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ABSTRACT Pedigrees provide the genealogical relationships among individuals at a fine resolution and serve an important
function in many areas of genetic studies. One such use of pedigree information is in the estimation of the short-term effective
population size (Ne), which is of great relevance in fields such as conservation genetics. Despite the usefulness of pedigrees,
however, they are often an unknown parameter and must be inferred from genetic data. In this study, we present a Bayesian
method to jointly estimate pedigrees and Ne from genetic markers using Markov Chain Monte Carlo. Our method supports
analysis of a large number of markers and individuals with the use of a composite likelihood, which significantly increases
computational efficiency. We show on simulated data that our method is able to jointly estimate relationships up to first cousins
and Ne with high accuracy. We also apply the method on a real dataset of house sparrows to reconstruct their previously
unreported pedigree.
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Introduction

Pedigrees are fundamental in many areas of genetic studies.
Pedigree structure can be used to study the social organization
of a population, such as the degree of polygamy and the off-
spring distribution among mothers and fathers (Blouin 2003).
In conservation genetics, pedigrees provide a way to design
an appropriate breeding scheme by preventing inbreeding be-
tween close relatives. Other uses of pedigree information include
estimating heritability of quantitative traits (Vinkhuyzen et al.
2013); controlling for cryptic relatedness in association studies
(Voight and Pritchard 2005; Eu-ahsunthornwattana et al. 2014);
and pedigree-based association studies (Ott et al. 2011). Further-
more, the genealogical history embedded in pedigrees can be
used to estimate demographic parameters for the recent past,
such as the short-term effective population size (Ne) (Wang 2009).
However, most population genetic models are based on King-
man’s coalescent (Kingman 1982a,b,c), which is a poor approxi-
mation of the genealogical process for time frames shorter than
log2N, where N is the population size (Wakeley et al. 2012, 2016).
Pedigrees, which provide a finer resolution on the genealogical
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history of the samples than the coalescent, may therefore be
more appropriate to use for estimating demographic parameters
of the very recent past.

Despite the importance of pedigrees in genetic analyses, they
are often a missing parameter. To address this problem, many
methods have been developed to estimate pedigrees from ge-
netic data. Existing methods fall broadly into two categories:
those that estimate pairwise relationships only (Thompson 1975;
McPeek and Sun 2000; Smith et al. 2001; Sun et al. 2001; Milligan
2003; Sun and Dimitromanolakis 2014) and those that aim to re-
construct the entire pedigree (Thomas and Hill 2000; Almudevar
2003; Wang 2004; Hadfield et al. 2006; Gasbarra et al. 2007; Cowell
2009; Riester et al. 2009; Wang and Santure 2009; Kirkpatrick et al.
2011; Almudevar and Anderson 2012; Wang 2012; Cowell 2013;
He et al. 2013; Cussens et al. 2013; Staples et al. 2014; Anderson
and Ng 2016; Staples et al. 2016; Ko and Nielsen 2017; Ramstetter
et al. 2018). Although pairwise methods are computationally fast,
estimated pairwise relationships do not necessarily translate to
the correct pedigree, as piecing together pairwise relationships
may not produce a valid pedigree. Furthermore, because the co-
efficient of variation in genome sharing between two individuals
becomes larger as the relationship becomes more distant (Hill
and Weir 2011), distinguishing competing relationships from
each other becomes increasingly difficult. Methods that estimate
the entire pedigree have an advantage in this regard. Several
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studies have shown that the accuracy of pairwise relationship
inference can be improved by considering all relationships in the
sample simultaneously and resolving uncertain relationships
in the context of other individuals (Staples et al. 2014; Ko and
Nielsen 2017; Ramstetter et al. 2018). Furthermore, the estimated
pedigree is valid by construction, which can then be used to
study population parameters of interest, such as the variance in
offspring distribution.

Existing pedigree reconstruction methods, however, are lim-
ited in their scope due to the inherent difficulty in pedigree
inference. First, the likelihood computation of a pedigree is
expensive, as it scales exponentially either in the number of
individuals in the pedigree (Lander and Green 1987) or in the
number of markers analyzed (Elston and Stewart 1971). Second,
the number of possible pedigrees for a given number of individ-
uals is enormous, much greater than the number of phylogenetic
trees (Steel and Hein 2006; Thatte and Steel 2008), which makes
exploring the pedigree space computationally challenging for
even a small number of individuals.

