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Abstract 

Previous studies have identified differences in DNA methylation in autistic individuals 

compared to neurotypical individuals. Yet, it is unclear if this extends to autistic traits – 

subclinical manifestation of autism features in the general population. Here, we investigate 

the association between DNA methylation at birth (cord blood), and scores on the Social and 

Communication Disorders Checklist (SCDC), a measure of autistic traits, in 701 8-year olds, 

by conducting a methylome-wide association study (MWAS) using DNA methylation data 

from cord-blood. Whilst did not identify significant loci demonstrating differential 

methylation, we observe a degree of overlap between the SCDC MWAS and post-mortem 

brain methylation signature in autism. Validating this, we observe an enrichment for genes 

that are dysregulated in the post-mortem autism brain. Finally, integrating genome-wide data 

from more than 40,000 individuals and mQTL maps from cord-blood, we demonstrate that 

mQTLs of CpGs associated with SCDC scores at different P-value thresholds are 

significantly shifted towards lower P-values in a GWAS for autism. We validate this using a 

GWAS of SCDC, and demonstrate a lack of enrichment in a GWAS of Alzheimer’s disease. 

Our results highlight the shared cross-tissue epigenetic architecture of autism and autistic 

traits, and demonstrate that mQTLs associated with methylation changes in childhood autistic 

traits are enriched for common genetic variants associated with autism and autistic traits. 
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Introduction 

Autism is a neurodevelopmental condition characterized by social-communication 

difficulties, unusually restrictive, repetitive behaviour and narrow interests, and sensory 

difficulties 1,2. The condition can be thought as a continuum, with autistic traits being 

normally distributed in the general population, and autism at the extreme end of the 

continuum3–5. Both autism and autistic traits are highly heritable6–9, with variation across the 

allelic spectrum associated with the condition10–12. Despite a significant SNP heritability, 

recent studies have demonstrated that the variance explained per SNP is small, suggesting a 

highly polygenic architecture11,13. None of the significant SNPs associated with autism result 

in predicted coding changes, suggesting that they regulate gene expression through other 

mechanisms11,14. For instance, a recent genome-wide association study (GWAS) of autism 

has identified an enrichment of GWAS signals in H3K4me1 histone marks, particularly in 

brain and neural cell lines11,13.  

 

One potential mechanism through which common genetic variants can regulate gene 

expression is through DNA methylation. DNA methylation is partly heritable15,16, with 

approximately 40% of CpG sites having a significant genetic component17. Previous studies 

have investigated autism associated methylation signatures in both peripheral tissues14,18,19 

and in the post-mortem brain20–23. While post-mortem brain is pertinent for a 

neurodevelopmental condition like autism, it is not readily accessible, and will be confounded 

by post-mortem effects on methylation patterns. Studies of methylation signatures in post-

mortem brains in autism have replicably identified differential methylation20–23. Further, they 

have demonstrated an enrichment for differentially methylated signatures in immune system, 

synaptic signalling and neuronal regulation20,21,23. In contrast, recent large-scale analysis of 

three different peripheral tissue datasets have not identified significantly differentially 

methylated CpG sites in cases compared to controls14,19. The lack of significant results in 

peripheral tissues may be attributable to small effect sizes, significant heterogeneity in both 

CpG methylation and autism.  

 

Given the heritability of methylation, a few studies have integrated genetics and 

methylation marks to identify convergent signatures in autism. Andrews and colleagues 

demonstrated that autism associated GWAS loci are enriched for methylation QTLs (mQTLs) 

in foetal brain and blood, suggesting that at least some of the genetic loci associated with 

autism may contribute to the condition through differential methylation24. In line with this, 
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Hannon and colleagues demonstrated that polygenic risk for autism is associated with 

differential methylation at birth14. While these studies have demonstrated a role for common 

genetic variants associated with autism and influencing methylation, to our knowledge no 

study has investigated if methylation of CpGs associated with autism or autistic traits are 

enriched for polygenic signatures of autism or autistic traits. One way to test this hypothesis 

is using mQTLs. We hypothesized that given methylation at CpGs is partly driven by 

genetics through mQTLs as evidenced by the significant heritability of methylation marks, 

then we would expect mQTLs of significant CpGs in a methylome-wide association study of 

autism or autistic traits to be enriched for lower P-values in a GWAS of autism or autistic 

traits. 

 

To address these questions, we investigated the association of CpG methylation in 

cord blood using a measure of social autistic traits at age 8 (scores on the Social and 

Communications Disorder Checklist, or SCDC)25. The SCDC is phenotypically and 

genetically correlated with autism (rg ~ 0.3)5,25,26, and polygenic scores from autism are 

associated with SCDC scores in the general population26. The advantage of using a 

continuous measure of autistic traits is that it captures the underlying variance better, and 

minimizes the heterogeneity due to different diagnostic criteria and practices used to diagnose 

autism. Further, the use of cord-blood CpGs minimizes (though, does not eliminate) reverse 

causation (where the phenotype influences DNA methylation), as the methylation of CpG 

sites is measured very early in life.  To investigate how comparable an MWAS of an autistic 

trait is to other MWAS of autism and related phenotypes conducted across tissues and 

phenotypes, we investigated the overlap between the MWAS of SCDC and other MWAS of 

autism and communication-related traits in peripheral and post-mortem brain tissues. We 

further investigated if genes that are transcriptionally dysregulated in the post-mortem autism 

brain are enriched for methylation CpGs associated with SCDC. Finally, integrating GWAS 

data for autism from 46,350 individuals, we investigate if mQTLs of CpGs associated with 

SCDC scores at various P-value thresholds are significantly shifted towards lower P-values in 

the autism GWAS. We validate these results using a smaller GWAS for SCDC.   

