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Abstract 
 Clustered protocadherins are a large family of paralogous proteins that play important roles in 
neuronal development. The more than 50 clustered protocadherin isoforms have remarkable 
homophilic specificity for interactions between cellular surfaces that is controlled by a large 
antiparallel dimer interface formed by the first four extracellular cadherin (EC) domains. To 
understand how specificity is achieved between the numerous paralogs, we used a combination of 
structural and computational approaches. Molecular dynamics simulations revealed that individual 
EC interactions are weak and go through binding and unbinding events, but together they form a 
stable complex through polyvalency. Using sequence coevolution, we generated a statistical model 
of interaction energy for the clustered protocadherin family that measures the contributions of all 
amino acid pairs in the interface. Our interaction energy model assesses specificity for all possible 
pairs of isoforms, recapitulating known pairings and predicting the effects of experimental changes 
in isoform specificity that are consistent with literature results. Our results show that sequence 
coevolution can be used to understand specificity determinants in a protein family and prioritize 
interface amino acid substitutions to reprogram specific protein-protein interactions. 
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Introduction 
 Clustered protocadherins (Pcdhs) are a large protein family (53 isoforms in humans) that play 
roles in vertebrate nervous system development, including neuronal survival, axon targeting, 
neuronal arborization, and dendritic self-avoidance (1–9). Dendritic self-avoidance is mediated by 
formation of a clustered Pcdh assembly between two dendrites (10). This assembly relies on 
individual recognition units formed in trans across two cellular membranes that consist of 
homodimers of the first four extracellular cadherin-repeat (EC) domains in an antiparallel 
arrangement (Figure 1A). These homodimers are highly specific such that no cross interactions 
are observed in even the most similar isoforms (11–13). The trans EC1-4 interaction is also found 
in other non-clustered Pcdhs (14–16), which have roles in nervous system development and 
maintenance (17), indicating the importance of this recognition unit in cognitive function. Given 
that there are many isoforms per vertebrate genome, we sought to understand how specificity is 
achieved in this large interface.   
 Structures of these recognition units (14, 18–20) have revealed idiosyncratic characteristics of 
individual dimer structures, such as the lack of the EC1/EC4 interaction in the structure of 
PcdhγA1 and PcdhγA8 (20) and the small interface of the EC2/EC3 interaction in PcdhγB3 (14). 
More subtle structural differences can be observed broadly between the three clustered Pcdh 
subfamilies, α, β, and γ (14, 19, 20). Based on the variety of interfaces found in the existing crystal 
structures (14, 18–20), it is possible that every isoform achieves specificity by adopting a different 
static interface conformation, or that isoforms sample a distribution of conformations, with 
different combinations of interface residues determining preference for self-interaction. 
Understanding Pcdh interaction specificity will require disentangling these scenarios by 
considering both interface conformations and residue-residue interaction preferences. 
 Prior computational work has sought to understand the evolution of specificity of the Pcdh 
trans interaction, finding positive selection on the trans interface (21), and suggesting that the 
EC2/EC3 interface plays a greater role in specificity between closely related protocadherins (10, 
14). However, this computational work did not analyze residue dependencies at the interface, or 
provide a statistical framework to predict specificities for new mutations or combinations of 
protocadherins. Recent computational methods based on residue coevolution have proven useful 
for understanding the structure and function of protein complexes (22, 23). These methods use 
undirected graphical models of protein sequences to find statistical dependencies between pairs of 
residues (22, 23), and have succeeded in predicting correct protein-protein interaction pairings for 
protein families such as bacterial two-component systems (24, 25) and predicting the effect of 
mutations on protein function (26). Therefore, these generative models of residue dependencies 
may allow for the prediction of specificities in the Pcdh family. 
 We use molecular dynamics and new crystal structures to show that isoforms adopt a range of 
conformations and identify interacting residue pairs. We build a statistical model using 
evolutionary couplings (22, 23) to analyze specificity of all possible trans isoform interactions and 
infer which domains are important for interaction and specificity. This work provides insight into 
the molecular origins of specificity within the clustered Pcdh family, and demonstrates that models 
based on sequence coevolution can be used to guide reprogramming of protein-protein interaction 
specificity. 
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Results 
 
