenvalues of the first and second
principal components

3. Density measurements

The density measurements are based on the
distribution of the cell centroids. The entropy and
isoline circularity measurements (described below)
were calculated over an unsupervised estimation of
the probability distribution of cell centroids. This is
done by applying a Gaussian kernel density estimation
methodology (Duda et al., 2012), where each centroid
is treated as an unitary impulse. The sigma parameter
of the kernel Gaussian function was varied between the
following values: 30, 48, 65, 83 and 100. Larger sigma
values lead to smoother probability distributions and,
therefore, to measurements that quantifies the tissues at
larger spatial scales.
Entropy of centroid density: The Shannon

(Shannon, 1948) entropy of the estimated probability
distribution.

Isoline circularity: By thresholding the probability
distribution at the 0.95th percentile, a binary image is
obtained. Then, the circularity of this binary image is
calculated (da Fontoura Costa and Cesar Jr, 2009). This
measurement is calculated as

C =
4πA

P 2
(3)

where A and P are, respectively, the area and perimeter
of the thresholded image.
Centroid radial distribution: First, the centroid c

of the set of all cells in the image is calculated. Then,
an annulus centered on c and having inner radius ri
and outer radius ri + ∆r is defined. Next, the density
of cell centroids contained in the annulus is obtained.
This is calculated as the ratio between the number of
cell centroids inside the annulus and the area of the
annulus. A descriptor ~cr can be defined, containing the
cell centroid density for distinct annulus radii values. In
the analysis we consider ri = i ∗∆r for all i in the range
[0, 5], and ∆r = 50 pixels.

4. Structural regularity measurements

The measurements in this section are related to the
regularity of the cells distribution.
Lacunarity: This property characterizes the

homogeneity of the distribution of empty spaces (holes)
in an image (Rodrigues et al., 2005). If the image
contains irregularly distributed holes of many different
sizes, the lacunarity of the image is high. Contrariwise,
if the holes have similar size and are homogeneously
distributed, the lacunarity is low. The "holes" in our
tissue image were generated by taking the negative of the
binary mask containing the manually segmented cells.
That is, each cell in the original image becomes a hole
in the negative image. The lacunarity was calculated
within a region bounded by a radius R around a given
pixel of the image. The parameter R ranged from the
following values: 1, 6, 11, 16 and 21.
Polygonality: The cell centroids are used for defining

a respective Delaunay triangulation (De Berg et al.,
2000). For a given cell i, the Delaunay triangulation
is used for defining the neighboring cells, Γi, of this
cell. These cells tend to be spatially close to cell i.
Let’s define a line lij going from centroid i to centroid
j, where cell j belongs to the neighborhood Γi of
cell i and j = 1, 2 . . . , Ni. Ni being the number of
neighbors of cell i. Respective angles θj,j+1 between
each consecutive line (in a clockwise direction) are
then defined (da Fontoura Costa et al., 2006). The
polygonality is then defined as

Pi = 1−
∑Ni−1
j=1 |θj,j+1 − 2π

Ni
|

2π
(4)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/494039doi: bioRxiv preprint 

https://doi.org/10.1101/494039


11

This property quantifies the regularity of the angular
distribution of neighboring cells, that is, the similarity
between the values θj,j+1 and the angle 2π/Ni. If
θj,j+1 = 2π/Ni for all j, the neighbors of cell i have a
regular angular distance.

C. Pattern Recognition

1. Individual Measurement Analysis

Let X be a random variable, described in terms of its
probability density function (f(x)). So, for any values a
and b, the probability that X is comprised between a and
b is given as:

P (a < X < b) =

∫ b

a

f(x)dx (5)

for values of a < b. The probability density function is
estimated by convolving the histogram of variable x with
a Gaussian kernel (Duda et al., 2012). In this work, the
probability denstity function was plotted using the histfit
function in the software Matlab.

The graphs reveal the potential of each measurement
for separating the distinct tissue types considered.
According to Bayesian inference, the smaller the overlap
region between two curves, the better the groups will be
separated and, consequently, the classes will be better
defined. Therefore, the graphs were analyzed and those
leading to the best discrimination between the tissue
types were selected.