In this study, we present a pedigree inference method that
addresses the difficulties of pedigree inference. First, we use
the composite likelihood developed in (Ko and Nielsen 2017) to
make the likelihood computation efficient for a large number of
markers and individuals. Second, we use Markov Chain Monte
Carlo (MCMC) (Hastings 1970) to sample pedigrees from high
probability regions, circumventing the need to enumerate all
possible pedigrees. Our method is different in several important
ways from previous methods such as (Wang 2012; Staples et al.
2014; Ko and Nielsen 2017) that also use composite likelihoods
and sampling algorithms to explore the pedigree space. The
previous methods take a maximum likelihood approach and
produce a list of pedigrees with highest likelihoods, and does
not provide a principled way to compute the uncertainty of the
estimated pedigrees. In contrast, our method casts the problem
in a Bayesian framework and estimates the posterior probabil-
ity distribution of the parameters, which in turn quantifies the
uncertainty in parameter estimation.

Furthermore, by assigning a prior, which is a function of
population parameters that govern the mating behavior of the
population, to the pedigrees, we can estimate these parameters
jointly with the pedigree. In particular, we focus on estimating
the short-term Ne, a key parameter quantifying the level of ge-
netic drift and inbreeding in the current population. Various
approaches have been developed for estimating the short-term
Ne, including methods based on relatedness, heterozygosity ex-
cess, linkage disequilibrium, or changes in allele frequency over
time (Wang et al. 2016). Our pedigree-based approach for es-
timating Ne is most closely related to the estimation method
based on the frequency of siblings in a sample by (Wang 2009),
which was shown to be more accurate and robust than other
approaches.

In our method, we assume that all individuals belong to a sin-
gle generation and infer pedigrees going up to two generations
back in time (i.e. up to first cousins). Furthermore, we assume
that the population is outbred with non-overlapping genera-
tions and the pedigrees do not contain cycles other than those
caused by full sibling relationships. We validate our method
on simulated data and show that it can estimate relationships
and Ne accurately. Furthermore, we apply our method on a real
dataset containing a sample of house sparrows to reconstruct
their previously unreported pedigree.

Materials and Methods

Bayesian Inference of Pedigrees and Mating Parameters
Our method aims to estimate the joint posterior distribution of
pedigrees and mating parameters. Let n be the sample size, H
the pedigree of the sample, θ the set of mating parameters for
the population, and X = (X1, ..., Xn) the set of genotype vectors
for the n individuals. Then the joint posterior probability of H
and θ can be written as

Pr(H, θ|X) ∝ Pr(X|H)Pr(H|θ)Pr(θ), (1)

where Pr(X|H) is the likelihood of the pedigree, Pr(H|θ) is the
prior for the pedigree under a mating model parameterized by
θ, and Pr(θ) is the hyperprior on the mating parameters. We
describe below how to compute each of these component terms
in more detail.

Composite Likelihood As discussed in Introduction, comput-
ing the likelihood of a pedigree, Pr(X|H), is computationally
prohibitive for even a moderately large set of markers or in-
dividuals. We therefore approximate the likelihood with the
composite likelihood introduced in (Ko and Nielsen 2017) to
make the computation more efficient. The composite likelihood
is based on the marginal pairwise likelihoods, which we describe
briefly here.

The composite likelihood of pedigree H containing k sampled
individuals is given by

CL(H) =

P(Xi), if k = 1
∏(i,j)∈H P(Xi ,Xj |Ri,j)

∏i∈H P(Xi)k−2 , otherwise
(2)

where Ri,j is the relationship between individuals i and j induced
by pedigree H. If the pedigree contains a single individual (i.e.
k = 1), then the composite likelihood is simply the probability of
observing the individual’s genotypes. For k > 1, the composite
likelihood is the product of the pairwise likelihoods, scaled by
the marginal likelihoods of the individuals. That is, since each
individual appears k− 1 times in the numerator, we divide the
numerator by the marginal likelihood of each individual k− 2
times. A previous study by (Ko and Nielsen 2017) showed that
the composite likelihood scales similarly to the full likelihood on
simulated data and has sensible asymptotic properties, making
it a good approximation for the full likelihood.

We pre-compute and store in memory the pairwise likeli-
hoods Pr(Xi, Xj|Ri,j) for each pair (i, j) for a specified set of
pairwise relationships. For pedigrees going up to two genera-
tions back in time, this set includes full siblings, half siblings, full
first cousins, half first cousins, and unrelated. The pairwise like-
lihoods can be computed efficiently using the method described
in (Weir et al. 2006) for unlinked markers or by (Albrechtsen
et al. 2009) for linked markers. The pairwise likelihoods can then
be accessed from memory to compute the composite likelihood
efficiently.

Prior For the prior on the pedigrees, Pr(H|θ), we used a modi-
fied version of the mating model introduced in (Gasbarra et al.
2005). The model is defined by three parameters: α, β, and N,
which we describe in more detail below.