Molecular dynamics simulations and crystal structures show that Pcdh trans interfaces 
sample a distribution of conformations 
 The trans interface of clustered Pcdhs is specific for self-interaction (11, 12). Crystal structures 
of many Pcdh isoforms dimers (14, 18–20) revealed idiosyncratic features of individual isoforms, 
raising the possibility that different isoforms adopt different conformations in vivo, resulting in 
molecular specificity. For example, PcdhγA1 (in one of two dimers) and PcdhγA8 (20) lack 
EC1/EC4 contacts, and PcdhγB3 EC2-3 has a surprisingly small interface (14). We thus used MD 
simulations to test whether the distinctive features of individual isoforms were the result of static 
conformational differences, or the result of a dynamic interface crystallized in different 
conformations.  

We performed all-atom equilibrium simulations of four different EC1-4 homodimers from the 
different Pcdh subfamilies to distinguish the above hypotheses. We simulated clustered Pcdh 
isoforms PcdhγB3, PcdhγB7, Pcdhβ6, and Pcdhα7 (Table S1). Overall, the complexes did not 
dissociate over the course of simulation (Figure S1A, Figure 1A). Between 5 and 54 ns, the 
average BSA was 4600 ± 300 Å2 for PcdhγB3, 5100 ± 200 Å2 for PcdhγB7, 4300 ± 200 Å2 for 
Pcdhβ6, and 3400 ± 300 Å2 for Pcdhα7. Between individual EC domain dimers, which average 
700-1300 Å2 in BSA, fluctuations in BSA can be more than 400 Å2 over the course of a few 
nanoseconds (Figure 1B) (Table S2). For example, one EC1/EC4 dimer of Pcdhα7 fluctuates in 
BSA from 1000 Å2 at the start of the simulation to ~200 Å2 at 6 ns then to 1200 Å2 around 35 ns 
(Figure S1).  

The published structure of PcdhγB3 has a particularly small BSA at the interface (12). The 
fluctuation in EC2/EC3 BSA during simulation indicates that perhaps the EC2/EC3 interface was 
occluded by HEPES during crystallization (14, 20). We determined new structures of PcdhγB3 
EC1-4 both in Tris buffer and in a lower concentration of HEPES (50 mM vs. 100 mM) (Table 
S3). These two structures are nearly identical to the original (overall RMSD (over 3210 atoms): 
0.890 and 0.785 Å, respectively) (Figure 2A). The corresponding electron density maps show less 
or no density in the location of the HEPES molecule in the original structure (Figure 2B). Thus, 
HEPES was not the cause of the low BSA of the EC2/EC3 interface, but rather, this structure 
represents an accessible conformation of this Pcdh dimer. 

The increase in the EC2/EC3 interface BSA in the PcdhγB3 EC1-4 simulation is predominantly 
due to a conformational change of the β4-β5 loop of EC2, which moves closer to EC3 of the other 
protomer in the first 6 ns of the simulation (Figure 3A).  The conformational change leads to the 
formation of hydrogen bonds between Y161 and K302, and N155 and T286, and a van der Waals 
interaction between L156 and M216 (Figure 3B). The corresponding inter-residue distances vary 
in a coordinated fashion as the loop changes conformation between the disengaged state seen in 
the crystal structure and an engaged state where the loop interacts directly with EC3 (Figure 3C). 
The structural heterogeneity of the β4-β5 loop of EC2 is echoed in the diverse conformations of 
this loop in other clustered Pcdh structures (Figure S2). 

The fluctuations seen in MD suggest that if these individual EC interactions were found in 
isolation they would be low affinity, consistent with the observation that constructs of EC1-3 do 
not dimerize in solution (13, 18). These fluctuations in BSA agree with other simulations that find 
sharp decreases in BSA as prerequisites to protein complex dissociation (27). Together, these 
observations indicate that the four individual EC domain dimers provide weak affinity to the 
complex and that the polyvalency of the interactions increases the avidity. Polyvalent interactions 
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are known to increase both the strength and specificity of molecular recognition (28). Overall, our 
simulations indicate that each isoform can sample a range of interface conformations, and that the 
available crystal structures represent only a snapshot of these conformational possibilities. 
 