 

In summary, this study had two specific aims: 1. To investigate if an MWAS for 

autistic traits identifies significant CpG methylation and if it is comparable to MWAS of 

autism; 2. To investigate if genetic variants associated with autism and autistic traits are 

enriched in CpG sites associated with autistic traits at various P-value thresholds.  
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 Methods: 

Study population 

Participants were children from the Avon Longitudinal Study of Children and Parents 

(Children of the 90s)27, drawn from the Accessible Resource for Integrated Epigenetic 

Studies (ARIES, www.ariesepigenomics.org.uk)28. ALSPAC is a longitudinal cohort in 

which the participants were  pregnant women in the Avon region in the UK. The initial 

cohort consists of 14,541 initial pregnancies and 13,988 children who were alive at the age of 

1. In addition, children were enrolled in further phases. Details of the data available can be 

found on the online data dictionary here: http://www.bristol.ac.uk/alspac/researchers/access/. 

Written informed consent was obtained from the parent or the guardian and assent was 

obtained from the child where possible. The study was approved by the ALSPAC Ethics and 

Law committee, and the Cambridge Human Biology Research Ethics Committee. The 

participants of the primary MWAS on SCDC were 701 children who completed the SCDC at 

age 8, and for whom epigenetic data were available (341 males and 360 females). We 

conducted a secondary MWAS of pragmatic communication in 666 children. Pragmatic 

communication was measured using the Children’s Communication Checklist29 (CCC) at age 

9 (323 males and 340 females). In addition, we conducted a GWAS of SCDC scores in a 

sample of 5,628 8-year olds from ALSPAC, details of which are provided below.  

  

Phenotypic measures 

The SCDC is a 12-item questionnaire that measures difficulties in verbal and 

nonverbal communication and social interaction including reciprocal interaction25. Scores 

range from 0 to 24 with high scores reflecting difficulties in social interaction and 

communication. The SCDC has good psychometric properties - internal consistency of 0.93 

and test-retest reliability of 0.8125. We used mother-reported SCDC scores on children aged 

8. The mean of SCDC scores in our samples was 14.65 (standard deviation = 3.44). Previous 

research has shown that the SCDC is stable over time and scores at different ages are 

genetically correlated26,30. SNP heritability for SCDC measured at various time points is 

highest in childhood (at the age of 91 months) and in later adolescence (17 years)26,30. We 

focussed on SCDC scores at 91 months as the sample size was the largest, has highest genetic 

correlation with autism26, and the exposure to environmental factors is limited at 91 months 

compared to other time points. 
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A second measure that we used in this study, is the 53-item parent-completed CCC 

which measures pragmatic communication29. The CCC and subscales has moderate to high 

twin heritability (0.53 < h2
twin < 1)31, and moderate SNP heritability (h2

SNP = 0.18)32. There is 

a negative correlation between the CCC and the SCDC33. The mean of the CCC in the sample 

of 666 children was 151.83 (standard deviation = 6.77), with scores ranging from 111 to 162. 

To make the analysis comparable with the SCDC (which measures difficulties rather than 

ability) we reverse scored the CCC so that higher scores measure difficulties in pragmatic 

communication. 

  

Cord blood DNA Methylation, quality control and normalization 

DNA was extracted from cord blood drawn from the umbilical cord upon delivery. 

Following extraction, DNA was bisulfite-converted using the Zymo EZ-DNA 

MethylationTM kit (Zymo, Irvine, CA) then genome-wide methylation status of over 485 000 

CpG sites was measured using the Illumina HumanMethylation450 BeadChip array 

according to the standard protocol. The arrays were scanned using an Illumina iScan and 

initial quality review was assessed using GenomeStudio (version 2011.1).    

 

Methylation assays utilize a pair of probes to detect methylation of cytosine at CpG 

sites. One is used to detect methylated loci (M) and the other is used to detect unmethylated 

CpG islands (U). The level of methylation at a particular locus is then estimated based on the 

ratio of signals from M to U, called “beta” value. β-values are reported as percentages, 

ranging from 0 (no cytosine methylation) to 1 (complete cytosine methylation). 

 

 

QC and Normalization 

In total, there were 1127 cord blood samples including technical replicates. Of these, 

241 were from blood spots and 886 were from white cells. 919 of these passed the mother-

child genotype-based relatedness quality control. We further removed duplicate samples and 

participants who were outliers for genetic heterozygosity, genetic ethnicity outliers, and sex 

mismatch. Samples were further removed if there were low bead numbers, and high detection 

P-value. This left us with 701 participants who had both epigenetic and phenotypic data. 