The probability of a pedigree under this mating model is
most naturally described by the procedure by which each child
stochastically chooses its mother and father. We assume a ho-
mogeneous population of constant size N with non-overlapping
generations and equal proportions of males and females (i.e.
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N/2 males and N/2 females). Let n be the number of children in
the current generation. One by one, each child chooses a parental
pair ( f , m) where f ∈ {1, 2, ..., N/2} and m ∈ {1, 2, ..., N/2}.

Let C f (k) be the number of children that mother f has after
the first k children have chosen their parents. Then the probabil-
ity that the (k + 1)th child chooses mother f is given by

α + C f (k)
α(N/2) + k

, (3)

where α is a parameter that controls the offspring distribution
among mothers in the population. A small value of α corre-
sponds to the mating model where a few mothers have many
offspring, whereas a large value of α corresponds to the model
where children are distributed more evenly among all mothers.

After selecting mother f , the child chooses a father next. Let
C f m(k) be the number of children that parental pair ( f , m) has
after the first k children have chosen their parents. Then the
probability of the (k + 1)th child choosing father m is given by

β + C f m(k)
β(N/2) + C f (k)

, (4)

where β is a parameter that governs the degree of polygamy of
fathers. If β is small, then the child is more likely to choose father
m if the father already shares other offspring with the child’s
mother, f (i.e. parental pairs tend to stay monogamous). On
the other hand, β = ∞ corresponds to the case where the child
chooses a father at random (i.e. random mating model).

After all n children in the current generation have chosen
their parents, we continue recursively backwards in time by
treating the chosen mothers and fathers in the current stage as
the offspring for the next stage. Using this sequential sampling
scheme, we can compute Pr(H|θ), where θ = (α, β, N).

Furthermore, we can relate the mating parameters α, β, and
N to the effective population size, Ne, using the formula derived
in (Gasbarra et al. 2005).

For the hyperprior, P(θ), we assume a uniform distribution
for each of the parameters in θ. For instance, we assume α ∼
U(αmin, αmax) for some fixed αmin and αmax. We treat β and N
in a similar way.

Finally, we combine the composite likelihood, prior, and hy-
perprior to approximate the joint posterior distribution of H and
θ with

CL(H)Pr(H|θ)Pr(θ) (5)

Markov Chain Monte Carlo To explore the vast parameter space
in a computationally feasible way, we use Markov-Chain Monte
Carlo (MCMC) to sample from the posterior distribution of H
and θ, approximated by Equation 5.

We represent the pedigree for a sample of individuals as a
directed graph, where a node corresponds to an individual with
a particular sex (i.e. male or female) and an edge represents a
parent-offspring relationship. Individual i in the graph is not
necessarily represented in the sample; but if it is sampled, the
node is associated with a genotype vector Xi. A more detailed
description of the graph representation of pedigrees and the
conditions for a valid pedigree is provided in File S1.

The MCMC explores pedigrees and mating parameters si-
multaneously. To explore the pedigree space, we make local
modifications to the edges and the nodes in the graph using
10 reversible updates. The 10 updates can broadly be catego-
rized into two groups. The first category of updates involves

inserting or deleting edges to join or split pedigrees. The second
category is modifying the pairwise relationship between two
randomly chosen individuals, such as changing half-siblings to
full-cousins, and vice versa. To explore the mating parameters,
we use three different updates–one for each mating parameter–
where we propose a new state by sampling the new parameter
value from a normal distribution centered at the current value.
A more detailed treatment of the updates is given in File S1.

Here, we outline the MCMC algorithm. Let Q = (H, θ) de-
note the set of parameters we want to estimate (i.e. pedigree and
mating parameters).

1. Initialize pedigree H to be the one in which every individual
is unrelated to each other. Initialize α by sampling from
U(αmin, αmax), for some fixed αmin and αmax. Initialize β
and N in a similar way. Compute and store Equation 5 for
the current configuration.

2. Choose one of the 10 updates at random and generate a
new configuration.

3. If the new configuration is invalid, reject and go back to
step 1. If it is valid, accept the new configuration with
probability

min

(
1,

CL(Hnew)Pr(H|θnew)Pr(Qold|Qnew)

CL(Hold)Pr(H|θold)Pr(Qnew|Qold)

)
,

4. Repeat steps 1-3 T times.

The total number of samples, T, was chosen to achieve a
balance between convergence of the Markov chain and com-
putational time. Since we only want to keep samples after the
Markov chain has converged to the stationary distribution, we
discarded the first B samples as burn-in. To check for conver-
gence, we ran multiple independent MCMC chains and checked
that all chains fluctuated in a similar, stable range of log like-
lihood values. We note that this is only a proxy for checking
convergence and there are other, albeit more involved, methods,
such as checking the potential scale reduction factor for some
specified quantity (Gelman et al. 1992). Furthermore, we keep
only every tth sample to avoid storing correlated samples.