Highly coevolving residue pairs are frequently in contact in simulations 
 Computational methods based on residue coevolution predicted the EC1/EC4 interaction and 
established that the trans dimer architecture would be found in non-clustered Pcdhs, both findings 
later confirmed experimentally (14, 15, 18, 29). Sequence coevolution methods for protein-protein 
interface determination are typically benchmarked by comparing highly coevolving residue pairs 
that are not due to intramolecular structural features to their inter-residue distances in 
experimentally-determined structures (30, 31). However, coevolving residues can correspond to 
positions only in contact in certain conformations (32, 33), opening up the possibility that 
intermolecular coevolving residue pairs may also only be present in some conformation. Given the 
dynamic nature of the Pcdh interface and the above observation that crystal structures represent 
only a snapshot of possible conformations, we analyzed how often highly coevolving interface 
residues in the Pcdhs (14, 18) are in contact across simulations and over time. 

In our sequence coevolution analysis, the set of top 200 coevolving pairs includes mostly 
intramolecular contacts and 15 intermolecular pairs (Figure S3). We calculated the residue-residue 
distance of these 15 coevolving intermolecular pairs over the course of the MD simulations 
(Figure 4). Of note, each simulation provides two (semi-)independent observations for each 
residue pair due to the two-fold symmetric nature of the dimer. In general, residue pairs with higher 
coevolution scores are more frequently in contact in more of the simulations, consistent with the 
observation that lower-scoring residue pairs are less predictive of physically interacting residues 
(30, 31). 

A closer examination of the top 15 intermolecular pairs reveals diverse trajectories during 
simulations. For the most highly coevolving pairs, the residues are in close contact for most of the 
time in most of the simulations. For example, the 84-338 and 123-300 pairs (based on PcdhγΒ3 
numbering in Figure S4) remain at ~4 Å throughout all but one simulation (Figure S5). For some 
of the lower-scoring residue pairs, the residues are in close proximity in some of the simulations 
but further in others, e.g. the 159-302 pair has residue-residue distances that fluctuate between 6 
and 18 Å in most simulations but stay consistently close in the Pcdhα7 interface. Other lower 
scoring pairs fluctuate widely in all simulations and rarely if ever come into contact, such as the 
39-338 pair.  

Residue coevolution analysis thus captures residues that are frequently in contact in different 
protocadherin isoforms and during sampling of different conformations. Strongly coevolving 
residue pairs are more likely to interact consistently over time but different homologous structures 
do not exhibit all of these interactions. Consequently, some coevolving pairs could be missed from 
analyzing isolated crystal structures of single isoforms. These results indicate that sequence 
covariation identifies residues that are important to the Pcdhs trans dimer interface, and that these 
residues can be used to predict residue pair contributions to interaction specificity. 

