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1 Short Title

2 Pan-Cancer modelling of genomic alterations through gene expression

3 Abstract

4 Cancer is a disease often characterized by the presence of multiple genomic alterations, 

5 which trigger altered transcriptional patterns and gene expression, which in turn sustain the 

6 processes of tumorigenesis, tumor progression and tumor maintenance. The links between 

7 genomic alterations and gene expression profiles can be utilized as the basis to build specific 

8 molecular tumorigenic relationships. In this study we perform pan-cancer predictions of the 

9 presence of single somatic mutations and copy number variations using machine learning 

10 approaches on gene expression profiles. We show that gene expression can be used to 

11 predict genomic alterations in every tumor type, where some alterations are more 

12 predictable than others. We propose gene aggregation as a tool to improve the accuracy of 

13 alteration prediction models from gene expression profiles. Ultimately, we show how this 

14 principle can be beneficial in intrinsically noisy datasets, such as those based on single cell 

15 sequencing.

16 Author Summary

17 In this article we show that transcript abundance can be used to predict the presence or 

18 absence of the majority of genomic alterations present in human cancer. We also show how 

19 these predictions can be improved by aggregating genes into small networks to counteract 

20 the effects of transcript measurement noise.
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1 Introduction

2 Cancer is a molecular disease occurring when a cell or group of cells acquire uncontrolled 

3 proliferative behavior, conferred by a multitude of deregulations in specific pathways [1]. As 

4 is implied by such a broad definition, cancer is a highly heterogeneous disease, showing 

5 remarkably different molecular, histological, genetic and clinical properties, even when 

6 comparing tumors originating from the same tissue [2]. Many cancers are characterized by 

7 the presence of single nucleotide or short indel mutations and/or copy number alterations, 

8 which appear somatically at the early stages of oncogenesis and can drive tumor 

9 progression [3]. Cancers can be broadly divided in two classes: the M class, where point 

10 mutations are prevalent, and the C class, where copy number variations (CNVs) are more 

11 numerous and are often associated with TP53 mutations. Tumor class influences anatomic 

12 location. Most ovarian cancers, for example, belong to the C class, while most colorectal 

13 cancers belong to the M class, although many exceptions do exist [4].

14 The Cancer Genome Atlas (TCGA) project [5] has recently underwent a major effort to 

15 collect vast amounts of information on thousands of distinct tumor samples. The TCGA data 

16 collection, commonly referred to as the “Pan-cancer” dataset, provided the scientific 

17 community with an avalanche of data on DNA alterations, gene expression, methylation 

18 status and protein abundances among others, with the critical mass necessary to identify 

19 rarer driver tumorigenesis effects in many types of cancers [6–8]. By combining all 33 TCGA 

20 datasets, Bailey and colleagues [9] recently outlined a pan-cancer map of which mutations 

21 can be drivers for the progression of cancer.

22 The availability of thousands of samples measuring many different variables in cancer has 

23 allowed scientists to generate statistical models of relationships between different 
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1 molecular species. A pan-cancer correlation network between coding genes and long 

2 noncoding RNAs, for example, sheds light on the function of non-coding parts of the 

3 transcriptome [10]. More recently, mutations on transcription factors (TFs) have been linked 

4 to altered gene expressions and phosphoprotein levels in 12 TCGA tumor type datasets [11]. 

5 Network approaches have been applied to identify clusters of coexpressed genes, shared by 

6 multiple cancer types [12]. Several studies have sought to characterize the relationships 

7 between genomic status and expression levels in cancer, trying to identify commonalities 

8 across different cancer types [13,14]. In particular, Alvarez and colleagues [15] have 

9 postulated that the effect of genomic alterations in cancer can be more readily assessed by 

10 aggregating gene expression profiles into transcriptional networks, rather than by profiles 

11 taken separately.

12 While the association between genomic events and gene expression is proven in several 

13 scenarios, it remains to be seen if it can be assessed in scenarios where fully quantitative 

14 readouts are unavailable, such as low coverage samples. One of these scenarios is Single Cell 

15 Sequencing [16], often carried out in experiments where thousands of mutations are 

16 generated via a system of pooled CRISPR-Cas9 knockouts [17].