 

 The data was normalized using functional normalization implemented in the R 

package meffil (https://github.com/perishky/meffil)34. Functional normalisation is a between-
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array normalisation method for the Illumina Infinium HumanMethylation450 platform and an 

extension of quantile normalisation. It removes unwanted technical variation. The 

normalization procedure was performed to the methylated and unmethylated signal intensities 

separately. For X and Y chromosomes, males and females were normalised separately using 

the gender information.   

  

We removed CpG sites whose probe or single-base extension overlaps with a SNP 

with MAF > 0.01. We further removed cross-reactive probes identified in Chen et al., 201335 

as implemented in mefill. In total, 372,662 CpG sites remained after quality control. Cell 

proportions for CD4 T lymphocytes, CD8 T lymphocytes, B lympocytes, natural killer cells, 

monocytes, and granulocytes were estimated using the minfi package36.  

  

Methylome-wide association 

A methylome-wide association study was run using a two-step regression model. In 

the first regression, normalized epigenetic probe betas were regressed against technical 

covariates (slide, sample type, and plates and cell counts). The residuals from this regression 

were further used as corrected methylation values. In the second regression, SCDC (or CCC) 

scores were regressed against corrected methylation values with sex and the first two genetic 

principal components as covariates. Here, we were specifically testing if methylation status 

measured in cord blood was associated with autistic traits or pragmatic language measured at 

a later age. Given the highly skewed distribution of the SCDC scores, we used a negative 

binomial regression, using the MASS package in R. We used a Bonferroni-corrected 

epigenome-wide significant threshold of 1x10-7 to identify significant associations. All 

analyses were conducted in R version 3.2.  

 

In order to interpret results from the MWAS, we designed a multi-step enrichment 

strategy including (1) a same-sample, same-tissue overlap and correlation analyses between 

the SCDC and the CCC; (2) a cross-tissue overlap analysis between the SCDC MWAS and 

MWAS of autism in peripheral blood and post-mortem brain tissue; (3) enrichment for 

autism transcriptionally dysregulated genes; and (4) Enrichment of CpG-associated mQTLs 

in autism and SCDC GWAS. A summary of the study design is provided in Figure 1. 

 

Insert Figure 1 here 
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Peripheral tissue (blood and blood-spot) overlap analysis 

We had access to summary MWAS statistics from three peripheral tissue datasets 

described in detail elsewhere (SEED19, Simons Simplex Collection (SSC)19, and 

MINERvA14). For all overlap analyses, we conducted two statistical tests. In the first, we 

included all nominally significant CpGs (P < 0.01) in  three peripheral tissue MWAS datasets 

(SEED, Simons Simplex Collection (SSC), and MINERvA) and tested if these have a shift 

towards lower P-values in the SCDC MWAS dataset. This tests a larger number of CpGs and 

is consistent with the idea that each individual CpG contributes minimally to the phenotype 

suggesting a polymethylomic (or, polyepigenetic) architecture similar to a polygenic 

architecture of complex traits. In addition, this does not test effect direction as effect direction 

may vary based on number of factors including tissue source. In the second, we tested for 

effect direction concordance for CpGs with P < 1x10-4 in either of the two datasets being 

tested, thus, conducting 12 tests in total. We evaluated the significance of the concordance in 

effect direction using binomial sign test, and corrected for all 12 tests conducted. This 

restricts the analyses to a relatively small number of CpGs.  

 

Post-mortem brain tissue overlap analysis 

 We used two sources of post-mortem brain tissue to investigate overlap with the 

SCDC MWAS. MWAS in both these datasets were conducted using the Illumina 

HumanMethylation450 BeadChip making the MWAS comparable to the SCDC MWAS.  We 

used a recent MWAS conducted using tissue from 38 ‘idiopathic’ autistic individuals and 38 

non-psychiatric controls23. MWAS was conducted using a multi-level linear mixed model 

with autism status as the independent variable and methylation as the dependent variable, 

combining samples from the prefrontal cortex and the temporal cortex given the high 

correlation in methylation values between the two cortical regions. Covariates include age, 

sex, brain bank and neuronal cell proportions.  Further details are provided elsewhere23. To 

further investigate if there was enrichment for neuron-specific methylation signatures, we 

used MWAS data from  FACS-sorted neurons in brain samples from 15 autistic individuals 

and 16 typical controls20. For most individuals tissue was obtained from the BA10 (anterior 

prefrontal cortex). MWAS was conducted to identify differentially methylated CpGs using a 

linear model. Further details can be found elsewhere20. 

 

For both the datasets, our analysis was similar to the analysis of peripheral tissue 

MWAS. We investigated effect direction concordance between the two post-mortem brain 
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autism MWAS and the SCDC MWAS for all CpGs with P < 1x10-4 in the post-mortem brain 

MWAS. Additionally, we investigated if CpGs with P < 0.01 in either of the two post-

mortem brain MWAS had a significant shift towards lower P-values in the SCDC MWAS.  