 
Statistical energy of interaction describes Pcdh specificity distributions 
 We used evolutionary couplings to build a model of clustered Pcdh interaction specificity (see 
Supplementary Information). Evolutionary couplings are calculated using an undirected graphical 
model, which has parameters for single-site biases and pairwise residue preferences for all sites 
(22, 23). These parameters have been used successfully to infer the effects of mutations and predict 
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correct pairings for other paralogous interacting proteins (24–26). Here, we assess the propensity 
for any two Pcdhs to interact by summing the pairwise residue preferences for all interface residue 
pairs, producing a score which we call the statistical energy of interaction (SEi, see Methods and 
Figure 5A). A higher SEi indicates a higher propensity for interaction. 
 We observe that for the α, β, and γ Pcdh subfamilies in mouse, the SEi of a sequence with itself 
(a self pairing) is higher than the SEi of a sequence with a different isoform (a non-self pairing; 
Figure 5B). This is generally consistent with previous cell aggregation experiments in which 
clustered Pcdhs only form homodimers (11, 12). While these studies observed no non-self 
interaction in their experimental systems, our model finds that in some cases the SEi for non-self 
pairs is as high as for a self pairing, e.g. between the β4 and β6 isoforms. This could be due to 
particulars of the cell aggregation assay, or suggest that some in vivo determinants of specificity 
are not fully captured by our model.  
 The SEi computed using evolutionary couplings confirms our earlier finding (14) that 
EC2/EC3 interface tends to contribute more to specificity than the EC1/EC4 interface. The non-
self Pcdh pairs of the mouse α, γB, γA families have a lower SEi in the EC2/EC3 interface than 
they do in the EC1/EC4 interface, indicating that the EC2/EC3 interface contributes more to 
specificity of isoforms (Figure 5C, Figure S6). The α subfamily has nearly identical SEi between 
EC1/EC4 self and non-self interfaces. The difference in SEi between EC2/EC3 and EC1/EC4 non-
self pairs may be due to a greater number of mutations between self and non-self EC2/EC3 pairs 
compared to EC1/EC4 pairs, which negatively correlates with the SEi (Figure S7). 
 Our model parameters are inferred only from natural sequences, and therefore self-pairings, 
which may bias the model against non-self pairings. In order to avoid this possible bias, we set up 
an iterative pairing algorithm which allows the isoforms to find favorable non-self pairings, if such 
pairings exist (23, 24). First, isoforms are paired randomly within the same species to create an 
initial sequence alignment that eliminates the self-pairing bias. Then, each iteration of the 
algorithm entails inferring the parameters of the evolutionary couplings model from the current 
alignment, and then updating the isoform pairing in the alignment according to which pairs have 
the highest SEi (see Supplemental Information, Figure S8). The algorithm reproduces self pairings 
for 74% of all sequences in the alignment, averaged across five replicates, after iteration to 
convergence. This is on par with accuracy of partner detection with other proteins pairs performed 
by related algorithms (23,34), and supports use of our model trained on natural sequences. 
 We then used the iterative pairing algorithm to test our observation that the EC2/EC3 interface 
is the main determinant of specificity. When sequences were paired based on the SEi from only 
their EC1/EC4 or EC2/EC3 interfaces, we find 49% and 59% accuracy on all sequences in the 
alignment, respectively (Figure S8). This confirms that the EC2/EC3 interface has more 
discriminatory power between isoforms, but that both interfaces act in combination to achieve full 
specificity of the interface. 
 Our statistical energy of interaction model allows us to compute a statistical energy of 
interaction score for all pairs of clustered protocadherins which generally agrees with experimental 
findings about specificity of protocadherin isoforms. Importantly, it also allowed us to dissect 
contributions of various interface components at an overall and subfamily level. We observed 
lower mean SEi at the EC2/EC3 non-self interface than at the EC1/EC4 non-self interface and 
better pairing of EC2/EC3 interactions than EC1/EC4 interactions in our matching algorithm, 
indicating that the EC2/EC3 interface tends to be more involved in specificity.  

 
Statistical model explains changes in Pcdh specificity in chimera mutants   
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 The statistical energy of interaction model allows us to predict how particular mutations may 
alter interaction specificity by recalculating SEi using Jij terms from the mutant sequence. Previous 
work has tested chimeric constructs in cell aggregation assays to understand how specificity is 
encoded in the clustered Pcdh family (13). In these experiments, chimeric constructs were tested 
for interaction with one of the parent isoform (which we will call the ‘target’ isoform). The original 
chimeras did not interact with the parent but were mutated such that they could form an interaction 
with the target isoform. To determine how these mutations affect the specificity we calculated the 
SEi between the chimera and target isoforms, and the mutant chimera and target isoforms (Figure 
6A). If the change in SEi from the chimera to the mutant chimera (ΔSEi) is positive, it means the 
mutant chimera is more likely to interact with the target isoform than the original chimera. If ΔSEi 
is negative, the mutant chimera would be less likely to interact with the target isoform than the 
original chimera. In Rubinstein et al. (2015), three pairs of closely related isoforms (>85% identity) 
were chosen: Pcdhα7/Pcdhα8, PcdhγA8/PcdhγA9 and Pcdhβ6/ Pcdhβ8 (13). Out of the seven 
mutant chimeras that were able to interact with the target isoform, we correctly predicted five out 
of seven, observing that the introduced mutations result in an increase in SEi (Figure 6B). Of the 
two we did not predict, one is a single site mutation in EC1 in a Pcdhβ6/Pcdhβ8 chimera that had 
almost no change in calculated SEi. The other exception was a set of mutations in the EC3 β6-β7 
loop converting the PcdhγA8 to the PcdhγA9 sequence, which we predicted to decrease SEi. This 
region has many insertions and deletions, creating gaps in the multiple sequence alignment. These 
gaps are treated as missing data by our statistical energy model and therefore reduce the quality of 
the predictions. Overall our statistical energy model of interaction specificity, when enough high-
quality sequence information is available, is very consistent with available experimental data. 
 