For both simulated and empirical datasets, which will be
described next, we ran the MCMC for T = 6× 106 iterations
with a burn-in period of B = 4× 106 iterations. The hyperprior
for the mating parameters was set as follows: α ∼ U(.1, 100),
β ∼ U(1× 10−5, .1), and N ∼ U(5, 5000). We also thinned the
MCMC samples by keeping only every 50th sample.

Simulated Data
We tested the performance of our method on simulated data. We
simulated pedigrees up to two generations back in time using
the mating model described in Prior with α = 15, β = 15, and
N = 1000, which translates to Ne = 650 using the formula given
in (Gasbarra et al. 2005).

We then simulated 10,000 independent single nucleotide poly-
morphic sites (SNPs) for each of the N founders in the pedigree,
where the population allele frequency for each marker was sam-
pled from the site frequency spectrum under neutrality. We
assumed that the markers were spread evenly among 20 inde-
pendent chromosomes of length 100Mb, and assumed sequenc-
ing error rate of .01. To test the effect of marker type on our
parameter inference, we also simulated 20 microsatellites with

GENETICS Journal Template on Overleaf 3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492678doi: bioRxiv preprint 

https://doi.org/10.1101/492678
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 alleles of equal frequency per marker. Furthermore, we as-
sumed that each marker was on an independent chromosome,
with sequencing error rate of .01 and allele dropout rate of .05.

We then simulated the genotypes for the children in the pedi-
gree by recombining parental haplotypes at rate 1.3e-8 per base
pair per generation. We generated 50 independent datasets for
both SNP and microsatellite simulations. For convenience, we
refer to the simulations with SNPs as Simulation A and those
with microsatellites as Simulation B in later sections.

Empirical Data
We applied our method to reconstruct the previously unreported
pedigree of house sparrows collected from an archipelago off
the Helgeland coast of northern Norway (Lundregan et al. 2018).
The individuals were genotyped using a custom Affymetrix
200K SNP array, with markers distributed across 29 of the chro-
mosomes in the genome. Also provided were the location and
year in which each each individual was collected.

We used individuals from a single island (island 27) to avoid
any potential substructure in the sample. Furthermore, we re-
stricted our analysis to the individuals born in 2009 to ensure
that all samples belonged in a single generation. We pruned the
markers for linkage disequilibrium (LD) using PLINK (Chang
et al. 2015) at r2 = .05 to get a set of independent or loosely
linked markers. The filtering steps resulted in 79 individuals
and 4519 SNPs.

Evaluation of Method
We compared the performance of our method to that of
COLONY (Jones and Wang 2010), one of the most widely used
pedigree reconstruction methods. We chose COLONY for sev-
eral reasons. First, it supports full likelihood computation, which
provides a gold standard to which we can compare our com-
posite likelihood method. Second, it supports both SNPs and
microsatellites data, allowing us to compare the performance
of different marker types. Third, COLONY can estimate the
short-term Ne based on the estimated frequency of siblings in
the sample, which was shown to be more accurate than other
methods of estimating Ne (Wang 2009).

Because the sample size in our simulations was much smaller
than the population size, many pedigrees for the sample had
similar likelihoods, making it difficult for both our method and
COLONY to find the correct pedigree in its entirety. So we
used pairwise prediction accuracy as a proxy for the accuracy
of pedigree inference. In our method, we assigned pairwise
relationship R to pair (i, j) if it had the highest posterior proba-
bility among all competing relationships. We approximated the
posterior probability of R by counting the proportion of times
pair (i, j) had relationship R in the MCMC samples. Similarly,
we assigned relationship R to pair (i, j) in COLONY if it had the
highest probability among all candidate relationships. Because
the number of possible pedigrees is large, COLONY archives
only the top w pedigrees with highest likelihoods. Suppose S is
the set of indices for the pedigrees where (i, j) has relationship
R. Then the probability of R is estimated by

∑k∈S Lk

∑w
m=1 Lm

,

where Lm is the likelihood of the mth pedigree.
Furthermore, since COLONY restricts its inference to pedi-

grees going back only one generation back in time (i.e. siblings),
we also limited our inference to the same scope when comparing

the performance of our method to COLONY. The parameters
used to run COLONY are detailed in File S2.

Data Availability
Our software for pedigree inference is available for download
at https://github.com/amyko/mcmcPed. Simulated data are
available upon request. All supplemental files are available at
FigShare.