 

 

Enrichment with autism-associated transcriptionally dysregulated genes  

For enrichment analyses with transcriptionally dysregulated gene expression data, we 

used an RNA-sequencing study of 167 post-mortem cortical samples with n = 85 with a 

diagnosis of autism and n = 82 from nonpsychiatric controls. Samples were from BA9 

(prefrontal cortex), or BA41/42 (temporal cortex)38. Significantly dysregulated genes had a  

Benjamini-Hochberg adjusted FDR < 0.05. We conducted enrichment analyses using a one-

sided Wilcoxon rank-sum test. We first mapped the CpGs to genes using the  CpG to gene 

annotation for the Illumina 450k methylation array using the 

IlluminaHumanMethylation450k.db package in R 

(http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethyla

tion450k.db.html). We restricted our analysis only to CpGs that were mapped onto the genes 

tested for differential expression in the post-mortem brain dataset38. We then compared the 

distribution of the SCDC P-values for CpGs mapped to significantly differentially 

dysregulated genes vs the other genes.  

 

Enrichment of CpG-associated mQTLs in autism and SCDC GWAS 

 We investigated if mQTLs of CpGs below 4 P-value thresholds in the SCDC MWAS 

(PSCDC) had lower P-values compared to other mQTLs in the GWAS (PGWAS) of (1) autism, 

(2) SCDC, and, (3) as a negative control, Alzheimer. We hypothesized that the mQTLs of 

CpGs below PSCDC will have significantly lower PGWAS in comparison with remaining 

mQTLS. To map CpGs to mQTLS we used mQTL maps generated by the ARIES cohort in 

cord blood, restricting our analysis to only significant mQTLS identified after FDR 

correction39. All mQTLs had a minor allele frequency > 1%. For each CpG-mQTL pair, we 

restricted our analysis to only those CpG-mQTL pairs investigated in both the SCDC MWAS 

and the GWAS of interest. In other words, the CpGs must have been investigated in the 

SCDC MWAS and the paired mQTL of the CpG must have been investigated in the GWAS 

of interest. As none of the CpGs meet the strict p-value threshold, we had to use several 

thresholds at different levels of stringency. To control the signal-to-noise ratio in the context 

of an MWAS, we have considered four empirical PSCDC thresholds: 0.05, 0.01, 0.005, and 
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0.001. Enrichment was conducted using permutation testing, where we defined the 10,000 

null sets. We identified 3 potential factors that may influence this analysis: (1) the Linkage 

Disequilibrium (LD) structure of mQTLs, (2) the number of mQTLs mapped onto a CpG, (3) 

the number of CpGs a single mQTL is mapped onto. To address LD, first, we clumped the 

list of mQTLs using an r2 of 0.6 and distance of 1000 kb, to ensure that linkage 

disequilibrium among these mQTLs does not confound the outcome. In this clumped list of 

mQTLs, the majority were mapped to only one mQTL. Second, to account for the number of 

mQTLs mapped onto CpGs, we binned the CpGs into 6 groups based on the number of SNPs 

they mapped onto (1 – 5, 6 – 10, 11 – 15, 15 – 20, 20 – 25 and above 25), and conducted 

enrichment analysis so that every mQTL in the null set matched the original mQTL based on 

CpG bins. Third, one single mQTL may map onto multiple CpGs, resulting in non-unique 

CpG-mQTL pairs with PSCDC < threshold, and PSCDC > threshold. We retained unique CpG-

mQTL pairs in each list before conducting permutation-based enrichment analysis. Finally, to 

account for multiple testing,  as we tested across four non-independent P-value thresholds, 

the empirical P-values were corrected for the 4 tests using Benjamini-Hochberg FDR 

correction. Empirical P-values were significant at FDR < 0.05.  

We validated the results identified in the Autism GWAS using a GWAS of log-

transformed SCDC scores in ALSPAC (details below). As a negative control, we used 

GWAS data for Alzheimer’s (Phase I), downloaded from IGAP (http://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php)40, and tested for enrichment using an 

identical procedure as mentioned above. The Alzheimer’s GWAS (Phase I, for which 

genome-wide summary data is available) consists of 17,008 cases and 37,154 controls, and 

identified 14 significant GWAS loci. Whilst both autism and Alzheimer’s are 

neuropsychiatric conditions, the genetic correlation between the two conditions is non-

significant (rg = 0.04±0.10; P = 0.102), suggesting minimal shared genetics. The number of 

cases and controls used in the two studies (Phase 1 for the Alzheimer’s GWAS) are 

comparable, providing approximately similar statistical power (Mean chi-square: 

Alzheimer’s = 1.114, Autism = 1.2).  Further, they are distinct in that autism is a 

neurodevelopmental condition diagnosable at childhood, while Alzheimer’s is largely 

diagnosed in individuals who are 65 or older. 