Discussion 
 The highly specific antiparallel Pcdh interface that forms between neurons is required for many 
roles in neuronal development. The results presented here address the determinants of specificity 
in this interaction by simulating the dynamics of the Pcdh interface and modeling the contributions 
of each residue pair to interaction specificity. 

Our MD simulations of clustered Pcdh dimers reveal that individual EC interactions sample a 
range of conformations in every isoform. These simulations, combined with crystal structures, 
show that the surprisingly small EC2/EC3 interface of our previous structure of a PcdhγB3 EC1-
4 homodimer was not due to the presence of HEPES as previous suggested (20), but rather the 
conformation seen in the crystal structure is part of the normal dynamics of the conformational 
landscape. The variations in BSA for individual EC interactions suggest that the individual 
interactions are weak, and the overall stability of a Pcdh dimer is established by the polyvalent 
nature of these individual EC interactions. This type of cooperative binding is widespread in 
biology and plays roles in multi-subunit protein machine assembly, signaling at the membrane, 
and signaling between cells (28, 34, 35). 

The MD simulations allowed us to observe how evolutionarily coupled residue pairs across a 
protein interface vary over time. Overall, we found that higher scoring pairs are closer together 
throughout the simulations and across multiple homologs, concurring with previous empirical 
results that coupled pairs are more likely to be close in 3D (30, 31), and that evolutionary couplings 
can correspond to multiple incompatible conformations (32, 33). Residue-residue distances for 
these evolutionarily coupled pairs can vary greatly over time, indicating that static structures in 
single conformations may miss direct interactions of coupled pairs. This knowledge could inform 
further developments for benchmarking structure prediction using coevolution data. 
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 We constructed a model of interaction specificity from sequence data, using residue pairs 
found to interact in our simulations. We used this model to evaluate pairs of individual EC 
interfaces and found that the statistical energy of interaction (ΔSEi) supports literature results that 
the Pcdh interface is specific for self-interaction. We find that non-self pairings of the EC2/EC3 
interface have lower SEi than non-self EC1/EC4 pairings for the α, γΑ and γB subfamilies, 
indicating that the EC2/EC3 interface has a greater contribution to specificity. There are some 
differences between subfamilies as noted previously (14, 20), with the β and γA subfamilies having 
nearly equal contributions to specificity from both interfaces. Our iterative pairing algorithm 
corroborates this result, finding that the EC2/EC3 interface is more discriminatory than the 
EC1/EC4 interface. 
 We validated our model by predicting the effects of mutations in chimeric constructs that 
changed specificity. These results establish that sequence coevolution analysis can be used to 
prioritize specific sites/pairs in order to reprogram protein-protein interactions. 
 The work presented here suggests a strategy used by clustered Pcdhs to ensure specificity and 
yet allow new specificities to easily arise through evolution. Small changes in individual EC 
affinity caused by a small number of mutations can alter the affinity of the whole dimer through 
the cooperativity of the individual EC interactions. This strategy may explain the pervasiveness of 
this interface for cell-cell adhesion in nervous system development. 
 
Methods 
 Detailed procedures for all methods described here are provided in the SI Appendix. 
 
Construction of a statistical interaction energy model of clustered Pcdh specificity 
 We used evolutionary couplings to build a model of clustered Pcdh interactions. Previous 
studies used the statistical energy of an evolutionary couplings model to identify interacting 
histidine kinase-response regulator pairs (24, 25) and to predict the effects of mutations on protein 
function (26). For our model, only the interface residue pairs determined by our molecular 
dynamics approach were used. The interaction energy between two sequences (σA, σB) is the sum 
of the individual coupling terms (Jij) between the interface residues of the two sequences: 

𝐸(𝜎$, 𝜎&) = 	 * 𝐽,-(𝜎,$
interface (i,j)

contacts

, 𝜎-&) 