Results

Simulated Datasets
To illustrate some of the issues involved in estimating multi-
generation pedigrees, we first turn our attention to an example
from Simulation A. Figure 1 shows the two most likely local
pedigrees involving three sampled individuals (shaded) and
their estimated posterior probabilities. In the first pedigree, in-
dividual 3 forms a full first cousin relationship with the other
two individuals (1 and 2), as opposed to a half first cousin rela-
tionship as in the second pedigree. Here, the true pedigree is
shown by the first pedigree (Figure 1A), which had the highest
posterior probability.

The uncertainty in the pedigree estimation, shown by the
similar posterior probabilities of the two pedigrees (.55 and .45),
was consistent with the fact that the pairwise likelihood values
were similar under different relationships. More specifically,
individuals 1 and 3 had a higher likelihood of being full cousins
than half cousins by about one log likelihood unit. On the other
hand, individuals 2 and 3 had a higher likelihood of being half
cousins than full cousins by roughly the same amount. Based
on pairwise likelihoods alone, individuals 1 and 3 would be
classified as half cousins, and individuals 2 and 3 as full cousin.
Piecing together such pairwise assignments, however, would not
produce a valid pedigree. Such uncertainties in cousin inference
were not uncommon: about 20 percent of true cousin pairs in
Simulation A had nonzero posterior probabilities for both full
and half cousins.

Table 1a shows the pairwise prediction accuracy of MCMC
for the 50 independent datasets in Simulation A, where the
pairwise likelihoods were computed using the method by (Al-
brechtsen et al. 2009). Full siblings, half siblings, and half cousins
were classified correctly in almost all instances, whereas about
seven percent of full cousin pairs were classified as half cousins.
The rate of false detection of relatives was very low at about
.01 percent, where the unrelated pairs were estimated as half
cousins.

Figure 2A shows the posterior distribution of Ne estimated
from the MCMC samples aggregated over the 50 datasets in
Simulation A. The mode of the posterior distribution was close to
the true value, indicated by the red vertical line. Similarly, Figure
2B shows that the distribution of maximum a posteriori (MAP)
Ne for the 50 datasets was concentrated around the true value.
The three mating parameters that make up the components
terms of Ne (i.e. α, β, and N) showed high correlations among
them. Figure S1 shows that high values of N tended to co-
occur with low values of α for this simulation, which suggests
that these parameters should not be estimated independently
of each other and that marginal point estimates of any of these
parameters are likely to be misleading.

Tables 1b and 1c compare the performance of our method
with that of COLONY. Since COLONY estimates up to sibling
relationships only, we also restricted the inference of our method
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Figure 1 An example output pedigrees for three sampled indi-
viduals (shaded) from a dataset in Simulation A. Sex of the un-
sampled individuals (unshaded) are unknown but are drawn
in for illustration only. (A) Pedigree with the highest estimated
posterior probability (p = .55). (B) Pedigree with the second
highest estimated posterior probability (p = .45). The true
pedigree is shown in panel A.

Figure 2 (A) Estimated posterior distribution of Ne from
MCMC samples aggregated over 50 datasets in Simulation
A. (B) Distribution of maximum a posterior (MAP) Ne for the
50 datasets in Simulation A. The red vertical line in each panel
corresponds to the true value of the parameter.

(a) Two-generation Inference by MCMC

Predicted

FS HS UR FC HC

True

FS 106 0 0 0 0

HS 0 136 0 1 0

UR 0 0 59996 0 4

FC 1 0 0 445 32

HC 0 0 0 4 526

(b) One-generation Inference by MCMC

Predicteda

FS HS UR

True

FS 106 0 0

HS 0 137 0

UR 0 0 60000

FC 0 117 360

HC 0 0 530
a The likelihoods were computed without using the linkage information between

markers to make the likelihood computation comparable to COLONY’s.

(c) One-generation Inference by COLONY

Predicted a

FS HS UR

True

FS 106 0 0

HS 0 137 0

UR 0 0 60000

FC 0 106 371

HC 0 0 530
a Inference was based on the full likelihood method under the assumption of

independent markers.

Table 1 Pairwise Prediction Accuracy for Simulation A
(SNPs)
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to the same scope. Furthermore, we computed the likelihoods
using the method discussed in (Weir et al. 2006) which assumes
unlinked markers, an assumption that COLONY makes in its
likelihood computation. Here, both our method and COLONY
classified full siblings, half siblings, and unrelated pairs without
error. Both methods also estimated all half cousin pairs to be
unrelated. Furthermore, similar proportions of full cousin pairs
were misclassified as half siblings by both methods: 22 percent
by COLONY and 24 percent by our method. As shown in Figure
3, Ne was underestimated by both methods, which is consistent
with the higher proportion of half siblings in the estimated pedi-
grees, caused by the misclassification of some full cousin pairs
as half siblings.