 

GWAS of SCDC scores 
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We conducted a log-transformed genome-wide association study of SCDC scores at 

age 8 in the ALSPAC data. Note that log-transformed phenotype models are computationally 

more efficient for high dimensional GWAS data than negative binomial models used in the 

MWAS.   Participants were genotyped using the Illumina® HumanHap550 quad chip by 

Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp 

(Laboratory Corportation of America) using support from 23andMe. We restricted our 

analysis only to individuals of European descent. This was identified using multidimensional 

scaling analysis and compared with Hapmap II (release 22)41. We excluded individuals with 

gender mismatches, high missingness (> 3%), and disproportionate heterozygosity, and if 

cryptic relatedness, identified using identity by descent, was greater than 0.1. We removed 

SNPs with greater than 5% missingness, those that violated Hardy-Weinberg equilibrium (P 

< 1x10-6), and those with a minor-allele frequency less than 1%. This resulted in a total of 

526,688 genotyped SNPs. Haplotypes were estimated using data from mothers and children 

using ShapeIT (v2.r644)42. Imputation was performed using Impute2 V2.2.2 against the 1000 

genomes reference panel (Phase 1, Version 3)43. Imputed SNPs were excluded from all 

further analyses if they had a minor allele frequency < 1% and info < 0.8. After quality 

control, there were 8,282,911 genotyped and imputed SNPs that were included in subsequent 

analyses. GWAS analysis was conducted for mother-reported SCDC scores at age 8 that was 

log-transformed given the highly skewed distribution. Linear regression was conducted in 

Plink v1.944 that converted allele dosages into hard calls. We included the first two ancestry 

principal components and sex as covariates in the regression model.  

As reported previously5,26,30, the SNP heritability as quantified using LDSC45,46 was h2 

= 0.12 ± 0.05. The LDSR intercept (0.99) suggested that there was no inflation in GWAS 

estimates due to population stratification. The λGC was 1.013. We replicated the previously 

identified genetic correlation (constrained intercept)5 with autism using our SCDC GWAS 

(PGC-autism: rg = 0.46 ±0.20, P = 0.019; iPSYCH-autism: rg = 0.45±0.18, P = 0.01).  

Data, software, and script availability:   

a. MWAS summary statistics:  

• The summary statistics for the MWAS (SCDC and CCC) can be downloaded 

from here: 

https://www.dropbox.com/sh/8za5xspmbjydpst/AAA_ZGmMLOE8Ql7egi5M

cu8Ha?dl=0 .  
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• Summary statistics for the SEED and the SSC MWAS can be obtained from 

here: https://molecularautism.biomedcentral.com/articles/10.1186/s13229-

018-0224-6 .  

• Summary statistics for the MINERvA cohort can be obtained by contacting 

Jonas Bybjerg-Grauholm.  

b. GWAS summary statistics:  

• The summary statistics for the autism GWAS (iPSYCH) can be downloaded 

from http://www.med.unc.edu/pgc/results-and-downloads (iPSYCH-PGC 

GWAS-2017).  

• The Alzheimer’s GWAS can be downloaded from http://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php.   

• The summary statistics for the SCDC GWAS can be obtained from 

https://www.dropbox.com/sh/8za5xspmbjydpst/AAA_ZGmMLOE8Ql7egi5M

cu8Ha?dl=0.  

c. Scripts for running the two regression models  for the MWAS and running the 

enrichment analyses with the mQTL data are available here: 

https://github.com/autism-research-centre/MWAS_autistictraits 

d. mQTL data used in this (coord blood) is a part of the ARIES cohort, and can be 

downloaded here: http://www.mqtldb.org/ 

e. We used the following softwares/packages: Plink (http://zzz.bwh.harvard.edu/plink/); 

IlluminaHumanMethylation450k.db 

(http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHuman

Methylation450k.db.html); MASS (https://cran.r-

project.org/web/packages/MASS/index.html); LDSC 

(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation).  

  

Results 

Methylome-wide association study of the SCDC scores 

To identify if there are any significantly associated CpG sites with SCDC, we 

conducted a methylome-wide association study. Methylome-wide association analysis did not 

identify any significant loci after Bonferroni correction (P<1x10-7). The top CpG site was 

cg14379490, on chromosome 9 (MWAS Beta = -1.78±0.35, P = 5.34x10-7). This CpG site is 
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an ‘Open Sea’ CpG site, whose closest gene is FAM120A, which encodes a scaffold protein 

that is expressed in a wide number of human tissues. We identified 19 CpG sites with 

suggestive P-values (P < 1x10-4) (Supplementary Table 1). The QQplot and the Manhattan 

plot are provided in Figure 2. We did not find any evidence for inflation in P-values (λ = 

0.88), possibly because of the relatively small sample size and the regression model used.   

  

Insert Figure 2 here 

  

To confirm that the signals were biologically meaningful, we additionally conducted a 

MWAS of the Children’s Communication Checklist (CCC) reversed scored to identify 

difficulties in communication (Methods). The most significant CpG was cg13711424 

(MWAS Beta = -3.73±0.71, P = 1.79x10-7). The Manhattan plot and QQ plot are included in 

Supplementary Figure 1. Of the 19 SCDC-associated CpGs of suggestive significance (P < 

1x10-4), the effect was concordant for 18 of them in the CCC MWAS (P = 7.62x10-5, 

binomial sign test). Similarly, of the 32 CpGs with P < 1x10-4 in the CCC MWAS, 28 had 

concordant effect direction in the SCDC MWAS (P = 1.93x10-5, binomial sign test). Scores 

on the CCC and the SCDC were phenotypically correlated (r = 0.39, 95% CI = 0.32 - 0.45, P 