17 To our knowledge there is no study trying to identify relationships between all genomic 

18 alteration events (somatic mutations/indels and CNVs) and global gene expression across 

19 cancers. In this study, we use 24 TCGA tumor datasets to investigate whether gene 

20 expression can be used to predict the presence of specific genomic alterations in several 

21 cancer tissue contexts. To this end, we leverage the current availability of a vast family of 

22 machine learning algorithms [18]. We investigate whether some gene alterations can be 

23 better modelled than others, and whether using grouped gene expression profiles as 
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1 aggregated variables can effectively identify specific genomic alterations. Finally, we test 

2 whether predicting mutations and CNVs can be carried out in an intrinsically noisy single cell 

3 RNA-Seq (scRNA-Seq) transcriptomics datasets.

4

5 Results

6 Collection of Pan-Cancer Dataset

7 We downloaded the most recent version of the TCGA datasets available on Firehose 

8 (v2016_01_28), encompassing mutational, CNV and gene expression data. Using TSNE 

9 clustering on gene expression data (9642 samples), we observed how different tumor types 

10 cluster separately from each other (Figure 1A). However, two tumour types segregate into 

11 two subgroups: breast cancer, which subdivides into a major luminal cluster and a smaller 

12 (in terms of samples collected) basal cluster [19]; and esophageal carcinoma, which roughly 

13 subdivides into adenocarcinomas and squamous cell carcinomas [20].

14 We then aggregated the single nucleotide and short indel somatic mutation data from the 

15 same samples for which we had collected gene expression. As is widely known, TP53 is the 

16 most mutated gene in human cancer (Figure 1B), followed by PIK3CA, SYNE1 and KRAS. As 

17 shown before [4] some tumor types are characterized by a high presence of somatic 

18 mutations. In particular, colorectal cancer, mesothelioma and esophageal cancer carry at 

19 least one of these events in almost 100% of the samples in the TCGA dataset. In the figure, 

20 we filtered out commonly known non-driver mutations [21], such as those happening in 

21 long genes like TTN and OBSCN, but we kept them in all following analyses for the sake of 

22 completion. A representation of all mutated genes, including blacklisted ones, is available in 
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1 Figure S1. Some tumors are characterized by the prevalence of a mutation in a specific gene, 

2 such as the G-protein coding BRAF in thyroid carcinoma [22] or IDH1, translating into 

3 isocitrate dehydrogenase, in low grade glioma [23].

4 Finally, we obtained readouts of CNV status for all TCGA samples. CNVs can have different 

5 extensions in terms of nucleotides affected and can sometimes encompass entire 

6 chromosomes [24] and the thousands of genes therein. In order to limit the number of 

7 variables to a more meaningful subset, we assigned a CNV profile to every gene, and kept 

8 only those whose CNV profiles are positively and significantly correlated with their 

9 transcript abundance profiles [25]. We defined these events as functional CNVs (fCNVs). In 

10 order to make fCNV variables comparable to the mutational ones, we defined a cut-off for 

11 presence or absence by using the log2(CNV) threshold of 0.5, which roughly corresponds to 

12 at least one copy gain for amplifications, and at least one copy loss for deletions (see 

13 Materials and Methods). We then reported their abundance in the pan-cancer dataset, 

14 distinguishing between amplifications (Figure 1C) and deletions (Figure 1D). As previously 

15 shown [4], virtually all ovarian cancer samples are characterized by at least one CNV event. 

16 Among the most amplified genes, we find the oncogenes SOX2 [26], EGFR [27] and MDM2 

17 [28], and also a non-coding gene, PVT1, the most amplified gene in breast cancer, with 

18 proven but as-of-yet uncharacterized proto-oncogenic effects [29,30]. Amongst the most 

19 deleted genes (Fig.1D) we observe well known tumor-suppressor genes, such as CDKN2A 

20 [31,32] and PTEN [33,34].
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1

2 Modelling Cancer Alterations with gene expression

3 After collecting all the expression and genomic alteration data from TCGA, we set out to 

4 generate models able to predict the presence or absence of each event by virtue of gene 

5 expression data in the contexts of all collected tumor types.