 The Jij term is the matrix of pairwise residue preferences for all possible amino acids in 
positions i and j (26). The change in E(σ) is used to predict whether the interaction will become 
more or less favorable. See SI Datasets for the interface residues, the residue pairs, and an 
alignments of mouse isoforms. Model parameters are available on request. 
 To determine the single mutations most likely to reprogram clustered Pcdh A to interact with 
clustered Pcdh B, we first calculated the statistical interaction energy of A with A and of A with 
B. We then computationally swap in each residue, one at a time, from B into A, and assess 
interaction energy of this new A* chimera with sequence A and with sequence B. We compute a 
change in energy (ΔE) between this mutant sequence and the wild type interaction energies. We 
excluded the C-type isoforms from this analysis because they are evolutionarily distinct and have 
unique biological functions (36–38).  
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Figure captions 
 
 
 

 
 
Figure 1. Buried surface area of clustered Pcdh EC interactions fluctuates 
(A) The clustered Pcdh dimer is an antiparallel complex of EC1-4 where EC1 of one protomer 
interacts with EC4 of the other protomer (orange and yellow) and, similarly, EC2 interacts with 
EC3 (blue and green). Each simulation thus provides two examples of each type of interaction. (B) 
The BSA of the EC1:EC4 and EC2:EC3 interactions varies throughout the simulations for each of 
the four simulated isoforms (PcdhγB3 EC1-4, PcdhγB7 EC1-4, Pcdhβ6 EC1-4, and Pcdhα7 EC1-
5). Instances where BSA changes rapidly (>400 Å2 in under 5 ns) are indicated with an asterisk in 
the corresponding color. 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493106doi: bioRxiv preprint 

https://doi.org/10.1101/493106
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 2. HEPES does not influence the structure PcdhγB3 EC1-4 
(A) Crystal structures of PcdhγB3 EC1-4 in the presence of 100 mM HEPES (blue; PDB ID: 5k8r), 
50 mM HEPES (pink; PDB ID: 6mer), and no HEPES (green; PDB ID: 6meq) adopt the same 
conformation. The HEPES molecule in the original structure (PDB ID: 5k8r) is shown in black 
and red. (B) Composite omit maps (which reduce model bias in electron density) of these three 
structures show density for HEPES in the original structure, but less or no density in the lower and 
no HEPES conditions.  
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Figure 3. PcdhγB3 EC1-4 EC2:EC3 rearranges to interact extensively in molecular dynamics 
simulations 
(A) BSA values plotted for the first 6 ns show that the overall BSA of the dimer increases from 
~3000 Å2 to 4500 Å2 in the first 3 ns of the simulation (black). This increase in BSA is due to 
independent increases at the EC2:EC3 interfaces (blue and green), while the EC1:EC4 interfaces 
maintain the same BSA (yellow and red). (B) In particular, the EC2 β4-β5 loop, containing N155, 
L156 and Y161, changes conformation from 0 (left) to 40 ns (right) to interact with T286, M216 
and K302, respectively, in EC3 of the other protomer. (C) Throughout the simulation, these residue 
pairs (N155:T286, blue; L156:M216, green; Y161:K302, magenta) fluctuate between an engaged 
conformation with residue-residue distances (calculated as the two closest non-hydrogen atoms) 
at 3-4 Å, and a disengaged state with much larger residue-residue distances. The two plots 
represent the two instances of EC2:EC3 interactions in the homodimer. 
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Figure 4. Evolutionary coupling scores of intermolecular pairs correlate with residue-residue 
interactions in simulations 
(A) Box plots of the residue-residue distances of top 15 intermolecular pairs for all four 
simulations. Boxes are shaded based on the mean residue-residue distance (scale on right). (B) 
Violin plots of residue-residue distances of the top 15 intermolecular pairs (listed by rank order 
and pair positions) for the PcdhγB3 EC1-4 (dark blue), PcdhγB7 EC1-4 (orange), Pcdhβ6 EC1-4 
(magenta), and Pcdhα7 EC1-5 (teal) simulations. Distances were sampled at 1 ns and both 
intermolecular pairs were included in each distribution (e.g. 84-338’ and 84’-338).  
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Figure 5. Statistical energy of interaction supports experimental evidence for self-interaction 
and divergent roles of EC2/EC3 and EC1/EC4 interfaces 
(A) Statistical energy of interaction (SEi) for every possible pairing of Pcdhs was calculated by 
summing the energy contribution of each interacting residue pair at the interface. Based on prior 
work (24, 25) we expect to observe high statistical energy for self-pairings, which interact in vivo 
(11, 12) and low statistical energy for non-self pairings. (B) Statistical energy for all possible 
combinations of isoforms. (C) Mean statistical energy of every self and non-self pairing for the 
EC2/EC3 and EC1/EC4 interface, measured within all subfamilies of clustered Pcdhs in mouse.  
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Figure 6. Statistical energy of interaction is corroborated by changes in specificity in chimera 
mutants 
(A) Schematic of calculation of statistical energy difference between chimera sequences and 
mutant chimera sequences. (B) Chimeras from (13) and our computed statistical energy for each 
pairing. Mutated residues are numbered according to Figure 5 of (13). The γA8/γA9 297-302 pair 
was not predicted well due to gaps in the alignment in this residue range. 
 