< 2.2x10-16) in the participants who were included in the MWAS (n = 666), and both 

questionnaires measure difficulties in pragmatic communication. Given that we were testing 

correlated phenotypes in the same cohort using methylation signatures form the same tissues, 

we hypothesized that effect should be positively correlated for the two MWAS. The Z-scores 

for the MWAS for the two phenotypes were significantly correlated (r = 0.157, 95% CI = 

0.153 – 0.160, P < 2.2x10-16), which increased if we considered the CpGs with P < 0.01 in 

either one of the phenotypes (PSCDC < 0.01: r = 0.40, 95% CI = 0.36 - 0.43, P < 2.2x10-16, 

PCCC < 0.01: r = 0.40, 95%CI = 0.37 - 0.42, P < 2.2x10-16).  

 

Enrichment analyses with peripheral blood methylation signatures 

To investigate if there is an overlap between the SCDC MWAS with MWAS of 

autism conducted in peripheral tissues, we conducted effect direction concordance analysis 

with three autism datasets (MINERvA, SEED, and SSC, Methods). For all of them, we first 

investigated concordance of effect direction of all CpG sites with P < 1x10-4.  In contrast to 

the findings with the CCC, we did not identify a significant concordance in effect direction 

between the SCDC MWAS and any of the other three autism MWAS datasets. Indeed, none 
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of the three MWAS datasets had significant concordance in effect direction for the suggestive 

CpGs in each analysis (Table 1).  

Insert Table 1 here 

 

Given that there was limited evidence for concordance in effect direction between the 

datasets, we next tested if nominally significant CpGs (P < 0.01) in the three autism MWAS 

have a shift towards lower P-values in the SCDC MWAS using a one-sided Wilcoxon-rank 

sum test. This tests more CpGs than an effect direction concordance test does, and is agnostic 

to effect direction which may be discordant in different peripheral tissues measured at 

different developmental stages. After Bonferroni correction (alpha = 0.016), we did not 

identify a significant shift towards lower P-values for the nominally significant CpGs from 

any of the three datasets (SEED: P = 0.02; SSC: P = 0.48; MINERvA: P = 0.91), though we 

note a nominally significant shift in the SEED dataset.  

 

Enrichment analyses with autism postmortem methylation signatures 

Methylation signatures in postmortem brain tissues are more relevant to 

neurodevelopmental phenotypes than methylation signatures in peripheral tissue. Considering 

this, we investigated if there is an enrichment between the SCDC MWAS and MWAS of the 

postmortem autism brain. Using data from the latest post-mortem brain study23, we 

investigated concordance in effect direction between all CpG probes with P < 1x10-4 from the 

cross-cortex analysis in the SCDC MWAS. 171 out of 293 CpGs had a concordant effect 

direction in the two datasets (P = 0.004). At a more stringent P-value threshold of P < 1x10-5, 

88 of the 133 probes had concordant effect directions in the two datasets (P = 2.4x10-4, 

binomial sign test). In contrast, Wilcoxon rank-sum test of all CpGs with P < 0.01 in the 

postmortem MWAS did not identify a significant shift towards lower P-values (P = 0.99, 

one-tailed Wilcoxon rank-sum test). We next tested if we could validate the concordance in 

effect direction in a different dataset. A previous study has investigated differential 

methylation in post-mortem neurons from the frontal lobe (identified using FACS sorting) in 

autism20. First, testing effect direction concordance, 44 of the 87 CpGs with P < 1x10-4 had 

concordant effect direction in the two datasets (P = 1, binomial sign test). However, we 

identified a significant shift towards lower P-values (P = 9.3 x 10-3, one-tailed Wilcoxon 

rank-sum test) of all CpGs with P < 0.01 in the SCDC MWAS.  

  

Enrichment with autism dysregulated genes 
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A few studies have identified consistent sets of dysregulated genes in autism, and co-

expression modules enriched 28–31. Previous studies have identified a significant enrichment 

for differentially methylated CpGs and genes that are transcriptionally dysregulated in the 

post-mortem cortex in autism14. We investigated if CpGs mapped to transcriptionally 

dysregulated genes in the autism postmortem cortex38 and associated co-expression had a 

shift towards lower P-values in the SCDC MWAS when compared to the other genes. We 

identified a significant shift towards lower P-values for the transcriptionally dysregulated 

genes (One-sided Wilcoxon rank-sum test, P = 6.22x10-5), but did not identify a significant 

enrichment for any of the modules (M4: P = 0.58, M9: P = 0.59, M16: P = 0.042, M10: P = 

0.31, M20: P = 0.42, M19: P = 0.105).  