6 We tested several modelling algorithms for classification using the aggregator platform for 

7 machine learning caret [18] in the bladder cancer mutational dataset [35]. We observed that 

8 all models provide better-than-random predictions for the majority of mutational events, in 

9 terms of area under the ROC curve (AUROC)(Figure 2) [36]. We chose the top-scoring 

10 algorithm in this test, the Gradient Boost Modelling algorithm (gbm), a robust tree-based 

11 boosting model [37], due to its robustness and speed of implementation.

12 We calculated gbm models for all tumour types of at least 100 samples with co-measured 

13 expression and CNV or mutations, which included 24 of the 33 TCGA tumor types. The 

14 models were predictive of genomic events observed in no less than 5% and no more than 

15 95% of the patients in the dataset, and at least in 10 samples. Our results show that in all 

16 tumour types, a machine learning algorithm based on gene expression is consistently better 

17 than a random predictor (AUROC line at 0.5) at correctly classifying tumour samples for the 

18 presence or absence of specific genomic alteration events (Figure 3 and Supplementary 

19 Table S1). In particular, TP53 mutations are well modelled in many of these tumor types, 

20 being the most well predicted mutational event in both acute myeloid leukemia and low 

21 grade glioma. We could also model the presence of a copy loss of TP53 in sarcoma, which 

22 can be predicted with an accuracy of 70%. Ovarian and pancreatic cancer datasets 

23 presented exceptional cases, in that each contained such high TP53 mutation rates (next to 
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1 95% detected) [38,39] that our algorithms could not distinguish sufficient differences within 

2 each dataset to train a model. Also KRAS-targeting events are well modelled, specifically in 

3 colon, lung and stomach cancer, and cervical squamous carcinoma [40]. We noted a 

4 tendency where models for more frequent CNV events yielded a greater predictive power 

5 (Figure S2), a tendency not observed for somatic mutation models. We then tested if known 

6 tumor-related genes, such as those curated by the Cancer Gene Census [41] are better 

7 modelled than the rest of the genome. There is no difference in mutation and amplification 

8 results, but for deletion events, oncogenes yield weaker models (Wilcoxon Test, p=0.0037) 

9 and tumor suppressor genes yield generally stronger models (p=0.00050). This is in 

10 agreement with the central paradigm of cancer, where a tumor suppressor gene deletion 

11 can be one of the driving events of tumorigenesis and tumor progression [42]. On the other 

12 hand, deletion of tumour-promoting oncogenes is generally unfavourable for tumor 

13 progression, and so, generally speaking it should be present only as a passenger event, 

14 unlikely to determine global gene expression and tumor fate.

15

16 Modelling specific alterations with noise addition

17 In order to understand whether cancer-related genomic alterations can be modelled by 

18 gene expression in scenarios with lower signal-to-noise ratio, we artificially perturbed the 

19 TCGA gene expression dataset via the addition of Gaussian noise, and then proceeded to 

20 build models to predict the presence of TP53 mutations in breast cancer, the largest dataset 

21 in TCGA by number of samples.
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1 As expected, the addition of uniform random gaussian noise to the gene expression matrix 

2 has a detrimental effect on the amount of information left for modelling the presence of 

3 TP53 somatic mutations (Figure 4A).

4 We then decided to test several permutations of noise addition on the same breast cancer 

5 expression data, by each time aggregating genes into networks defined a priori in the same 

6 context, using a Tukey Biweight Robust Average method [43] on Weighted Gene Correlation 

7 Network Analysis (WGCNA) clusters [44] and the VIPER algorithm [15] on ARACNe-AP 

8 networks [45]. It is important to note that WGCNA clusters are completely non-overlapping 

9 and yield generally a lower number of aggregated variables than VIPER clusters, which are 

10 groups of genes possibly shared by other transcription factor clusters and that collectively 

11 yield the global expression of a transcription factor target set (dubbed  as a proxy for “TF 

12 activity” in the original VIPER manuscript [15]).