2. Pairwise Measurement Analysis

Generally, a single attribute is not able to extract
enough information for a good tissues characterization,
so in this step we considered pairs of measurements. This
approach is justified because, when working with two
attributes, we increase the number of dimensions to two
(2D) and this may promote a better separation of the
groups.

Often, it is important to avoid pairs of characteristics
that have a high degree of correlation, as they may have
great redundancy. An analysis of Pearson’s correlation
coefficient (p) (Pearson, 1896) was performed in order to
quantify the degree of correlation between two variables
and to verify if these correlations are positive or negative.
The Pearson correlation between two random variablesX
and Y can be calculated as

p =
cov(X,Y )√
var(X)var(Y )

(6)

in which cov(X,Y ) corresponds to the covariance
between the variables X, and Y and var(X) is the
variance of variable X.

Values of p such that p ≈ 1 or p ≈ −1 indicate that the
variables analyzed are strongly correlated and, therefore,
may be redundant.

Scatterplots between each pair of measurements were
also obtained. In order to study the dispersion between
and within tissue groups, we used the intercluster and
intracluster distance matrices, respectively (Duda et al.,
2012). For the calculation of both analyzes, the variables
were normalized between 0 and 1.

The intercluster distance matrix was calculated taking
into account the euclidean distance of the centroids from
each tissue cluster. The centroid Cm = (x̄, ȳ) was
estimated as the mean of the coordinate values of the
points, as described below.

x̄ =
1

N

N∑
i=1

xi (7)

ȳ =
1

N

N∑
i=1

yi (8)

where N is the number of points in the category.
The Euclidean distance was calculated as described

below:

Dab =
√

(xa − xb)2 + (ya − yb)2 (9)

where, xa and xb are the centroids of the coordinate x
between two categories and ya and yb are the centroids
of the coordinate x between two categories.

The intracluster distance was calculated as the average
euclidean distance between all points of the same tissue.
Let i and j be two points of the same category, the
Euclidean distance between i and j was calculated as
follows:

Dij =
√

(xi − xj)2 + (yi − yj)2 (10)

All distance values were summed and, at the end, the
arithmetic mean was calculated.

The separation between the groups can, then, be
quantified by dividing the intercluster distance by the
intracluster distance (r).

3. Principal Component Analysis

Principal Component Analysis (PCA) (Jolliffe, 1986)
is a technique used for reducing the dimensionality of a
dataset while preserving as much as possible the variance
of the original data, thus eliminating redundancies in the
data (Vasconcelos, 2007; Varella, 2008). This analysis
can be understood as a linear transformation of the
original variables (Vasconcelos, 2007) onto a new space
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FIG. 8: Flowchart illustrating the summarized steps to
perform the principal component analysis.

defined by set of uncorrelated measurements. A possible
procedure to calculate PCA is presented in Figure 8.

After calculating a set of n measurements for each
image, the obtained values are organized as a data matrix
(Q), having size m× n. Henceforth, m is the number of
samples (images) and n the number of measurements.
As the units of the measurements can vary in magnitude
between the attributes, it is convenient to standardize
the matrix Q. The standardization is done following the
equation below, yielding the matrix S.

Smn =
(Qmn − X̄n))

σn
(11)

in which X̄n is the average and σn the standard
deviation of measurement n.

The covariance among each column of S is then
calculated, resulting in the covariance matrix A, having

size n × n. The eigenvalues and eigenvectors of matrix
A are then calculated (Varella, 2008). The L principal
components correspond to the eigenvectors associated to
the L-largest eigenvalues of A.

After the determination of the main components,
the contribution of each main component to the data
projection can be calculated. This contribution is given
in percentage and represents the ratio of total variance
explained by the main component. Usually, principal
components accumulating approximately 70% or more
of the total variance ratio are chosen (Varella, 2008).
Finally, the matrix S is multiplied by the selected
eigenvectors, defining new, uncorrelated, values to each
tissue image.
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