Figure 3 (A) Distribution of MAP Ne by MCMC, where the
pedigree inference was restricted to one generation and the
likelihood computation assumed independent markers. (B)
Distribution of Ne estimates by COLONY based on full likeli-
hood computation with independent markers and nonrandom
mating.

Table 2a shows the pairwise prediction accuracy of MCMC
for Simulation B (i.e. microsatellites), where the likelihoods were
computed using the method by (Wang 2004). The accuracy rates
were significantly lower than those in Simulation A (i.e. 10,000
SNPs). About 77 percent of full siblings and 27 percent of half
siblings were classified correctly, and virtually all cousin pairs
were estimated to be unrelated. This is likely due to the prior,
which puts higher probabilities on sparsely connected pedigrees,
overwhelming the likelihoods that do not show strong evidence
for individuals being related. The distribution of MAP Ne also
had a much higher variance compared to that of Simulation A
(Figure 4A).

Tables 2b and 2c compare the performance of our method
with that of COLONY for Simulation B. Again, we restricted
the inference by our method to sibships to make a fair com-
parison with COLONY. Here, COLONY performed better than
our method in correctly inferring full siblings and half siblings,
but it also had a much higher false positive rate of 2.8 percent

compared to .04 percent in our method. In fact, about 87 per-
cent of the pairs estimated as half siblings by COLONY were
actually unrelated. We note, however, that this problem may be
addressed by adding an appropriate prior that is more conserva-
tive in half sibling assignments. Furthermore, due to the large
number of unrelated pairs and cousins that were misclassified as
half siblings, Ne was significantly underestimated by COLONY
(Figure 4C).

(a) Two-generation Inference by MCMC

Predicted

FS HS UR FC HC

True

FS 96 22 7 0 0

HS 2 31 81 0 0

UR 0 23 60054 0 0

FC 1 8 445 0 0

HC 0 0 480 0 0

(b) One-generation Inference by MCMC

Predicted

FS HS UR

True

FS 91 22 12

HS 2 25 87

UR 1 23 60053

FC 0 3 451

HC 0 0 480

(c) One-generation Inference by COLONY

Predicted

FS HS UR

True

FS 102 22 1

HS 2 92 22

UR 3 1675 58399

FC 1 105 348

HC 0 39 441

Table 2 Pairwise Prediction Accuracy for Simulation B (Mi-
crosatellites)

For all the experiments, we checked the convergence of
MCMC by studying the likelihood trace of multiple indepen-
dent chains. As an illustration, we show an example of the log
likelihood trace for the last one million iterations for a single
experiment in Simulation A (Figure S2).

The running time for our method depends on many factors,
such as the sample size, the underlying pedigree structure, and
the maximum number of generation allowed in the pedigree in-
ference. As an example, an MCMC run with 6 million iterations
for a two-generation pedigree inference took about 36 seconds
on a laptop with 2.3 GHz Intel Core i5 processor for a single
dataset in Simulation A, excluding the pre-computation time for
calculating the likelihoods.
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Figure 4 Distribution of the Ne estimates in Simulation B (i.e.
microsatellites). (A) Distribution of MAP Ne estimated from
MCMC samples under two-generation inference. (B) Distri-
bution of MAP Ne estimated from MCMC samples under
one-generation inference. (C) Distribution of Ne estimate by
COLONY under nonrandom mating.

Effect of Presence of Relatives Beyond First Cousins

For real datasets, it is often unreasonable to assume that the
sample does not contain relatives more distant than first cousins.
Here we show the effect of having second cousins in the sample
on the inference of pedigrees and Ne. Table 3 shows the predic-
tion accuracy for a simulation scenario where second cousins
were present in the sample. The simulation parameters were
identical to those of Simulation A, except for the number of gen-
erations under which the pedigrees were simulated. Instead of
going back up to two generations back in time as in Simulation
A–which generated relatives up to first cousins–here we sim-
ulated pedigrees up to three generations back in time, which
generated second cousins as well.

As we can see in Table 3, the accuracy rates were similar
to those of Simulation A for relationships up to first cousins.
However, about 73 percent of full second cousins (2FC) were
classified as half first cousins (HC), the most distant relationship
type our method is designed to estimate. Similarly, about 22
percent of half second cousins (2HC) were classified as HC. As
expected, Ne was biased downward due to the high frequency of
HC in the estimated pedigrees, caused by the misclassification
of second cousins as HC (Figure 5).