13 Our results show that gene expression, VIPER activity and WGCNA clusters yield very similar 

14 models for predicting TP53 mutations in breast cancer (figure S4). The amount of 

15 information contained in the input variables is therefore comparable. Adding noise to the 

16 input expression matrix, however, and then aggregating the resulting noise-burdened genes 

17 into VIPER or WGCNA clusters (see Materials and Methods), provides robustness to the 

18 models (Figure 4B). Similar results with higher variances (possibly due to the smaller size of 

19 the datasets) can be observed for EGFR amplifications in glioblastoma (Figure S5) and lung 

20 squamous carcinoma (Figure S6), for PVT1 amplifications in ovarian cancer (Figure S7) and 

21 for PTEN deletions in sarcoma (Figure S8). In all these examples, however, the performance 

22 of the simple WGCNA/Tukey aggregation is closer (if not worse) to that of simple gene 

23 expression.
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1 An alternative way to reduce the information content from an NGS gene expression dataset 

2 is to reduce the number of read counts from each sample. This operation reflects either a 

3 low coverage bulk RNA-Seq experiment or an experiment arising from Single-Cell 

4 sequencing [46]. In particular, single-cell RNA-Seq (scRNA-Seq) is characterized by the 

5 dropout phenomenon [47] wherein genes expressed in the cells are sometimes not 

6 detected at all. In order to simulate such scenarios, we down-sampled each RNA-Seq gene 

7 count profile from the largest TCGA dataset (Breast Cancer) to a target aligned read number 

8 using a beta function, which allows for reduction coupled with random complete gene 

9 dropouts (Figure 5A). We then modelled again the presence of TP53 mutations using gene 

10 expression (Figure 5B). We found out that models based on standard unaggregated gene 

11 expression experience an accuracy drop at around 30M reads, while aggregating genes 

12 using VIPER (but not with WGCNA) allows for better-than-random accuracies even at 3M 

13 reads, confirming the benefits of gene aggregation in low coverage RNA-Seq, as previously 

14 found e.g. for sample clustering [48].

15

16 Mutation prediction in single-cell data

17 We set out to detect if mutations can be modelled from gene expression data in single-cell 

18 RNA-Seq contexts. In order to do so, we used the original CROP-Seq dataset [17], where 

19 multiple gene knock-outs were carried out via CRISPR/Cas9 in Jurkat cells and the presence 

20 of the deletion was measured alongside gene expression in a single cell manner.

21 We built models based on 8 knock-out subsets targeting the following genes: JUNB, JUND, 

22 LAT, NFAT5, NFKB1, NFKB2, NR4A1 and PTPN11, all with at least 35 single cells carrying the 

23 single knock-outs (vs. 420 control wild-type single cells). Our analysis shows that gene 
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1 aggregation in TF-centered coexpression groups using ARACNe/VIPER can be beneficial in 

2 predicting mutation presence, by virtue of showing the probability of carrying the mutation 

3 in mutated samples vs. control samples (Figure 6).

4 Discussion

5 In this paper, we tested a framework to investigate the complex relationships between 

6 genetic events and transcriptional deregulation through machine learning approaches. We 

7 demonstrated as a generalized proof-of-principle that genomic alterations can be modeled 

8 by gene expression across several human cancers through several machine learning 

9 algorithms, and specifically that a gradient boost modeling approach seems optimal for the 

10 task. In the process, we generated a collection of models for each genomic alteration in 

11 each cancer context, showing that the best predicted alterations are not necessarily 

12 targeting known oncogenes or tumor suppressors. Interestingly, we show how the 

13 aggregation of gene expression profiles in groups of coexpressed genes, via the 

14 ARACNe/VIPER or WGCNA methods, makes the models more robust and more resistant to 

15 perturbations such as gaussian noise or artificial downsampling. Finally, we have shown how 

16 the same aggregation principle can have beneficial effects in predicting the presence of 

17 mutations in intrinsically noisy scenarios, like single cell RNA-Seq. At the same time, we have 

18 shown how modeling can be carried out in single-alteration contexts, implicitly overtaking 

19 the potential bias of cancer samples, where in fact multiple genomic alterations can and do 

20 coexist.