  

Genetic influences in SCDC methylation patterns 

 We next investigated if the methylation signatures associated with SCDC scores are 

enriched for GWAS signals for autism. DNA methylation is under cis and, to a smaller 

extent, trans genetic control. We identified mQTLS associated with SCDC CpG probes below 

4 P-value thresholds (PSCDC, Methods), and compared the distribution of P-value of the 

mQTLS in the autism GWAS against the P-value distributions of mQTLs above the PSCDC 

(Methods). After multiple testing correction, mQTLS of CpGs with PSCDC = 0.01, and 0.005 

has significantly lower P-values in the autism GWAS dataset (PSCDC 0.01: P_FDRcorrected = 

5x10-4, PSCDC 0.005, P_FDRcorrected = 4.75x10-3) (Table 2, Figure 2 ). We validated this 

enrichment in a GWAS of SCDC, which is genetically correlated with autism. We identified 

an enrichment at PSCDC 0.005 (P_FDRcorrected = 0.046) and at PSCDC 0.001 (P_FDRcorrected = 

0.046) . In contrast, we did not identify an enrichment mQTLs in the Alzheimer's GWAS 

(Table 2, Figure 3).  

  

 

Insert Table 2 and Figure 3 here  

 

 

Discussion 

 This study investigates the shared biology of autism and autistic traits by integrating 

genetic, methylation data, and post-mortem gene expression data. We first investigated the 
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validity of considering autistic traits for methylation studies. Considering autistic traits over a 

case-control design is useful in that: 1. It captures greater variance across the underlying 

liability spectrum; 2. It can be used to increase sample sizes by phenotyping individuals for 

whom methylation data is available; and 3. It can be used to link methylation signatures from 

tissues collected in early life to the phenotype, as this can be more difficult for autism.  

 

We conducted a prospective MWAS of autistic traits (SCDC) by measuring 

methylation signatures in the cord blood and linking it to autistic traits measured later in life. 

Whilst we did not identify a significant CpG association with autistic traits after multiple 

testing correction, we were able to confirm that this analysis produced biologically 

meaningful signal by identifying significant correlation with an MWAS of a similar 

childhood phenotype (pragmatic language phenotype) measured in the same cohort. Notably, 

the correlation in methylation values mirrored the phenotypic correlation, providing 

confidence in our results.  

 

Despite this, however, we did not identify a significant overlap between the MWAS 

of SCDC and MWAS of autism conducted using peripheral tissues14,19. We note several 

differences in the SCDC MWAS analysis and the three MWAS. Of primary importance is the 

statistical model used in the analysis. Whilst we were interested in investigating if 

methylation signatures from cord blood were associated with SCDC scores measured in later 

life, all three peripheral tissue MWAS investigated if autism diagnosis was associated with 

differential methylation. Thus, in our analysis, methylation was an independent and 

continuous variable, whereas in the three MWAS, it was a dependent and discrete variable. 

Second, there are remarkable differences in tissue source, age at which methylation was 

measured, and confounding variables included in the analyses (for instance we included 

genetic principle components as covariates). Interestingly, none of the three autism MWAS 

showed significant overlap with each other as investigated using a sign-concordance test of 

the most significant CpGs.  It is critical to investigate this observed lack of concordance  

 

In contrast to the results from the peripheral tissues, we observed some degree of 

overlap between MWAS conducted in post-mortem brain tissues20,23 and the SCDC MWAS. 

First, we found a significant sign concordance in CpGs identified in the largest cross-cortex 

MWAS of autism using postmortem tissue samples. However, we did not identify an 

enrichment using a Wilcoxon-rank sum test of P-values. In contrast, using a neuron-specific 
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MWAS generated using different post-mortem tissue, we identified a significant overlap 

using a Wilcoxon-rank sum test of P-values but not a sign-concordance in this dataset. 

Additionally, using an RNA sequencing dataset of autism and neurotypical postmortem 

brains38, we again identified a significant enrichment for transcriptionally dysregulated genes 

using a Wilcoxon-rank sum test. Overall, we are unable to strongly suggest that there is a 

significant overlap between the SCDC MWAS and the MWAS of autism in either post-

mortem or peripheral blood tissues. This is likely due to multiple factors as outlined earlier. 

In addition, measuring methylation in peripheral tissue, which is not central to a 

neurodevelopmental condition like autism, is likely to attenuate the signal to noise ratio. 

Indeed, the post-mortem brain MWAS study23 has identified significant CpGs with fewer 

samples compared with any of the three peripheral tissue MWAS14,19. Thus, due to both the 

increased statistical power and the use of the relevant tissue, the top CpGs in the post-mortem 

brain MWAS are more likely to be true positives than the top CpGs in the peripheral tissue 

MWAS.  

 

Given the highly polygenic nature of autism11, it is likely that GWAS loci that are not 

statistically significant in the current GWAS studies may still influence methylation. Thus, 

our second aim of this study was to investigate if GWAS signals for autism and autistic traits 

are enriched in the top CpG sites in the autism MWAS by using mQTL mapping. Our results 

demonstrate an enrichment for mQTLs for CpGs associated with SCDC scores in the GWAS 

for autism. Crucially, we were able to validate the results in a much smaller GWAS of SCDC 

scores, but failed to identify an enrichment in a GWAS of Alzheimer’s40, which is of 

comparable statistical power to the GWAS of autism. This enrichment is observed at more 

stringent P-value thresholds providing confidence in our results. We did not test this in other 

peripheral tissue MWAS for which we had access to summary statistics given the marked 

lack of overlap between these and the SCDC MWAS. 