Table 3 Pairwise Prediction Accuracy for Datasets Contain-
ing Second Cousins (Inference by MCMC)

Predicted

FS HS UR FC HC

True

FS 118 1 0 0 0

HS 0 108 2 0 1

UR 0 0 56189 0 3

FC 5 5 0 386 95

HC 0 0 9 4 499

2FC 0 0 523 2 1388

2HC 0 0 1482 0 430

Figure 5 (A) Estimated posterior distribution of Ne from
MCMC samples aggregated over 50 datasets, where the data
contained second cousins. (B) Distribution of MAP Ne for the
50 datasets.

To correct the downward bias in Ne estimation, we took ad-
vantage of the fact that our method can still infer siblings with

GENETICS Journal Template on Overleaf 7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492678doi: bioRxiv preprint 

https://doi.org/10.1101/492678
http://creativecommons.org/licenses/by-nc-nd/4.0/


high accuracy (Table 3). More specifically, we simulated pedi-
grees under various Ne to find a value that generated a num-
ber of siblings close to the one estimated by our method. Let
SIBD = NFS + .5NHS be the summary statistic that measures the
level of identical-by-descent (IBD) contributed by siblings in the
sample, where NFS and NHS are the number of full siblings and
half siblings, respectively; and denote ŜIBD to be the statistic ob-
tained from the MCMC inference on the sample. Let αMAP and
βMAP be the MAP estimates of α and β, respectively, computed
using the marginal posterior distributions obtained from the
MCMC samples. We then simulated pedigrees going back up to
one generation in time under αMAP, βMAP, and various values
of N–which translates to different values of Ne–and computed
SIBD from the simulated pedigrees. We then chose the value of
Ne that produced SIBD that most closely matched ŜIBD.

Figure 6 shows the distribution of the Ne estimates after cor-
recting for bias as described above. Although the standard error
was higher than that of uncorrected estimates, the median of the
distribution (657) was much closer to the true value (650) than
before.

Figure 6 Distribution of the Ne estimates for the 50 datasets
after bias correction. The red vertical line indicates the true
value of Ne.

Sparrow Dataset

We analyzed a subset of the house sparrow dataset sequenced
by Lundregan et al. (2018). After the filtering steps described
in Empirical Data, the sample consisted of 75 individuals and
4,519 SNPs distributed across 29 autosomes. Here we show an
example of the inferred pedigrees by our method and compare
them to those estimated by COLONY.

Figure 7 shows the likely local pedigrees involving five indi-
viduals (shaded) in the sparrow dataset. The estimated posterior
probabilities of the pedigrees shown in panel A and B were
.77 and .23, respectively. The difference between the two pedi-
grees was the pairwise relationship between individuals 1339
and 1450, which was estimated to be full cousins in panel A
and half cousins in panel B. Figure 7C shows the pedigree with
the highest likelihood estimated by COLONY. This pedigree
had posterior probability of zero in our method. We see that
the half sibling relationship between individuals 1390 and 1450
were recovered by COLONY but all cousin relationships that our
method detected were estimated to be unrelated. Based on the
simulation studies in Simulated Datasets, however, we expect
the full first cousin relationships inferred by our method to be
either true first cousins or, with considerably smaller probability,
more distant relatives (e.g. second cousins).

Figure 7 Estimated pedigrees of five sampled individuals in
the sparrow dataset. (A) Pedigree with estimated posterior
probability of .77. (B) Pedigree with estimated posterior prob-
ability of .23. (C) Most likely pedigree estimated by COLONY,
but whose posterior probability was zero in our method.
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Table 4 compares the pairwise relationship classifications be-
tween our method and COLONY. Pairs that were classified as
full siblings, half siblings, or unrelated by our method largely
agreed with the classifications by COLONY. On the other hand,
about 29 percent of pairs that were estimated to be full cousins
by our method were estimated to be half siblings by COLONY,
which is consistent with what was observed in the simulation
studies in Simulated Datasets. Furthermore, most of the rela-
tionships that were inferred as half cousins by our method were
classified as unrelated by COLONY.

Table 4 Comparison of Pairwise Relationship Classification
by MCMC and COLONY.

COLONY a

FS HS UR

MCMC b

FS 33 0 0

HS 0 23 0

UR 0 1 2909

FC 0 15 37

HC 1 4 57
a Inference was based on the full likelihood method, assuming independent mark-

ers.
b The likelihoods were computed by (Albrechtsen et al. 2009) for linked markers

and the inference allowed pedigrees going up to 2 generations back in time (i.e.
up to first cousins).