21 The performance of gene aggregation methods has been tested before for sample clustering 

22 in RNA-Seq read reduction scenarios [15,48], but never in this specific task nor in a pan-

23 cancer context. As a principle, the usage of robust averages of pre-defined co-expressed 
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1 genes can be applied in any context where reliability of gene expression data is necessary, 

2 from differential expression to pathway enrichment analyses. The notion that relationships 

3 between genomic alterations and gene expression profiles can be robustly modelled across 

4 different cancer scenarios, as well as in single-cell and noisy contexts, can have important 

5 repercussions in diagnostics, where theoretically a single quantitative expression 

6 experiment can be used to predict the presence or absence of a mutation.

7

8 Materials and Methods

9 Data processing

10 We obtained raw expression counts, mutation and CNV raw data from TCGA using the 

11 Firehose portal (gdac.broadinstitute.org). Raw counts were normalized using Variance 

12 Stabilizing Transformation as described before [49]. Somatic mutations not changing the 

13 aminoacid sequence of the protein product were discarded. We flagged genes blacklisted by 

14 the MutSig project [21], such as TTN, ORs, MUCs as false positives, and removed them from 

15 further analysis (except the most mutated in the pan-cancer dataset, shown in Figure S1). 

16 CNV tracks were associated to the targeted gene using the GenomicRanges R package [50]. 

17 Gene-centered CNVs were then associated to the expression profile of the gene itself. CNV 

18 tracks with a Spearman correlation coefficient above 0.5 were deemed “functional CNVs” 

19 [25] and used in the rest of the analysis. Samples with more than 0.5% of the genes in the 

20 genome somatically amplified, deleted or mutated were deemed “hypermodified” and the 

21 total number was shown in Figure 1 bottom bars.
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1 Clustering analysis was carried out on the TCGA tumor samples using the expression profiles 

2 of 1172 Transcription Factors defined by Gene Ontology terms “transcription factor activity, 

3 sequence-specific DNA binding” (GO:0003700) and “nuclear location” (GO:0005634) [51]. 

4 The dataset expression profiles were visualized after TSNE transformation [52] with 1000 

5 iterations using a 2D kernel density estimate for coloring different tumor types [53]. 

6 Oncogenes and Tumor Suppressor genes were obtained from the COSMIC Cancer Gene 

7 Census in October 2018 [41].

8 Modeling

9 We used the R caret package [18] as the platform to run all our predictive models in a 

10 standardized and reproducible way. Binary classifiers were built to predict the 

11 presence/absence of mutation, amplification and deletion events. The CNV value provided 

12 by TCGA corresponds to log2(tumor coverage) – genomic median coverage. The threshold 

13 for amplification/deletion presence was set to 0.5.

14 Data partitioning was performed once for each tumor type, with 75% of the samples used 

15 for training and 25% for test purposes. Training was performed using 10-fold Cross 

16 Validation. Recursive Feature Elimination was carried out by the default caret 

17 implementation on the 10,000 highest variance gene expression tracks. The algorithms used 

18 (and R packages implementing theme) were:

19  Bayesian Generalized Linear Model (bayesglm)

20  Tree Models from Genetic Algorithms (evtree)

21  Gradient Boost Modeling (gbm)

22  Generalized Linear Model (glm)
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1  k-Nearest Neighbors (kknn)

2  Linear Discriminant Analysis (lda)

3  Neural Networks (mxnet)

4  Neural Networks with Feature Extraction (pcaNNet)

5  Random Forest (rf)

6  Linear Support Vector Machine (svmLinear)

7  Radial Support Vector Machine (svmRadial)

8 In order to reduce information from the gene expression profiles, we adopted two 

9 strategies. The first, shown e.g. in Figure 4B, adds random gaussian noise to the expression 

10 tracks, with a variable standard deviation (indicated as “Gaussian Noise Level”). Each model 

11 run after noise addition was run 100 times to allow for various data partitions. The second 

12 strategy (Figure 5) reduced the number of reads mapped to each gene in order to obtain 

13 expression samples with decreased total gene counts. In order to do so, we applied to each 

14 gene in each sample a downsampling factor sample from a beta distribution:

15

16 Where B is the Beta function, acting as a normalization constant, x is the raw gene 

17 expression count in a particular sample, α is the first shape parameter and β the second 

18 shape parameter. In order to reduce the total sample coverage to the desired level, β is set 

19 to 0.1 and α is set to:

20
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1 Where f is the desired number of reads and r is the total number of reads in the sample. A 

2 real case example of this beta distribution is shown in Figure S9.