A
chimera

mutant chimera

target
SEi(target, chimera)

   SEi(target, mutant chimera)
target

B

α7 α8

γA8 γA9

γA8 γA9

β6 β8

β6 β8

36-42

114

298-302

114

297-302

38-43

116-124

α7 α8

α7 α8

1 2
mutated

residue(s)

* high gap 
position

ΔSEi = SEi(target, mutant chimera) - SEi(target, chimera)
ΔSEi -0.4

-0.2

0.0

0.2
0.4isoform

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493106doi: bioRxiv preprint 

https://doi.org/10.1101/493106
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 
1.  Emond MR, Jontes JD (2008) Inhibition of protocadherin-α function results in neuronal 

death in the developing zebrafish. Dev Biol 321(1):175–187. 
2.  Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012) γ-Protocadherins Control Cortical 

Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling 
Pathway. Neuron 74(2):269–276. 

3.  Kostadinov D, Sanes JR (2015) Protocadherin-dependent dendritic self-avoidance 
regulates neural connectivity and circuit function. Elife 4(July):e08964. 

4.  Ledderose J, Dieter S, Schwarz MK (2013) Maturation of postnatally generated olfactory 
bulb granule cells depends on functional γ-protocadherin expression. Sci Rep 3(1):1514. 

5.  Lefebvre JL, Kostadinov D, Chen W V, Maniatis T, Sanes JR (2012) Protocadherins 
mediate dendritic self-avoidance in the mammalian nervous system. Nature 
488(7412):517–21. 

6.  Suo L, Lu H, Ying G, Capecchi MR, Wu Q (2012) Protocadherin clusters and cell 
adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 
4(6):362–376. 

7.  Wang X, et al. (2002) Gamma Protocadherins Are Required for Survival of Spinal 
Interneurons. Neuron 36(5):843–854. 

8.  Weiner JA, Wang X, Tapia JC, Sanes JR (2005) Gamma protocadherins are required for 
synaptic development in the spinal cord. Proc Natl Acad Sci U S A 102(1):8–14. 

9.  Molumby MJ, Keeler AB, Weiner JA (2016) Homophilic Protocadherin Cell-Cell 
Interactions Promote Dendrite Complexity. Cell Rep 15(5):1037–1050. 

10.  Mountoufaris G, Canzio D, Nwakeze CL, Chen W V, Maniatis T (2018) Writing , 
Reading , and Translating the Clustered Protocadherin Cell Surface Recognition Code for 
Neural Circuit Assembly. Annu Rev Cell Dev Biol 34:471–493. 

11.  Schreiner D, Weiner JA (2010) Combinatorial homophilic interaction between γ-
protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc 
Natl Acad Sci U S A 107(33):14893–8. 

12.  Thu CA, et al. (2014) Single-Cell Identity Generated by Combinatorial Homophilic 
Interactions between α, β, and γ Protocadherins. Cell 158(5):1045–1059. 

13.  Rubinstein R, et al. (2015) Molecular Logic of Neuronal Self-Recognition through 
Protocadherin Domain Interactions. Cell 163(3):629–642. 

14.  Nicoludis JM, et al. (2016) Antiparallel protocadherin homodimers use distinct affinity-
and specificity-mediating regions in cadherin repeats 1-4. Elife 5:e18449. 