Discussion

We have shown that, given enough marker information, our
method is able to jointly estimate Ne and relationships up to
first cousins accurately and efficiently. Unlike existing pedigree
inference methods, our method not only allows estimation of
pedigrees and Ne, but also provides an uncertainty measure
on the estimates via posterior probabilities. Furthermore, our
method provides a framework for incorporating different types
of population models in the prior for the pedigrees, which can
potentially allow us to estimate other population parameters,
such as migration rates between subpopulations.

Our method also improves upon one of the most widely used
pedigree reconstruction programs, COLONY, by estimating rela-
tionships beyond sibships. This not only expands the types of
pedigrees we can infer but also increases the accuracy of sibship
inference. In particular, first cousins were often misclassified as
half siblings if the estimation method did not allow inference of
cousins. For example, about 44 percent of half siblings estimated
by COLONY using 10,000 SNPs were actually first cousins (Ta-
ble 1c). Furthermore, we showed that Ne can be underestimated
if the sample contains cousins but the pedigree inference is re-
stricted to sibships only (Figure 3). By explicitly including first
cousins in the inference, our method was able to infer half sib-
lings with higher precision (Table 1a), as well as estimate Ne
more accurately (Figure 2). However, we note that the problem
persists when the sample contains relatives more distant than
first cousins. When datasets contained second cousins, for ex-
ample, they were often estimated as half first cousins–the most
distant relationship our method is designed to estimate–and con-
sequently caused a downward bias in Ne estimates. Therefore,
we must use caution in interpreting inferred half cousins, as the

true relationship could be more distant, and use the simulation
method discussed in Effect of Presence of Relatives Beyond First
Cousins to correct for potential bias in Ne estimates.

We note that the performance of our method relies heavily on
the accuracy of pairwise likelihoods. The accuracy of pairwise
likelihoods depends on many factors, such as marker density,
level of linkage disequilibrium, sequencing error rates, and pop-
ulation allele frequency estimates. Ignoring the linkage between
markers, in particular, significantly decreased the power to de-
tect first cousins (File S3). Due to linkage, close relatives such as
first cousins are expected to share, with high probability, long
IBD segments that are on the order of megabases in length,
although the probability of IBD per marker is relatively low
(Chapman and Thompson 2003). The presence of such long
IBD segments should make detecting relatives quite easy even
though identifying the exact relationship can be more difficult.
Treating the markers as independent, however, does not take ad-
vantage of the presence of long IBD segments and thus decreases
our ability to detect relatives (Tables 1b, 1c). Therefore, likeli-
hood computation methods, such as (Albrechtsen et al. 2009),
that take into account the linkage information between markers
should be used instead for detecting relatives, and naturally, for
pedigree inference as well.

Marker type and density also have a significant impact on
the quality of pairwise likelihoods. We have seen that using 20
highly informative microsatellites performed worse than using
10,000 SNPs. The accuracy rates of COLONY (Table 2c) suggest
that the use of microsatellites to estimate sibships might be mis-
guided in practice since first cousins can often be misclassified as
half siblings in methods that do not explicitly model first cousins.
Furthermore, microsatellites may not provide enough informa-
tion to easily distinguish between full and half siblings (Table
2). Also, 20 microsatellites with 10 alleles of equal frequency in
our simulations is more generous than what is available in many
real datasets, and the performance on less informative datasets
is likely to be worse than what was shown in this study. We note
that finding the best ways to address the various challenges in
pairwise likelihood computation is an active area of research
and requires further investigation.

There are limitations to our method that require further work.
Our method does not support pedigrees that contain cycles, ex-
cept those caused by full sibling relationships. More specifically,
we do not consider pedigrees that are inbred or have complex,
cyclic relationships such as double first cousins. A simulation
study by (Ko and Nielsen 2017) suggests that in the presence of
inbred individuals, the method will tend to estimate individu-
als to be more genealogically closer than they actually are (e.g.
first cousins estimated half siblings). Furthermore, our method
assumes that all samples belong in a single generation, which
may not typically be true for many real datasets. This may be
addressed by adding updates in the MCMC that allow sampled
individuals to move between generations. Furthermore, our
method does not yet scale up to sample sizes typical of GWAS
as the number of pairwise comparisons still increases rapidly
with sample size. One possible approach to address this issue is
partitioning the sample into smaller sets using methods such as
(Manichaikul et al. 2010) and estimating the pedigrees for each
smaller subset of individuals.

Overall, our method provides a way to jointly estimate pedi-
grees and Ne, and measure the uncertainty of the estimates in a
computationally efficient way. Importantly, our method also pro-
vides a basic framework for estimating demographic parameters
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of the current population from pedigrees–analogous to popula-
tion genetic methods based on coalescent trees–thus opening up
new possibilities for learning about the demographic history of
the recent past.
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