3 Aggregation algorithms

4 We used ARACNe-AP [45] to generate TF-centered networks on each of the VST-normalized 

5 TCGA expression datasets. TFs were selected via Gene Ontology as described before, with p-

6 value for each network edge set to 10-8. ARACNe networks were then used to obtain an 

7 aggregated value of TF activity for each sample using the VIPER algorithm [15] which reports 

8 the collective gene expression level changes of each TF-centered network vs. the mean 

9 expression of each gene in the dataset. Only TF networks with at least 10 genes (excluding 

10 the TF) were included.

11 WGCNA clusters of genes were constructed using the wcgna package [44] with default 

12 parameters and minimum network size set to 10 To obtain a robust median expression 

13 value for each WGCNA cluster in each sample we used Tukey’s Biweight function as 

14 implemented by the R affy package [54].

15 Single Cell dataset

16 CROP-Seq raw expression counts were obtained from the Datlinger dataset (available on 

17 Gene Expression Omnibus, entry GSE92872). Samples mapping wild-type control cells and 

18 the most represented knock-out genes (JUNB, JUND, LAT, NFAT5, NFKB1, NFKB2, NR4A1 and 

19 PTPN11) were selected. Variance Stabilizing Transformation was applied using a blinded 

20 experimental design. Gradient boost modelling was applied to each model as described in 

21 the previous paragraph, and probabilities of carrying the knock-out for samples in the test 

22 set are shown, grouped for wild-type and knock-out samples. In this particular case, 10 data 
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1 partitioning rounds are done, in order to increase the exploration space of the model 

2 performance.

3 Methods Availability

4 All code used to generate the analysis and the figures of this paper is available in the online 

5 materials.

6 Figure Legends

7 Figure 1. The TCGA dataset used. A: TSNE clustering of TCGA samples based on the 

8 expression profiles of Transcription Factors. The 2D median of each tumor type is indicated 

9 using the TCGA tumor code. Subset size is indicated in brackets next to tumor type names to 

10 the right. B: table of most somatically mutated genes across TCGA tumor samples, in terms 

11 of number of samples where the gene is somatically mutated with altered protein product 

12 sequence. C: table of most amplified genes across TCGA tumor samples. D: table of most 

13 deleted genes across TCGA tumor samples. The fraction of total TCGA samples carrying a 

14 gene-targeting event is indicated to the right of panels B-D, and the fraction of samples 

15 where more than 0.5% of the genes is affected by the panel event type is indicated to the 

16 bottom of panels B-D.

17 Figure 2. Performance of 11 machine learning algorithms in binary classification of 

18 mutated/nonmutated samples using gene expression predictor variables in the Bladder 

19 Cancer dataset. Each point corresponds to a specific mutation/model. Performance is 

20 indicated as AUROC: Area Under the Receiver Operating Characteristic curve.
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1 Figure 3. Performance of gbm models for each genomic alteration event in TCGA, predicted 

2 as a function of each tumor gene expression. Alterations targeting TP53 and KRAS are 

3 indicated.

4 Figure 4. Performance of a TP53 somatic mutation gbm model upon gaussian noise 

5 addiction. A: ROC curves (and AUC) upon addition of increasing levels (in terms of SD of a 

6 gaussian distribution with mean=0) of gaussian noise. B: AUROCs of the model with 

7 increasing noise, calculated using gene expression (black line) or aggregated gene 

8 expression using the WGCNA (green line) or VIPER (red line) algorithms. Pseudocunts of 0.1 

9 are added in order to show zero counts as -1 in log10 scale.