15.  Cooper SR, Jontes JD, Sotomayor M (2016) Structural determinants of adhesion by 
protocadherin-19 and implications for its role in epilepsy. Elife 5:1–22. 

16.  Peng X, et al. (2018) Affinity capture of polyribosomes followed by RNAseq (ACAPseq), 
a discovery platform for protein-protein interactions. Elife 7:e40982. 

17.  Kim SY, Yasuda S, Tanaka H, Yamagata K, Kim H (2011) Non-clustered protocadherin. 
Cell Adhes Migr 5(2):97–105. 

18.  Nicoludis JM, et al. (2015) Structure and Sequence Analyses of Clustered Protocadherins 
Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Structure 23:2087–
2098. 

19.  Goodman KM, et al. (2016) Structural Basis of Diverse Homophilic Recognition by 
Clustered α- and β-Protocadherins. Neuron 90(4):709–723. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493106doi: bioRxiv preprint 

https://doi.org/10.1101/493106
http://creativecommons.org/licenses/by-nc-nd/4.0/


20.  Goodman KM, et al. (2016) γ-Protocadherin structural diversity and functional 
implications. Elife 5:e20930. 

21.  Wu Q (2005) Comparative genomics and diversifying selection of the clustered vertebrate 
protocadherin genes. Genetics 169(4):2179–88. 

22.  Marks DS, et al. (2011) Protein 3D Structure Computed from Evolutionary Sequence 
Variation. PLoS One 6(12):e28766. 

23.  Morcos F, et al. (2011) Direct-coupling analysis of residue coevolution captures native 
contacts across many protein families. Proc Natl Acad Sci 108(49):E1293–E1301. 

24.  Bitbol A-F, Dwyer RS, Colwell LJ, Wingreen NS (2016) Inferring interaction partners 
from protein sequences. Proc Natl Acad Sci 113(43):12180–12185. 

25.  Gueudré T, Baldassi C, Zamparo M, Weigt M, Pagnani A (2016) Simultaneous 
identification of specifically interacting paralogs and interprotein contacts by direct 
coupling analysis. Proc Natl Acad Sci 113(43):12186–12191. 

26.  Hopf TA, et al. (2017) Mutation effects predicted from sequence co-variation. Nat 
Biotechnol 35(2):128–135. 

27.  Zhang L, Borthakur S, Buck M (2016) Dissociation of a Dynamic Protein Complex 
Studied by All-Atom Molecular Simulations. Biophys J 110(4):877–886. 

28.  Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological 
systems: Implications for design and use of multivalent ligands and inhibitors. Angew 
Chemie - Int Ed 37(20):2754–2794. 

29.  Nicoludis JM, Gaudet R (2018) Applications of sequence coevolution in membrane 
protein biochemistry. Biochim Biophys Acta - Biomembr 1860(4):895–908. 

30.  Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue-
residue interactions across protein interfaces using evolutionary information. Elife 
3:e02030. 

31.  Hopf TA, et al. (2014) Sequence co-evolution gives 3D contacts and structures of protein 
complexes. Elife 3:e03430. 

32.  Toth-Petroczy A, et al. (2016) Structured States of Disordered Proteins from Genomic 
Sequences Article Structured States of Disordered Proteins from Genomic Sequences. 
Cell 167:158–170. 

33.  Hopf TA, et al. (2012) Three-Dimensional Structures of Membrane Proteins from 
Genomic Sequencing. Cell 149(7):1607–1621. 

34.  Badjić JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and 
cooperativity in supramolecular chemistry. Acc Chem Res 38(9):723–732. 

35.  Whitty A (2008) Cooperativity and biological complexity. Nat Chem Biol 4(8):435–439. 
36.  Chen W V., et al. (2012) Functional Significance of Isoform Diversification in the 

Protocadherin Gamma Gene Cluster. Neuron 75(3):402–409. 
37.  Li Y, et al. (2012) Molecular and Functional Interaction between Protocadherin- C5 and 

GABAA Receptors. J Neurosci 32(34):11780–11797. 
38.  Mah KM, Houston DW, Weiner JA (2016) The γ-Protocadherin-C3 isoform inhibits 

canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Sci Rep 
6(1):31665. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493106doi: bioRxiv preprint 

https://doi.org/10.1101/493106
http://creativecommons.org/licenses/by-nc-nd/4.0/