 

Our study does not, however, investigate causality. While methods such as Mendelian 

randomization can investigate causality14,47, this is typically restricted to a few number of loci 

based on current results of GWAS studies. In addition, we are restricted from using 

mendelian randomization due to the low statistical power of both the MWAS and the GWAS 

sets, resulting in the identification of a limited number of statistically significant loci. Two 

mechanisms may explain the overlap observed in the current dataset. The first is causal in 

nature, wherein, genetic loci are likely to influence autism or autistic traits by influencing 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/493601doi: bioRxiv preprint 

https://doi.org/10.1101/493601
http://creativecommons.org/licenses/by/4.0/


18 

 

methylation levels of CpG sites. This can influence gene expression levels. The second is 

horizontal pleiotropy, where genetic loci are associated with autism or autistic traits, and 

separately, also influence methylation levels of CpG sites. This study cannot tease these two 

mechanisms apart.  

 

Three caveats must be borne in mind whilst interpreting the results of this analysis. 

First, the current array-based method interrogates only a small proportion of all the CpG sites 

in the genome . Thus, significant loci associated with autistic traits may lie outside of the 

regions interrogated. Second, due to the nature of the assay, the methylation values may also 

capture hydroxymethylation. We cannot exclude the possibility of signal attenuation due to 

assaying both hydroxymethylation and methylation in the current study, and the correlation 

between hydroxymethylation between blood and brain is low48. Third, whilst there is a 

modest but significant genetic and phenotypic correlation between autism and the SCDC, the 

SCDC only measures social aspects of autism and is not correlated with the non-social 

aspects of autism.  

 

 Our study demonstrates a degree of overlap between autism and autistic traits, but we 

are limited in making further conclusions. Two factors – sample size and heterogeneity 

between the various samples limit our understanding of methylation in autism. We identify an 

enrichment for autism and autistic traits GWAS signals in the top CpG loci for autistic trait, 

but these must be replicated in independent MWAS of autistic traits in cord blood.  
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Table 1: Sign concordance of the SCDC MWAS and the three peripheral tissue MWAS 

at top loci (P < 1x10-4)  

  Testing dataset  
  ALSPAC MINERVA SEED SSC Number 

of  CpGs 
in the 
discovery 
dataset 

Discovery 
dataset 

ALSPAC NA 10 11 4 17 

MINERVA 14 NA 17 19 29 
SEED 19 21 NA 18 37 
SSC 19 21 23 NA 47 

 
The table above provides a test of effect direction concordance. CpGs with P < 1x10-4 in the 
discovery dataset were tested for concordance in effect direction in the testing dataset. The 
numbers in the cells (in bold) the provides the total number of CpGs with conocordant effect 
direction in the testing dataset. The Number of CpGs in the discovery dataset provides the 
total number of CpGs in the discovery dataset with P < 1x10-4. None of the results were 
significant (binomial sign test) after correcting for the multiple tests conducted.  
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Table 2: Results of the enrichment analysis of the top CpGs 

CpG P-value  

threshold 

GWAS P Mean difference FDR P 

0.05: Autism 0.54 0.004 0.54 

0.01: Autism 1.0x10-4 0.039 5x10-4 

0.005 Autism 1.9x10-3 0.031 

  

4.75x10-3 

0.001: Autism 0.040 0.037 0.063 

0.05: SCDC 0.735 0.007 

  

0.073 

0.01: SCDC 0.301 0.015 0.40 

0.005 SCDC 0.022 0.038 

  

0.046 

0.001: SCDC 0.023 0.065 
 

  

0.046 

0.05: Alzheimer’s 0.343 0.008 

  

 0.853 

0.01: Alzheimer’s 0.710 0.003 

  

 0.853 

0.005 Alzheimer’s 0.853 

  

-0.003 

  

 0.853 

0.001: Alzheimer’s 0.793 -0.009 

  

 0.853 

  

The table provides the results of the enrichment analyses for the top loci. Mean difference is 
the difference in average GWAS P-values for the mQTLS mapped to CpGs below the 
threshold in the MWAS from the  average GWAS P-values for the mQTLs mapped to CPGs in 
the MWAS. A positive difference suggests and enrichment. 
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Figure 1: Schematic diagram of the study design 
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Figure 2: Manhattan plot and QQ plot for the SCDC MWAS 

A: Manhattan plot of the SCDC MWAS. B: QQ plot of the SCDC MWAS 
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Figure 3: Permutation histogram of SNP-enrichment in top CpGs for three GWAS

 

The following graphs present the results of the permutation analysis of the SNP enrichment. A: Results of the autism GWAS. B: Results
SCDC GWAS. C: Results of the Alzheimer’s GWAS. P-value threshold of the CpGs for enrichment are provided at the bottom of each c
axis of each plot represents the frequency. X-axis represents the differences in the mean P-value of the mQTLs of CpGs below the thres
the mean P-value of the mQTLs of the CpGs above the threshold. Higher difference in the means indicates greater enrichment. Purple
indicates the difference in mean of the non-permuted data point i.e. the actual difference in mean.  
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