10 Figure 5. Performance of a TP53 mutation gbm model upon downsampling of the TCGA 

11 breast cancer RNA-Seq dataset. A: for a single TCGA sample (TCGA-A1-A0SB-01) with 43.8 

12 gene mapping reads, the downsampling algorithm is applied for multiple target read 

13 quantities. X-axis shows the count for each gene in the original sample, and Y-axis in the 

14 downsampled output. B: AUROCs of the model with decreasing read numbers, calculated 

15 using gene expression (black line) or aggregated gene expression using the WGCNA (green 

16 line) or VIPER (red line) algorithms.

17 Figure 6. Modeling of single cell KO mutations using single cell gene expression in the 

18 Datlinger dataset. Each point indicates a sample in multiple test sets. Known Wild Type 

19 Control samples (CTRL, left) are plotted separately from Known Knock-Out samples (KO, 

20 right), with number in brackets indicating the number of cells carrying the specific genotype. 

21 The probability of carrying a mutation is shown on the y axis. Boxplots showing median 

22 distribution are overlaid on the sample KO probability distributions. Results using standard 

23 VST-normalized expression data are shown (green) for each gene next to identical models 
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1 run with aggregated gene expression using the VIPER algorithm (blue). One-tailed Wilcoxon 

2 tests were calculated between the KO and CTRL distributions of probabilities, and p-values 

3 are reported.
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20 Supporting Information Legends

21 Figure S1. Table of most somatically mutated genes across TCGA tumor samples, in terms of 

22 number of samples where the gene is somatically mutated with altered protein product 

23 sequence. This table includes also MutSig-blacklisted genes (in grey) such as Titin (TTN), 

24 Obscurin (OBSCN) and Mucin genes.

25 Figure S2. Relationship between alteration models and alteration frequency in the Pan-

26 cancer dataset, for mutations (left), amplifications (center) and deletions (right).

27 Figure S3. Performance of Pan-cancer alterations models globally (left) and for MutSig 

28 genes, COSMIC oncogenes and COSMIC tumor suppressors. Asterisks indicate a significant 

29 (<0.01) difference between a distribution and the global “Other Genes” distribution 

30 according to Two-tailed Wilcoxon tests.
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1 Figure S4. ROC curves for gbm TP53 models in Breast Cancer, using original expression data, 

2 VIPER aggregation (TF “activity”) and WGCNA aggregation (robust tukey biweight average of 

3 clusters).

4 Figure S5. AUROCs of EGFR amplication gbm prediction models in Glioblastoma with 

5 increasing noise, calculated using gene expression (black line) or aggregated gene 

6 expression using the WGCNA (green line) or VIPER (red line) algorithms.

7 Figure S6. AUROCs of EGFR amplication gbm prediction models in Lung Squamous 

8 Carcinoma (LUSC) with increasing noise, calculated using gene expression (black line) or 

9 aggregated gene expression using the WGCNA (green line) or VIPER (red line) algorithms.

10 Figure S7. AUROCs of PVT1 amplication gbm prediction models in Ovarian Cancer with 

11 increasing noise, calculated using gene expression (black line) or aggregated gene 

12 expression using the WGCNA (green line) or VIPER (red line) algorithms.

13 Figure S8. AUROCs of PTEN deletion gbm prediction models in Sarcoma with increasing 

14 noise, calculated using gene expression (black line) or aggregated gene expression using the 

15 WGCNA (green line) or VIPER (red line) algorithms.

16 Figure S9. Beta distribution used to down-sample the 43.8M reads breast cancer sample 

17 TCGA-A1-A0SB-01 to 10M reads. The grey line shows the ratio between the target coverage 

18 and the original coverage

19 Supplementary Table S1. AUROCs for each event in the Pan-Cancer TCGA dataset (24 tumor 

20 types with at least 100 samples with co-measured genomic and expression data. The Sheet 

21 name indicates the tumor type and genomic alteration type (mut: somatic mutation, amp: 

22 amplification, del: deletion).
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1 Supplementary Code. R and bash code snippets used in this study.
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